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Foreword 
The International Workshop on Spoken Language Translation (IWSLT) is an annually 
scientific workshop, associated with an open evaluation campaign on spoken 
language translation, where both scientific papers and system descriptions are 
presented. The 10th International Workshop on Spoken Language Translation takes 
place in Heidelberg, Germany on Dec. 05 and 06, 2013. !
The IWSLT includes scientific papers in dedicated technical sessions, either in oral or 
poster form. The contributions cover theoretical and practical issues in the field of 
Machine Translation (MT), in general, and Spoken Language Translation (SLT), 
including Automatic Speech Recognition (ASR), Text-to-Speech Synthesis (TTS) and 
MT, in particular: 

• Speech and text MT 
• Integration of ASR and MT 
• MT and SLT approaches 
• MT and SLT evaluation 
• Language resources for MT and SLT 
• Open source software for MT and SLT 
• Adaptation in MT 
• Simultaneous speech translation 
• Speech translation of lectures 
• Spoken language summarization 
• Efficiency in MT 
• Stream-based algorithms for MT 
• Multilingual ASR and TTS 
• Rich transcription of speech for MT 
• Translation of on-verbal events 

Submitted manuscripts were carefully peer-reviewed by members of the program 
committee and papers were selected based on their technical merit and relevance to 
the conference. The large number of submissions as well as the high quality of the 
submitted papers indicates the interest on Spoken Language Translation as a research 
field and the growing interest in these technologies and their practical applications. !
The results of the spoken language translation evaluation campaigns organized in the 
framework of the workshop are also an important part of IWSLT. Those evaluations 
are organized in the manner of competition. While participants compete for achieving 
the best result in the evaluation, they come together afterwards and discuss and share 
their techniques that they used in their systems. In this respect, IWSLT proposes 
challenging research tasks and an open experimental infrastructure for the scientific 
community working on spoken and written language translation. This year the IWSLT 
evaluation offered a very challenging and appealing task on spoken language 
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translation of public speeches in a variety of topics, including a dedicated task to 
automatic speech recognition in order to cover the full pipeline of speech translation. !
For each task, monolingual and bilingual language resources, as needed, are provided 
to participants in order to train their systems, as well as sets of manual and automatic 
speech transcripts (with n-best and lattices) and reference translations, allowing 
researchers working only on written language translation to also participate. 
Moreover, blind test sets are released and all translation outputs produced by the 
participants are evaluated using several automatic translation quality metrics. For the 
primary submissions of all MT and SLT tasks a human evaluation was carried out as 
well. Each participant in the evaluation campaign has been requested to submit a 
paper describing his system, the utilized resources. The organizers present a survey of 
the evaluation campaigns.  !
Welcome to Heidelberg! !
Alex Waibel, General Chair IWSLT 203 !

!4IWSLT 2013



Organizers 
Workshop Chair 
	 Alex Waibel, KIT&CMU 

	 Joseph Mariani, LIMSI-CNRS & IMMI 

!
Evaluation Chair 
	 Marcello Federico, FBK 

	 Sebastian Stüker, KIT 

  

Program Chair 
	 Joy Zhang, CMU 

!
Publicity Chair 
	 Eiichiro Sumita, NICT 

	 Chiori Hori, NICT 

  

Local Chair 
	 Margit Rödder, KIT 

  

Program Committee 
• Alexandre Allauzen (LIMSI, France) 

• Loic Barrault (LIUM, France) 

• Laurent Besacier (LIG, France) 

• Mauro Cettolo (FBK, Italy) 

• Boxing Chen (NRC, Canada) 

• Chris Dyer (CMU, USA) 

• Matthias Eck (Facebook, USA) 

• Ge Gan (Qualcomm, USA) 

!5IWSLT 2013



• Xiaodong He (Microsoft Research, USA) 

• Fei Huang (IBM, USA) 

• Qun Liu (ICT, China) 

• Yang Liu (Tsinghua Univ., China) 

• Hwee Tou Ng (NUS, Singapore) 

• Stefan Riezler (Univ. Heidelberg, Germany) 

• Kay Rottmann (Facebook, USA) 

• Avneesh Saluja (CMU, USA) 

• Wade Shen (MIT-LL, USA) 

• Xiaodong Shi (Xiamen Univ., China) 

• Stephan Vogel (QCI, USA) 

• Taro Watanabe (NICT, Japan) 

• Dekai Wu (HKUST, Asia) 

• Hao Zhang (Google, USA) 

• Jiajun Zhang (CAS, Asia) 

• Bing Zhao (SRI, USA) 

!
!

