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Abstract

This paper describes our English Speech-to-Text (STT)
systems for the 2013 IWSLT TED ASR track. The systems
consist of multiple subsystems that are combinations of dif-
ferent front-ends, e.g. MVDR-MFCC based and lMel based
ones, GMM and NN acoustic models and different phone
sets. The outputs of the subsystems are combined via confu-
sion network combination. Decoding is done in two stages,
where the systems of the second stage are adapted in an unsu-
pervised manner on the combination of the first stage outputs
using VTLN, MLLR, and cMLLR.
Index Terms: speech recognition, IWSLT, TED talks, eval-
uation system, system development

1. Introduction
[1] The International Workshop on Spoken Language Trans-
lation (IWSLT) offers a comprehensive evaluation cam-
paign on spoken language translation. One part of
the campaign focuses on the translation of TED Talks
(http://www.ted.com/talks), short 5-25min presentations by
people from various fields related in some way to Technol-
ogy, Entertainment, and Design (TED) [2]. In order to eval-
uate different aspects of this task IWSLT organizes several
evaluation tracks on this data covering the aspects of auto-
matic speech recognition (ASR), machine translation (MT),
and the full-fledged combination of the two of them into
speech translation systems.

The goal of the TED ASR track is the automatic tran-
scription of TED lectures on a given segmentation, in order
to interface with the machine translation components in the
speech-translation track. The quality of the resulting tran-
scriptions are measured in word error rate (WER).

In this paper we describe our English ASR systems with
which we participated in the TED ASR track of the 2013
IWSLT evaluation campaign. This year, our system is a fur-
ther development of our last year’s evaluation system [3] and
makes use of system combination and cross-adaptation, by
utilising both GMM and Neural Network acoustic models
which are trained with different acoustic front-ends and em-

ploy different phoneme sets. We also included TED talks
available via TED’s website by training on them in a slightly
supervised manner.

We submitted primary systems for both the German and
English evaluations.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by section 3 which provides a description of
the two acoustic front-ends used in our system and section
4 which describes our segmentation setup. An overview of
the techniques used to build our acoustic models is given in
section 5. We describe the language model used for this eval-
uation in section 6 and our decoding strategy and results are
presented in sections 7 and 8.

2. Data Resources
2.1. Training Data

For acoustic model training we used the following English
data sources:

• 200 hours of Quaero training data from 2010 to 2012.

• 18 hours of various noise data, such as snippets of ap-
plause and music.

• 158 hours of data downloaded from the TED talks
website that was released before the cut-off date of 31
December 2010, including the corresponding subtitles
provided by the TED conferences archive.

and the following German data sources:

• 179 hours of Quaero training data from 2010 to 2012.

• 24 hours of broadcast news data

These training set or subsets hereof are also used for the
training of the automatic segmenters, that are applied to the
evaluation data before decoding.

For English language model training and vocabulary se-
lection, we used the subtitles of TED talks and text data from



Text corpus # Words
TED 3M
News + News commentary 2,114M
GIGA parallel 523M
Gigaword 4 1,800M
UN + Europarl 376M
Google Books Ngrams (subset) (1000M ngrams)

Table 1: English language modeling data after cleaning and
data selection. The total number of words was 4.8 billion,
not counting Google Books.

Text corpus # Words
TED (translated) 2,259k
Callhome 150k
Europarl 47,306k
HUB5 19k
MultiUN 5,849k
News+News Commentary 284,415k
ECI 12,652k
Euro Language Newspaper 86,785k
German Political Speeches 5,514k
Common Crawl 47,046k
Google Web Ngrams 1.3T

Table 2: German language modeling data after cleaning and
data selection. In total, we used 492 million words, not
counting Google Ngrams.

various sources (see Table 1) and for the German language
model training and vocabulary selection, we used translated
subtitles of TED talks and text data from various sources (see
Table 2).

