Edinburgh SLT and MT System Description for the IWSLT 2013 Evaluation

Nadir Durrani

Philipp Koehn

Birch, Durrani, Koehn

Edinburgh SLT and MT

Outline

- Spoken Language Translation
 - Confusion Networks
 - Punctuation
- Machine Translation
 - Operation Sequence Models
 - Word classes (Brown clusters, POS and Morph tags)

- Match ASR output to MT input
 - Punctuation before translation (Matusov et al. 2006)
- Leverage uncertainty in ASR output
 - Confusion Network (Bertoldi et al. 2007)

Maximise the benefit from using Edinburgh ASR systems

- English ASR System
 - Combines tandem & hybrid DNN acoustic model
 - Speaker adaption on test set
 - Recurrent NN LM

"The UEDIN English ASR System for the IWSLT 2013 Evaluation", Peter Bell, Fergus McInnes, Siva Reddy Gangireddy, Mark Sinclair, Alexandra Birch, Steve Renals.

- German ASR System
 - KALDI toolkit
 - + Hybrid DNN with 6 hidden layers, and 2048 nodes
 - + 4-gram LM

"Description of the UEDIN System for German ASR", Joris Driesen, Peter Bell, and Steve Renals.

Birch, Durrani, Koehn

Friday, 6 December 2013

- Baseline Systems
 - MOSES Phrase-Based Model
 - TED + Large out-of-domain corpora (Europarl, News Commentary, Multi UN, Gigaword, and Common Crawl)
 - + Domain Filtering:

bilingual cross-entropy (Axelrod et al. 2011)

• German source:

compound splitting (Koehn and Knight 2003) and syntactic pre-ordering (Collins et al 2005)

Model Type	tst2010	
All data	30.8	
Domain filtering: bilingual cross entropy	31.6 (+0.8)	10% Out of Domain
Filtering + strip source punctuation	28.4 (-3.2)	

English - French: Baseline system trained and test on transcripts

		UNIVERS.
SLT		THE DINBUT
Model Type	tst2010	
All data	21.4	
Domain filtering: bilingual cross entropy	27.8 (+6.4)	20% Out of Domain
Filtering + no syntactic preordering	24.3 (-3.5)	
Filtering + no syntactic preordering + strip source punctuation	23.6 (-4.2)	
German - Englisł	ו:	
Baseline system trained and tes	st on transci	ripts

- SLT experiments with ASR input
- Experimental setup:
 - + Lattices reduced, and remove nulls
 - + Lattices also truecased and tokenised:

Europe's \rightarrow Europe 's

- + Prune phrase table: 402 000 translations of "a"
- Punctuation MT model: strip punctuation on source side, monotone decoding

SLT	WNIVE R C C C C C C C C C C C C C C C C C C	
Model Type	en-fr (tst2010)	de-en (dev2012!)
Absolute I-best	22.9	17.0
Absolute I-best Punctuated	24.1 (+1.2)	16.1 (-0.9)
Lattice I-best	17.9 (-5.0)	_
Confusion Network	19.5 (-3.4)	11.1 (-5.9)
WER: 17.0 18.6		

MT

- All languages + English as source or target!
- Sequence models (language models) and operation sequence models (OSMs) over generalised representations:
 - Brown clusters
 - + POS tags
 - Morphological tags

Phrase-based Models

Friday, 6 December 2013

Phrase-based Models

Phrase-based Models

spurious segmentations

- Instance of N-gram based SMT framework (Marino et a. 2006)
- Translation as a sequence of operations (Durrani et al. 2011)
 - Strongly integrates translation and reordering operations

$$p_{osm}(F, E, A) = \prod_{j=1}^{J} p(o_j | o_{j-n+1}, \dots, o_{j-1})$$
Markov chains

Er würde gegen Sie stimmen

He would vote against you

He

• Operations

$$- o_1$$
: Generate (Er – He) Er

Er würde gegen Sie stimmen He would vote against you

• Operations

Er würde gegen Sie stimmen

He would vote against you

• Operations

Er würde gegen Sie stimmen

He would vote against you

Er würde gegen Sie stimmen

He would vote against you

- Operations
 - o_1 Generate (Er, He) - o_2 Generate (würde, would) - o_3 Insert Gap - o_4 Generate (stimmen, vote) - o_5 Jump Back (1) Er würde gegen stimmen He would vote against
 - o₆ Generate (gegen, against)

Er würde gegen Sie stimmen

He would vote against you

- Operations
 - o₁ Generate (Er, He)
 - o₂ Generate (würde, would) Er würde gegen Sie stimmen
 - o₃ Insert Gap
 - o₄ Generate (stimmen, vote)
 - $-o_5$ Jump Back (1)

He would vote against you

- o_6 Generate (gegen, against)
- o₇ Generate (Sie, you)

Context Window: 9-gram Model

- Markov model over operation sequence
 - Contextual information across phrase boundaries: does not make phrasal independence assumptions
 - Does not have spurious segmentation ambiguity
 - Memorises reordering patterns: consistently handles local and non local reorderings

OSM for word classes

- OSM has shown to help overcome independence assumptions of phrase-based MT
- BUT: sparse so useful over small context
- Apply to generalised representations
 - + Sparse counts for operations over words
 - + Extend context by using Brown clusters etc.
 - More robust statistics

MT Baselines

- MOSES phrase-based model
 - + OSM model features over words
 - sparse features: domain indicator, lexical, phrase length, and count bin
 - factored models for German–English and English– German
 - hierarchical lexicalized reordering (mslr)
 - MADA tokenizer for source-side Arabic
 - Stanford Chinese segmenter