!6IWSLT 2013



!
Acknowledgement 

!
!
!
!
!
!
!
!
!
 

!

!

!
!
!

!7IWSLT 2013

 Institute for Multilingual and Multimedia Information



Program	  of	  the	  10th	  Interna0onal	  Workshop	  on	  Spoken	  Language	  Transla0on	  
(IWSLT	  2013)	  !

December	  05,	  2013	  !
08:30	  -‐	  09:15	   	   Registra2on	  and	  welcome	  coffee	  
09.15	  -‐	  09:30	   	   Welcome	  remarks	  !
09:30	  -‐	  10:20	  	  	  	  	  	  	  	  	   Overview	  of	  IWSLT	  2013	  Evalua@on	  !
10:20	  -‐	  10:40	  	  	  	  	  	  	  	  	  	  	   Coffee	  Break	  !
10:40	  -‐	  11:00	   Seman@c	  MT	  Evalua@on	  with	  HMEANT	  for	  IWSLT	  2013	  (Dekai	  Wu)	  !
11:00	  -‐	  11:40	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ASR	  System	  paper:	  The	  2013	  KIT	  IWSLT	  Speech-‐to-‐Text	  Systems	  for	  

German	  and	  English	  (Kevin	  Kilgour,	  Chris@an	  Mohr,	  Michael	  Heck,	  
Quoc	  Bao	  Nguyen,	  Van	  Huy	  Nguyen,	  Evgeniy	  Shin,	  Igor	  Tseyzer,	  Jonas	  
Gehring,	  Markus	  Müller,	  Ma[hias	  Sperber,	  Sebas@an	  Stüker	  and	  Alex	  
Waibel.)	  !

11:40	  -‐	  14:00	   	  	  	  	  	  	  	  	  	  	  	   Lunch	  Break	  !
14:00	  -‐	  14:40	   	  MT	  System	  paper:	  Edinburgh	  SLT	  and	  MT	  System	  Descrip2on	  for	  the	  

IWSLT	  2013	  Evalua2on	  (Alexandra	  Birch,	  Nadir	  Durrani	  and	  Philipp	  
Koehn.)	  !!

14:40	  -‐	  15:00	   	   Coffee	  Break	  !
15:00	  -‐	  15:40	   	  SLT	  System	  paper:	  The	  RWTH	  Aachen	  Machine	  Transla2on	  Systems	  for	  

IWSLT	  2013	  (Joern	  Wuebker,	  Stephan	  Peitz,	  Tamer	  Alkhouli,	  Jan-‐
Thorsten	  Peter,	  Minwei	  Feng,	  Markus	  Freitag	  and	  Hermann	  Ney.)	  !

15:40	  -‐	  16:00	   	   Coffee	  Break	  !
16:00	  -‐	  17:30	   	   Posters	  (system	  papers	  +	  scien2fic	  posters)	  !
17:30	  -‐	  20:00	   	   Guided	  Tour	  Castle	  of	  Heidelberg	  
	   Recep2on:	  “Glühwein”	  (Hot	  Spiced	  Wine)	  in	  the	  inner	  courtyard	  of	  the	  

castle	  	  !
20:00	  -‐	  23:30	   	   Dinner	  in	  the	  Castle	  !!!
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December	  06,	  2013	  !
09:30	   	   	   Beginning	  
09:30	  -‐10:15	   	   Keynote	  speech:	  “The	  Human	  Interpreter	  in	  Ac2on	  –	  Mul2lingualism	  	  
	   	   	   at	  the	  European	  Parliament"	  by	  	  
	   	   	   Susanne	  Altenberg,	  Head	  of	  Unit,	  Directorate	  for	  Organisa@on	  and	  
	   	   	   Planning,	  Support	  to	  Mul@lingualism	  Unit,	  European	  Parliament.	  
10:15	  –	  10:30	   	   Coffee	  Break	  
10:30	  -‐	  12:00	  	   Oral	  Session	  –	  Technical	  Papers:	  ASR	  I	  

•	   Hiroaki	  Shimizu,	  Graham	  Neubig,	  Sakriani	  Sak@,	  Tomoki	  Toda	  and	  
Satoshi	  Nakamura.	  	   Construc2ng	  a	  Speech	  Transla2on	  
System	  using	  Simultaneous	  Interpreta2on	  Data.	  

•	   Joshua	  Winebarger,	  Bao	  Nguyen,	  Jonas	  Gehring,	  Sebas@an	  Stueker	  
and	  Alexander	  Waibel.	  	  The	  2013	  KIT	  Quaero	  Speech-‐to-‐Text	  
System	  for	  French.	  