2.2. Test Data

Table 3 describes three test sets (“tst2011”, “tst2012” and
“tst2013”) used for this year’s English evaluation campaign,
as well as our development set for system development and
parameter optimization (“dev2012”). “tst2011” is comprised
of TED talks newer than December 2010 and serves as
progress test set to measure the improvement in systems from
2011 onwards. “tst2012” is last year’s evaluation set, and
“tst2013” is a collection of some of the most recent record-
ings made available by TED. All test sets were used with the
original pre-segmentation provided by the IWSLT organiz-
ers, except for this year’s evaluation set (“tst2013”) which
has been segmented automatically before decoding. For the
German system on a single test set “dev2013” was available.

3. Feature Extraction
Our systems are built using several different front ends that
use various inputs for computing deep bottle neck features.

Set #talks #utt dur dur/utt
dev2012 10 1144 1.7h 5.4s
tst2011 8 818 1.1h 4.9s
tst2012 11 1124 1.7h 5.6s
tst2013 28 1438 4.2h 10.5s

Table 3: Statistics of the development set (“dev2012”) and
the test sets (“tst2011”, “tst2012” and “tst2013”), including
the total number of talks (#talks), the total number of utter-
ances (#utt), the overall speech duration (dur), and average
speech duration per utterance (dur/utt). “tst2013” has been
segmented automatically.

The two main input variants, each using a frame shift of 10ms
and a frame size of 32ms, are the MFCC+MVDR (M2) fea-
tures that have been shown to be very effective when used in
BNFs [4] and standard lMEL features which generally out-
perform MFCCs as DBNF inputs. These standard features
are often augmented by tonal features. In [?] we demon-
strate, that the addition of tonal (T) features not only greatly
reduces the WER on tonal languages like Vietnamese and
Cantonese but also results in small gains on non-tonal lan-
guages like English.

13 frames (+-6 frames ) are stacked as the DBNF input
which consists of 4-5 hidden layers each containing 1200-
1600 units followed by a 42 unit bottleneck, a further 1200-
1600 unit hidden layer and an output layer of 6000 context
dependent phone states for the German systems and 8000
for the English systems. The first 4-5 hidden layers are pre-
trained layer-wise as denoising autoencoders after which the
network the finetuned as a whole [5]. As can be seen in fig-
ure 1 the layers after the bottlenet are discareded and 13 (+-6
) bottleneck frames are stacked and reduced back down to a
42 dimensional input feature using LDA.

4. Automatic Segmentation

For this year’s ASR track, the evaluation set was provided
without manual sentence segmentation, thus automatic seg-
mentation of the target data was mandatory. We evaluated
the effectiveness of three different approaches to automatic
segmentation of audio data, which are:

a) Decoder based segmentation on hypotheses. A fast
decoding pass with one of our development systems was
done to determine speech and non-speech regions as in [6].
Segmentation is performed by consecutively splitting seg-
ments at the longest non-speech region with a minimal du-
ration of at least 0.3 seconds. b) GMM based segmentation
using speech, non-speech and silence models. This method
uses a Viterbi decoder and GMM models for the three afore-
mentioned categories of sounds. The general framework is
based on the one in [7], which was likewise derived from [8].
In contrast to the previous work, we made use of additional
features such as a zero crossing rate. c) SVM based segmen-
tation using speech and non-speech models, using the frame-
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Figure 1: Overview of our standard DBNF setup.

work introduced in [7]. The pre-processing makes use of an
LDA transformation on feature vectors after frame stacking
to effectively incorporate temporal information. The SVM
classifier is trained with the help of LIBSVM [9]. A 2-phased
post-processing is applied for final segmentation generation.

Table 4 shows the decoding performance of a confusion
network combination of hypotheses generated by five devel-
opment systems after a first pass decoding on the “dev2012”
set, for each preliminary application of the various tech-
niques for segmentation.

Segmentation WER #utt dur dur/utt
Manual 13.2% 1144 1.71h 5.4s
Decoder based 13.8% 594 1.83h 11.1s
SVM based 13.9% 431 1.78h 14.9s
GMM based 14.3% 695 1.77h 9.2s

Table 4: Decoding performance on and statistics of the de-
velopment set (“dev2012”) after automatic segmentation, in-
cluding the word error rate (WER), the total number of utter-
ances (#utt), the overall speech duration (dur), and average
speech duration per utterance (dur/utt).