MT Baselines

Language	Into English		From English		
Arabic		24.8	7.6		
Chinese		11.8	9.8		
Dutch		32.8	26.5	1	
Farsi		14.5	8.0		
French		33.3	33.2		
German		30.5	22.9	I	
Italian		29.7	23.7		
Polish		17.7	9.7		
Portuguese		36.0	30.8		
Romanian		31.7	21.1		
Russian		19.1	13.1		
Slovenian		24.7	18.0		
Spanish		39.5	33.9		
Turkish		13.5	7.2		

tst2010

Brown Clusters

- Brown clusters (Mediani et al. 2012, Wuebker 2013, Ammar et al. 2013)
 - + Motivation: lack of tools for many languages
 - word classes that are optimised to reduce n-gram perplexities

group adjectives with same inflection - syntax group all colour adjective - semantics

- + Use GIZA++ mkcls on the target side of parallel corpus
- Train an n-gram sequence model over these identifiers as an additional scoring function

Brown Clusters

- Brown clusters better than POS + Morph tags?
 - Brown clusters are more evenly distributed than POS tags where the distribution is biased toward the noun classes
 - Brown clusters are optimised for language modelling
 - Using POS and morph tags can increase sparsity because you can assign a word different tags

LM over Brown clusters

Lan	iguage	B_0	50	200	600	1000
Dutc	ch	26.5	26.7	26.2	26.3	26.5
			+0.2	-0.4	-0.2	± 0.0
Fren	ch	33.2	33.3	33.4	33.1	33.1
			+0.1	+0.2	-0.1	-0.1
Polis	sh	9.7	9.9	10.1	10.1	10.4
			+0.2	+0.4	+0.4	+0.7
Port	uguese	30.8	31.6	32.2	32.4	32.4
			+0.8	+1.4	+1.6	+1.6
Russ	sian	13.1	13.3	13.5	13.5	14.0
			+0.2	+0.4	+0.4	+0.9
Slov	enian	18.0	18.7	18.6	17.7	18.0
			+0.7	+0.6	-0.3	± 0.0
Spar	nish	34.1	34.3	34.6	34.5	34.0
			+0.2	+0.5	+0.4	-0.1
Turk	ish	7.2	7.4	7.5	7.5	7.5
			+0.2	+0.3	+0.3	+0.3

OSM over Brown clusters

Language	B ₀	50	200	600	1000
Dutch	26.5	26.9	26.5	26.6	26.5
		+0.2	+0.3	+0.3	± 0.0
French	33.2	33.8	33.7	33.6	33.8
		+0.5	+0.3	+0.5	+0.7
Polish	9.7	10.1	10.2	10.2	10.1
		+0.2	+0.1	+0.1	-0.3
Portuguese	30.8	31.8	32.4	32.3	31.9
		02	+0.2	-0.1	-0.5
Russian	13.1	13.6	13.7	13.8	13.6
		+0.3	+0.2	+0.3	-0.4
Slovenian	18.0	18.6	18.9	18.2	18.0
		-0.1	+0.3	+0.5	± 0.0
Spanish	34.1	34.7	34.6	34.6	34.6
		+0.4	± 0.0	-0.1	+0.6
Turkish	7.2	7.3	7.3	7.5	7.5
		-0.2	-0.2	± 0.0	± 0.0

Birch, Durrani, Koehn

Edinburgh SLT and MT

OSM over POS + Morph

Model	English-German	German-English		
Baseline	22.9	30.5		
+OSM _(pos,pos)	23.2 +0.3	31.0 +0.5		
$+OSM_{(pos,morph)}$	23.9 +1.0	31.2 +0.7		
$+OSM_{all}$	24.2 +1.3	31.1 +0.6		
	English-French	English-Spanish		
Baseline	33.1	33.9		
$+OSM_{(pos,pos)}$	33.0 -0.1	34.4 +0.5		
Baseline	26.6			
$+OSM_{(pos,pos)}$	26.6 ± 0.0			

MT Official Submission

	Into English			F	om Engli	sh
Language	$test_{11}$	$test_{12}$	$test_{13}$	$test_{11}$	$test_{12}$	$test_{13}$
Arabic	25.6	27.7	26.3	11.9	12.4	11.5
Chinese	16.1	14.2	15.3	19.8	18.1	18.6
Dutch	36.0	33.0	32.7	30.3	26.7	25.5
Farsi	19.2	15.9	15.1	12.3	10.2	9.5
French	_	_	_	40.6	41.2	38.5
German	_	_	25.5	27.1	22.5	24.0
Italian	30.2	29.6	34.9	24.4	25.3	29.2
Polish	21.7	18.5	20.9	13.1	10.5	11.5
Portuguese	39.0	40.6	37.3	33.6	34.9	33.2
Romanian	36.1	31.8	29.8	23.2	19.2	17.6
Russian	22.1	20.7	22.7	15.9	13.5	16.1
Slovenian	_	21.2	24.1	_	12.4	13.7
Spanish	37.1	30.8	39.1	33.2	26.8	34.7
Turkish	15.0	15.0	14.9	7.4	7.4	6.8

Summary

- SLT
 - Punctuation ASR input helps
 - WER is important for MT performance
 - Confusion Networks help
 - Need to filter phrase table or decoding with CN and Lattices not feasible

Summary

• MT

- Ran a lot of experiments!
- Sequence models (LMs) over Brown clusters help
- OSM models over Brown clusters generally help more than LMs
- Combining OSM models over multiple representations (POS+Morph tags) helps en-de and de-en
- Take home message:

OSM models over Brown clusters will help