•	   Michael	  Heck,	  Sebas@an	  Stüker,	  Sakriani	  Sak@,	  Alex	  Waibel	  and	  
Satoshi	  Nakamura.	  Incremental	  Unsupervised	  Training	  for	  
University	  Lecture	  Recogni2on.	  

12:00	  -‐	  13:30	   	   Lunch	  Break	  
13:30	  -‐	  15:30	   	   Oral	  Session	  –	  Technical	  Papers:	  MT	  	  

•	   Seppo	  Enarvi	  and	  Mikko	  Kurimo,	  	  Studies	  on	  Training	  Text	  Selec2on	  
for	  Conversa2onal	  Finnish	  Language	  Modeling.	  

•	   Shachar	  Mirkin	  and	  Nicola	  Cancedda.	  Assessing	  Quick	  Update	  
Methods	  of	  Sta2s2cal	  Transla2on	  Models	  

•	   Teresa	  Herrmann,	  Jochen	  Weiner,	  Jan	  Niehues	  and	  Alex	  Waibel.	  	  
Analyzing	  the	  Poten2al	  of	  Source	  Sentence	  Reordering	  in	  Sta2s2cal	  
Machine	  Transla2on	  

•	   Jesús	  González-‐Rubio	  and	  Francisco	  Casacuberta.	  	  Improving	  the	  
Minimum	  Bayes’	  Risk	  Combina2on	  of	  Machine	  Transla2on	  
Systems.	  

15:30	  -‐	  16:00	   	   Coffee	  Break	  
16:00	  -‐	  18:00	   	   Oral	  Session	  –	  Technical	  papers:	  MT	  II	  

•	   Christoph	  Schmidt,	  Oscar	  Koller,	  Hermann	  Ney,	  Thomas	  Hoyoux	  
and	  Justus	  Piater.	  	  Using	  Viseme	  Recogni2on	  to	  Improve	  a	  
Signlanguage	  Transla2on	  System	  

•	   Francisco	  Guzman,	  Hassan	  Sajjad,	  Stephan	  Vogel	  and	  Ahmed	  
Abdelali.	  The	  AMARA	  Corpus:	  Building	  Resources	  for	  Transla2ng	  
the	  Web's	  Educa2onal	  Content.	  

•	   Jesús	  González-‐Rubio,	  J.Ramon	  Navarro-‐Cerdan	  and	  Francisco	  
Casacuberta.	  	  Empirical	  Study	  of	  a	  Two-‐Step	  Approach	  to	  Es2mate	  
Transla2on	  Quality.	  

•	   Li	  Gong,	  Aurélien	  Max	  and	  François	  Yvon.	  Improving	  Bilingual	  Sub-‐
senten2al	  Alignment	  by	  Sampling-‐based	  Transpoeng	  !

18:00	   	   	   Farewell 

!9IWSLT 2013



!
Keynote 

The Human Interpreter in Action – 
Multilingualism  at the European Parliament !

Mul@lingualism	  is	  at	  the	  heart	  of	  the	  European	  Parliament.	  24	  official	  EU	  
languages	  make	  a	  daun@ng	  552	  possible	  language	  combina@ons	  not	  to	  
men@on	  many	  other	  non-‐official	  languages	  used	  almost	  daily	  (such	  as	  the	  
languages	  of	  candidates	  countries,	  Russian,	  Arabic,	  Chinese,	  Farsi,	  etc).	  
DG	  Interpreta@on	  and	  Conferences	  offers	  a	  high	  quality	  service	  for	  all	  
mee@ngs	  of	  the	  European	  Parliament	  and	  several	  other	  EU-‐ins@tu@ons	  
and	  bodies.	  

In	  my	  presenta@on	  I	  will	  explain	  how	  we	  provide	  high	  quality	  
interpreta@on	  in	  a	  truly	  mul@lingual	  environment	  and	  I	  will	  try	  to	  answer	  
the	  following	  ques@ons:	  What	  are	  the	  main	  challenges	  for	  the	  
interpreters?	  How	  to	  achieve	  full	  language	  coverage?	  How	  can	  new	  
technologies	  support	  the	  work	  of	  the	  interpreters?	  Man	  versus	  Machine	  
or	  Man	  and	  Machine?	  