On the English development set the decoder based ap-
proach resulted in the best performance in terms of WER, so
we decided in favor of the latter for application on the eval-
uation set. For the German system we used the SVM based

segmenters since it performed best on the German develop-
ment set.

5. Acoustic Modeling
We trained several different acoustic models for each lan-
guage.

5.1. Data Preprocessing

For the TED data only subtitles were available so the data
had to be segmented prior to training. In order to split the
data into sentence-like chunks, it was decoded to discrim-
inate speech and non-speech and a forced alignment given
the subtitles was done where only the relevant speech parts
detected by the decoding were used. The procedure is the
same that has been applied in [10].

5.2. AM training Setup

The models of all systems are context-dependent quinphones
with three states per phoneme, using a left-to-right HMM
topology without skip states. All English acoustic models
initially use 8,000 distributions and codebooks derived from
decision-tree based clustering of the states of all possible
quinphones. The German acoustic models use 6000 distri-
butions and codebooks.

The GMM models were trained by using incremental



splitting of Gaussians training (MAS) [11], followed by op-
timal feature space training (OFS) which is a variant of
semi-tied covariance (STC) [12] training using one global
transformation matrix, and finally refined by one iteration of
Viterbi training. All models further use vocal tract length
normalization (VTLN).

We trained multiple different GMM acoustic models by
combining different front-ends and different phoneme sets.
Section 7 elaborates the details of our system combination.

5.3. Hybrid Acoustic Model

We experimented with using neural network acoustic mod-
els. Using the same techniques described in the deep bot-
tleneck layer section we trained neural networks on various
input features and with different topologies. Our best setups
used deep bottleneck features stacked over a window of 13
frames, with 4-5 1600-2000 unit hidden layers and an output
layer containing 6016 context dependent phonestates. The
deep bottleneck features were extracted using an MLP with
5 1600 unit hidden layers prior to the 42 unit bottleneck layer.
Its input was 40 lMel (or MVDR+MFCC) and 14 tone fea-
tures stacked over a 13 frame window. Both neural networks
were pretrained as denoising autoencoders. On the eval2010
test set this system had a WER of 14.61%, which is 0.5%
better than this best non hybrid single pass system.

5.4. Pronunciation Dictionary

We used two different phoneme sets. The first one is based
on the CMU dictionary1 and is the same phoneme set as the
one used in last years system. It consists of 45 phonemes
and allophones. The second phoneme set is derived from
the BEEP dictionary2 and contains 44 phonemes and allo-
phones. Both sets use 7 noise tags and one silence tag each.
For the CMU phoneme set we generated missing pronunci-
ations with the help of FESTIVAL [13], while for the BEEP
dictionary we used Sequitur [14] instead. Both grapheme to
phoneme converters were trained on subsets of the respective
dictionaries.

5.5. Grapheme System

We built grapheme-based recognizer for both English and
German. In order to built the Englsih grapheme-based dic-
tionary, we used a data-driven approach to cluster the most
common combinations of letters in order to better reflect the
specifics of the English language. These clusters contain for
instance combinations such as sch, sh or th. We added these
in addition to all the letters of the English alphabet to the set
of phones.

Using this dictionary, be trained a system using flatstart
training on the training data of the 2011 training set. After
doing the context-independent flatstart training, we built a
context-dependent system on top of that.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz

As our best result, we archived to get a WER of 31.8%
using a clustertree with 6000 states. Since this WER is quite
high compared to the WER of our other systems, we decided
not to include this system either in our system-combination
or the submission.

The German grapheme system on the other hand per-
formed only slighty worse than our phoneme based system
and resulted in overall gains when included in the final sys-
tem combination.

5.6. BMMIE training

In order to improve the performance of acoustic model, the
Boosted Maximum Mutual Information Estimation training
(BMMIE) [15] is applied, it is a modified form of the Max-
imum Mutual Information (MMI) [16]. We wrote lattices
for discriminative training using a small unigram language
model as in [17]. After lattices generating, the BMMIE train-
ing is applied for three iterations with boosting factor b=0.5.
This approach resulted in about 0.6% WER improvement for
1st-pass sytems and about 0.4% WER for 2nd-pass systems.