!
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Report on the 10th IWSLT Evaluation Campaign

Mauro Cettolo(1) Jan Niehues(2) Sebastian Stüker(2) Luisa Bentivogli(1) Marcello Federico(1)

(1) FBK - Via Sommarive 18, 38123 Trento, Italy
(2) KIT - Adenauerring 2, 76131 Karlsruhe, Germany

Abstract
The paper overviews the tenth evaluation campaign orga-
nized by the IWSLT workshop. The 2013 evaluation offered
multiple tracks on lecture transcription and translation based
on the TED Talks corpus. In particular, this year IWSLT
included two automatic speech recognition tracks, on En-
glish and German, three speech translation tracks, from En-
glish to French, English to German, and German to English,
and three text translation track, also from English to French,
English to German, and German to English. In addition to
the official tracks, speech and text translation optional tracks
were offered involving 12 other languages: Arabic, Spanish,
Portuguese (B), Italian, Chinese, Polish, Persian, Slovenian,
Turkish, Dutch, Romanian, Russian. Overall, 18 teams par-
ticipated in the evaluation for a total of 217 primary runs sub-
mitted. All runs were evaluated with objective metrics on a
current test set and two progress test sets, in order to compare
the progresses against systems of the previous years. In ad-
dition, submissions of one of the official machine translation
tracks were also evaluated with human post-editing.

1. Introduction
This paper overviews the results of the evaluation campaign
organized by the International Workshop of Spoken Lan-
guage Translation. The IWSLT evaluation has been now run-
ning for a decade and has offered along these years a variety
of speech translation tasks [1, 2, 3, 4, 5, 6, 7, 8, 9]. The
2013 IWSLT evaluation continued along the line set in 2010,
by focusing on the translation of TED Talks, a collection of
public speeches covering many different topics. As in the
previous two years, the evaluation included tracks for all the
core technologies involved in the spoken language transla-
tion task, namely:

• Automatic speech recognition (ASR), i.e. the conver-
sion of a speech signal into a transcript,

• Machine translation (MT), i.e. the translation of a pol-
ished transcript into another language,

• Spoken language translation (SLT), that addressed the
conversion and translation of a speech signal into a
transcript in another language.

However, with respect to previous rounds, new languages
have been added to each track. The ASR track included be-

sides English also German, and the SLT and MT track of-
fered English-French, English-German, and German-English
translation directions. Besides the official evaluation tracks,
many other optional translation directions were also offered.
Optional SLT directions were from English to Spanish, Por-
tuguese (B), Italian, Chinese, Polish, Slovenian, Arabic, and
Persian. Optional MT translation directions were: English
from/to Arabic, Spanish, Portuguese (B), Italian, Chinese,
Polish, Persian, Slovenian, Turkish, Dutch, Romanian, and
Russian. For each official and optional translation direction,
training and development data were supplied by the organiz-
ers through the workshop’s website. Major parallel collec-
tions made available to the participants were the WIT3 [10]
corpus of TED talks, all data from the WMT 2013 workshop
(CITE), the MULTIUN corpus (CITE), and the SETimes par-
allel corpus (CITE). A list of monolingual resources was pro-
vided too, that includes both freely available corpora and cor-
pora available from the LDC. Test data were released at the
begin of each test period, requiring participants to return one
primary run and optional contrastive runs within one week.
The schedule of the evaluation was organized as follows:
June 8, release of training data; Sept 2-8, ASR test of pe-
riod; Sept 9-15, SLT test period; Oct 7-13, MT test period;
Oct 7-20, test period of all optional directions.

All runs submitted by participants were evaluated with
automatic metrics. In addition, MT runs of the English-
French direction were evaluated manually. While in the past
years SLT and MT outputs were evaluated through subjec-
tive rankings, this year another method was investigated. In
particular, we tried to address the utility of MT output by
measuring the post-editing effort needed by a professional
translator to fix it.

This year, 18 participant sites registered (see Table 1)
submitting a total of 217 primary runs: 28 to the ASR track,
10 to the SLT track, and 179 to the MT track (see Sections
3.3, 4.3, 5.3 for details).

In the rest of the paper we first outline the main goals of
the IWSLT evaluation and then each single track in detail,
in particular: its specifications, supplied language resources,
evaluation methods, and results. The paper ends with some
concluding remarks about the experience made in this evalu-
ation exercise, followed by appendixes that complement the
information given in the specific sections.



2. TED Talks
2.1. TED events

The translation of TED talks was introduced for the first time
at IWSLT 2010. TED is a nonprofit organization that ”in-
vites the world’s most fascinating thinkers and doers [...] to
give the talk of their lives”. Its website1 makes the video
recordings of the best TED talks available under the Creative
Commons license. All talks have English captions, which
have also been translated into many languages by volunteers
worldwide. In addition to the official TED events held in
North America, a series of independent TEDx events are reg-
ularly held around the world, which share the same format of
the original TED talks but are hold in the language of the
hosting country. Recently, an effort was made to set up a
web repository [10] that distributes dumps of the available
TED talks transcripts and translations under form of parallel
texts, ready to use for training and evaluating MT systems.
At this time, parallel data between English and 15 foreign
languages are available in addition to evaluation sets results
achieved by baseline MT systems trained for each translation
direction.

Besides representing a popular benchmark for spoken
language technology, the TED Talks task embeds interesting
research challenges which are unique among the available
speech recognition and machine translation benchmarks.
TED Talks is a collection of rather short speeches (max
18 minutes each, roughly equivalent to 2,500 words) which
cover a wide variety of topics. Each talk is delivered in a bril-
liant and original style by a very skilled speaker and, while
addressing a wide audience, it pursues the goal of both enter-
taining and persuading the listeners on a specific idea. From
the point of view of ASR, TED talks require copying with
background noise – e.g. applauses and laughs by the public
–, different accents including non native speakers, varying
speaking rates, prosodic aspects, and, finally, narrow topics
and personal language styles. From an application perspec-
tive, TED Talks transcription is the typical life captioning
scenario, which requires producing polished subtitles in real-
time.

From the point of view of machine translation, translat-
ing TED Talks implies dealing with spoken rather than writ-
ten language, which is hence expected to be structurally less
complex, formal and fluent. Moreover, as human translations
of the talks are required to follow the structure and rythm of
the English captions 2, a lower amount of rephrasing and re-
ordering is expected than in ordinary translation of written
documents.

From an application perspective, TED Talks suggest
translation tasks ranging from off-line translation of written
captions, up to on-line speech translation, requiring a tight
integration of MT with ASR possibly handling stream-based
processing.

1http://www.ted.com
2See recommendations to translators in http://translations.ted.org/wiki.

3. ASR Track
3.1. Definition

The goal of the Automatic Speech Recognition (ASR) track
for IWSLT 2013 was to transcribe English TED talks and
German TEDx talks. The speech in TED lectures is in gen-
eral planned, well articulated, and recorded in high quality.
The main challenges for ASR in these talks are to cope with a
large variability of topics, the presence of non-native speak-
ers, and the rather informal speaking style. For the German
TEDx talks the recording conditions are a little bit more dif-
ficult than for the English TED talks. While the TEDx talks
aim to mimic the TED talks, they are not as well prepared and
well rehearsed as the TED lectures, and recording is often
done by amateurs resulting in often worse recording quality
than the TED lectures.

The result of the recognition of the talks is used for two
purposes. It is used to measure the performance of ASR sys-
tems on the talks and it is used as input for the spoken lan-
guage translation evaluation (SLT), see Section 4.

3.2. Evaluation

Participants had to submit the results of the recognition of
the tst2013 set in CTM format. The word error rate was mea-
sured case-insensitive. After the end of the evaluation a first
scoring was performed with the first set of references. This
was followed by an adjudication phase in which participants
could point out errors in the reference transcripts. The adju-
dication results were collected and combined into the final set
of references with which the official score were calculated.

In order to measure the progress of the systems over the
years on English, participants also had to provide results on
the test sets from 2011 and 2012, i.e. tst2011 and tst2012.

3.3. Submissions

For this year’s evaluation we received primary submissions
from eight sites: all of which participated in the English ASR
task and four also in the German ASR task. For English we
further received a total of nine contrastive submissions from
six sites. For German we received eight contrastive submis-
sions from three sites.

3.4. Results

The detailed results of the primary submissions of the evalu-
ation in terms of word error rate (WER) can be found in Ap-
pendix A.1. The word error rate of the submitted systems in
in the range of 13.5%-27.2% for English and 25.2%-37.8%
for German.

In German, the fact that TEDx have sometimes worse
recording conditions than TED talks was reflected by the
fact that one talk in the German tst2013 had WERs above
80%, due to a bad recording set-up with high noise. All other
WERs were mostly below 30% and 20%, for two talks even
below 10%.