6. Lanuage Models and Search Vocabulary

Language modeling was performed by building separate lan-
guage models for all (sub-)corpora using the SRILM toolkit
[18] with modified Kneser-Ney smoothing. These were then
linearly interpolated, with interpolation weights tuned using
held-out data from the TED corpus.

6.1. Subword Language Model for German

In order to select a sub-word vocabulary we first perform
compound splitting on all the text corpora and tag the split
compounds. Linking morphemes are attached to the proceed-
ing word. Wirtschaftsdelegationsmitglieder is, for example,
split into Wirtschafts+ Delegations+ Mitglieder (eng: mem-
bers of the economic delegation).

Our compound splitting algorithm requires a set of valid
sub-words and selects the best split from all possible splits
by maximizing the sum of the squares of all sub-word lengths
[19]. For the word Konsumentenumfrage this heuristic would
correctly choose Konsumenten Umfrag over Konsum Enten
Umfrage.

As a set of valid sub-words we selected the top k words
from a ranked word-list generated in the same mannar as our
English vocabulary. After applying coumpound splitting to
all our text corpora the same maximum likelihood vocabu-
lary selection method is used again to select the best vocab-
ulary from this split corpora resulting in a ranked vocabulary
containing both full words and sub-words tagged with a “+”.

Pronunciations missing from the initial dictionary are
created with both Festival and Mary [20]. The sub-word lan-
guage model is trained on the split corpora and tuning text
analogous to the English language model.



System Dev2012 Eval2011 Eval2012
M2+T-CMU 15.9 11.6 11.7
lMEL+T-CMU 16.1 11.4 11.4
M2+T-DLabel-CMU 15.8 11.2 11.5
M2+T-BEEP 16.2 12.0 12.6
lMEL+T-BEEP 16.1 12.2 12.6
M2+T-hyb-CMU 16.5 11.9 11.6
M2+T-hyb-BEEP 16.9 12.4 12.4
CNC-BEEP-01 13.7 9.8 9.5
M2+T-CMU 14.7 10.3 10.3
lMEL+T-CMU 15.0 10.2 10.1
M2+T-DLabel-CMU 14.5 10.3 10.1
M2+T-BEEP 14.7 10.8 10.5
lMEL+T-BEEP 14.4 10.6 10.6
CNC-BEEP-02 13.3 9.3 9.2
ROVER 13.3 9.2 9.0

Table 5: Results for English language on development data
and evaluation data.

7. Decoding Setup
The decoding was performed with the Janus Recognition
Tool-kit (JRTk) developed at Karlsruhe Institute of Tech-
nology and Carnegie Mellon University [21]. Our decod-
ing strategy is based on the principle of system combination
and cross-system adaptation. System combination works on
the principle that different systems commit different errors
that cancel each other out. Cross-system adaptation profits
from the fact that the unsupervised acoustic model adapta-
tion works better when performed on output that was created
with a different system that works approximately equally
well [22]. The final step in our system decoding set-up is
the ROVER combination of several outputs [23].

8. Results
We evaluated our systems on the IWSLT test sets 2011
(tst2011), 2012 (tst2012) and the 2012 dev set. We used the
dev2012 set as development set and for parameter optimiza-
tion and the eval 2012 set to compare our system with last
years evaluation results (see table 5). Last year our best sys-
tem had a WER of 12% on the eval 2012 set which we were
able to reduce to 9% with this year’s evaluation system.

9. Conclusions
In this paper we presented our English and German LVCSR
systems, with which we participated in the 2013 IWSLT eval-
uation.
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and Matthias Wölfel, “Cross-System Adaptation and
Combination for Continuous Speech Recognition: The
Influence of Phoneme Set and Acoustic Front-End,”
in Proceedings of the 9th International Conference on
Spoken Language Processing (Interspeech 2006, IC-
SLP), Pittsburgh, PA, USA: ISCA, Nov. 2006, pp. 521–
524.

[23] J. Fiscus, “A post-processing system to yield reduced
word error rates: Recognizer Output Voting Error Re-
duction (ROVER),” in Proceedings the IEEE Workshop
on Automatic Speech Recognition and Understanding,
Santa Barbara, CA, USA, Dec. 1997, pp. 347–354.