Table 1: List of Participants

NTT-NAIST NTT Communication Science Labs, Japan & NAIST[11]
KIT Karlsruhe Institute of Technology, Germany [12, 13]
RWTH Rheinisch-Westfälische Technische Hochschule Aachen, Germany [14, 15]
EU-BRIDGE RWTH& UEDIN& KIT& FBK[16]
HDU Dept. of Computational Linguistics, Heidelberg University, Germany [17]
UEDIN University of Edinburgh, UK [18, 19, 20]
FBK Fondazione Bruno Kessler, Italy [21, 22]
PRKE-IOIT Inst. of Inform. and Techn., Vietnamese Academy of Science and Technology [23]
POSTECH Pohang University of Science and Technology, Korea [24]
MITLL-AFRL Mass. Institute of Technology/Air Force Research Lab., USA [25]
QCRI Qatar Computing Research Institute, Qatar Foundation, Qatar [26]
MSR-FBK Microsoft Corporation, USA, and FBK[27]
HKUST Hong Kong University of Science and Technology, Hong Kong [28]
NICT National Institute of Communications Technology, Japan [29, 30]
NAIST Nara Institute of Science and Technology, Japan [31]
PJIIT Polish-Japanese Institute of Information Technology, Poland [32]
CASIA Institute of Automation, Chinese Academy of Sciences, China [33]
TUBITAK TUBITAK - Center of Research for Advanced Technologies, Turkey

For English, it can be seen that all participants from
IWSLT2011 and IWSLT2012 made significant progresses
over the years, e.g., bringing down the WER from 13.5% to
7.9% on tst2011, a relative reduction by 41% over the course
of three years.

4. SLT Track
4.1. Definition

The SLT track required participants to translate the English
and German talks of tst2013 from the audio signal (see Sec-
tion 3). The challenge of this translation task over the MT
track is the necessity to deal with automatic, and in general
error prone, transcriptions of the audio signal, instead of cor-
rect human transcriptions.

For German, participants had to translate into English.
For English as source language, participants had to translate
into French and German. In addition, participants could also
optionally translate from English into one of the following
languages: Arabic, Spanish, Farsi, Italian, Polish, Brazilian
Portuguese, Slovenian, and Mandarin Chinese.

4.2. Evaluation

For the evaluation, participants could choose to either use
their own ASR technology, or to use ASR output provided
by the confer

ence organizers. In order to facilitate scoring, partici-
pants had to to segment the audio according to the man-
ual reference segmentation provided by the organizers of the
evaluation.

For English, the ASR output provided by the organiz-
ers was a ROVER combination of the output from five sub-
missions to the ASR track. The result of the ROVER had a

WER of 12.4%. For German we used the output from KIT,
as ROVER combination with other systems did not give any
performance gains, and the German KIT ASR system scored
best before the end of the adjudication.

The results of the translation had to be submitt ed in the
same format as for the machine translation track (see Sec-
tion 5).

4.3. Submissions

We received ten primary and nine contrastive submissions
from five participants, English to French receiving the most
submissions. In English to Arabic and English to Chinese
only one participant each submitted results.

4.4. Results

The detailed results of the automatic evaluation in terms of
BLEU and TER can be found in Appendix A.1. Appendix
A.2 contains the results of the progress test set for English to
French.

5. MT Track
5.1. Definition

The MT TED track basically corresponds to a subtitling
translation task. The natural translation unit considered by
the human translators volunteering for TED is indeed the sin-
gle caption — as defined by the original transcript — which
in general does not correspond to a sentence, but to fragments
of it that fit the caption space. While translators can look at
the context of the single captions, arranging the MT task in
this way would make it particularly difficult, especially when
word re-ordering across consecutive captions occurs. For this



Table 2: Monolingual resources for official language pairs

data set lang sent token voc

train
De 146k 2.66M 107.4k
En 159k 3.20M 58.3k
Fr 158k 3.36M 70.7k

reason, we preprocessed all the parallel texts to re-build the
original sentences, thus simplifying the MT task.

As already stated in the Introduction, for each official
and optional translation direction, in-domain training and
development data were supplied through the website of the
WIT3 [10], while out-of-domain training data through the
workshop’s website. With respect to edition 2012 of the eval-
uation campaign, some of the talks added to the TED repos-
itory during the last year have been used to define the new
evaluation sets (tst2013), while the remaining talks have been
included in the training sets. For reliably assessing progress
of MT systems over the years, the evaluation sets of edi-
tions 2011 and 2012 were distributed together with tst2013
as progressive test sets, when available. Development sets
(dev2010 and tst2010) are either the same of past editions or
have been built upon the same talks.

With respect to all the other directions, the DeEn MT
task is an exception; in fact, its dev2012 and tst2013 - devel-
opment and evaluation sets, respectively - derives from those
prepared for the ASR/SLT tracks, which consist of TEDX
talks delivered in German language; therefore, no overlap
exists with any other TED talk involved in other tasks. Any-
way, the standard dev2010 and tst2010 development sets
have been released as well.

Tables 2 and 3 provides statistics on in-domain texts sup-
plied for training, development and evaluation purposes for
the official directions.

Reference results from baseline MT systems on the de-
velopment set tst2010 are provided via the WIT3 repository.
This helps participants and MT scientists to assess their ex-
perimental outcomes.

MT baselines were trained from TED data only, i.e. no
additional out-of-domain resources were used. The standard
tokenization via the tokenizer script released with the Eu-
roparl corpus [34] was applied to all languages, with the
exception of Chinese and Arabic languages, which were
preprocessed by, respectively: the Stanford Chinese Seg-
menter [35]; either AMIRA [36], in the Arabic-to-English
direction, or the QCRI-normalizer,3 in the English-to-Arabic
direction.

The baselines were developed with the Moses toolkit.
Translation and lexicalized reordering models were trained
on the parallel training data; 5-gram LMs with improved
Kneser-Ney smoothing were estimated on the target side of
the training parallel data with the IRSTLM toolkit. The
weights of the log-linear interpolation model were optimized

3Specifically developed for IWSLT 2013 by P. Nakov and F. Al-Obaidli
at Qatar Computing Research Institute.

Table 3: Bilingual resources for official language pairs

task data sent tokens talksset source target
MTEnFr train 154k 3.06M 3.27M 1169

dev2010 887 20,1k 20,2k 8
tst2010 1,664 32,0k 33,9k 11
tst2011 818 14,5k 15,6k 8
tst2012 1,124 21,5k 23,5k 11
tst2013 1,026 21,7k 23,3k 16

MTDeEn train 139k 2.59M 2.75M 1064
dev2010 887 19,1k 20,1k 8
tst2010 1,565 30,3k 32,0k 11
dev2012 1,165 20,8k 21,6k 7
tst2013 1,369 22,4k 22,8k 9

MTEnDe train 139k 2.75M 2.59M 1064
dev2010 887 20,1k 19,1k 8
tst2010 1,565 32,0k 30,3k 11
tst2011 1,436 27,1k 26,4k 16
tst2012 1,704 30,8k 29,3k 15
tst2013 993 20,9k 19.7k 16

on dev2010 with the MERT procedure provided with Moses.

5.2. Evaluation

The participants to the MT track had to provide the results
of the translation of the test sets in NIST XML format. The
output had to be true-cased and had to contain punctuation.

The quality of the translations was measured automati-
cally against the human translations created by the TED open
translation project, and by human subjective evaluation (Sec-
tion 5.5).

The evaluation specifications for the MT track were de-
fined as case-sensitive with punctuation marks (case+punc).
Tokenization scripts were applied automatically to all run
submissions prior to evaluation.

Evaluation scores were calculated for the two automatic
standard metrics BLEU and TER, as implemented in mteval-
v13a.pl4 and tercom-0.7.255, respectively.

5.3. Submissions

We received 68 submissions from 15 different sites, dis-
tributed as follows: 20 for the three official language pairs,
48 on optional directions.

The pairs that attracted the most interest are the official
pairs – seven each for EnFr and DeEn, six for EnDe – and
those involving Chinese (a total of nine in the two directions),
Arabic (seven), Farsi (five) and Russian (five). Each pair re-
ceived at least one submission.

The total number of primary runs, on evaluation set
tst2013 and on progressive test sets tst2011 and tst2012, is

4http://www.itl.nist.gov/iad/mig/tests/mt/2009/
5http://www.cs.umd.edu/ snover/tercom/



179; in addition, we were asked to evaluate also 156 con-
trastive runs.

5.4. Results

Table 4: BLEU and TER scores of baseline SMT systems on
tst2013 for all language pairs. (?) Char-level scores.

pair
direction

→ ←
BLEU TER BLEU TER

En

Fr 31.94 48.59 – –
De 19.58 59.81 19.07 65.94
Ar 12.12 68.73 22.71 59.02
Es 29.01 50.99 33.18 45.58
Fa 8.94 72.74 12.17 88.88
It 26.59 52.75 30.82 50.35
Nl 22.82 57.66 28.00 54.49
Pl 10.31 76.16 16.31 67.33
Pt 29.65 46.85 35.80 42.93
Ro 16.18 68.29 24.85 54.21
Ru 13.69 71.30 18.57 64.99
Sl 9.49 72.16 14.62 69.70
Tr 6.62 79.96 12.24 75.90
Zh ?18.15 ?72.34 12.29 70.60

First of all, for reference purposes Table 4 shows BLEU
and TER scores on the tst2013 evaluation sets of the baseline
systems we developed as described in Section 5.1.

The results on the official test set for each participant are
shown in Appendix A.1. For most languages, we show the
case-sensitive and case-insensitive BLEU and TER scores.
In contrast to the other language pairs, in the German to
English translation task the source contained disfluencies.
Therefore, the translation are evaluated once against transla-
tion containing disfluencies and once against reference con-
taining no disfluencies. Furthermore, for English to Chinese
we report character-level and word-level scores.

These results also show again the scores of the baseline
system. Thereby, it is possible to see the improvements of the
submitted systems on the different languages over the base-
line system. The largest improvements could be gained on
Slovenian-English by 9.44 BLEU points.

In Appendix A.2 the results on the progress test sets
test2011 and test2012 are shown. When comparing the re-
sults to the submissions from last year, the performance
could be improved in nearly all tasks.

5.5. Human Evaluation

Human evaluation was carried out on all primary runs sub-
mitted by participants to one of the official tracks of the TED
task, namely the official MT English-French track.

This year’s human evaluation saw the introduction of
a major novelty. In fact, the traditional Relative Ranking
task was substituted by a Post-Editing task and, accordingly,

HTER (Human-mediated Translation Edit Rate) was adopted
as the official evaluation metrics to rank the systems.

Post-Editing, i.e. the manual correction of machine trans-
lation output, has long been investigated by the translation
industry as a form of machine assistance to reduce the costs
of human translation. Nowadays, Computer-aided transla-
tion (CAT) tools incorporate post-editing functionalities, and
a number of studies [37, 38] demonstrate the usefulness of
MT to increase professional translators’ productivity. The
MT TED task offered in IWSLT can be seen as an interesting
application scenario to test the utility of MT systems in a real
subtitling task.

From the point of view of the evaluation campaign, our
goal was to adopt a human evaluation framework able to
maximize the benefit to the research community, both in
terms of information about MT systems and data and re-
sources to be reused. With respect to traditional judgments of
translation quality (i.e. adequacy/fluency and ranking tasks),
the post-editing task has the double advantage of producing
(i) a set of edits pointing to specific translation errors, and (ii)
a set of additional reference translations. Both these byprod-
ucts are very useful for MT system development and evalua-
tion. Furthermore, HTER[39] - which consists of measuring
the minimum edit distance between the machine translation
and its manually post-edited version - has been shown to cor-
relate quite well with human judgments of MT quality.

The human evaluation setup and the collection of post-
editing data are presented in Section 5.5.1, whereas the re-
sults of the evaluation are presented in Section 5.5.2.

5.5.1. Evaluation Setup and Data Collection

All 2013 systems participating in the English-French MT
track were manually evaluated on a subset of the 2012
progress test set (tst2012)6. The Human Evaluation (HE) set
represents around the initial 50% of each of the 11 tst2012
talks, for a total of 580 segments and around 10,000 words.
This choice of selecting a consecutive block of sentences for
each talk was determined by the need of realistically simu-
lating a caption post-editing task on several TED talks.

In order to evaluate the MT systems, the bilingual post-
editing task was chosen, where professional translators are
required to post-edit the MT output directly according to the
source sentence. Bilingual post-editing is expected to give
more accurate results than monolingual post-editing as post-
editors do not depend on an given - and possibly imprecise -
translation.

As far as evaluation metrics are concerned, HTER [39] is
a semi-automatic metric derived from TER (Translation Edit
Rate). TER measures the amount of editing that a human
would have to perform to change a machine translation so
that it exactly matches a given reference translation. HTER

6Since all the data produced for human evaluation will be made publicly
available thorough the WIT3 repository, we used the 2012 test set in order
to keep the 2013 test set blind to be used as a progress test for next year’s
evaluation.



is a variant of TER where a new reference translation is gen-
erated by applying the minimum number of post-edits to the
given MT output. This new targeted reference is then used
as the only reference translation to calculate the MT output
TER.

In the preparation of the data to be collected, some con-
straints were identified to ensure the soundness of the evalu-
ation of the seven systems participating in the task: (i) each
translator must post-edit all segments of the HE set, (ii) each
translator must post-edit the segments of the HE set only
once, and (iii) each MT system must be equally post-edited
by all translators.

Given that we had seven systems to evaluate, in order
to satisfy the above constraints we resorted to seven profes-
sional translators. Moreover, in order to cope with variabil-
ity of post-editors (i.e. some translators could systematically
post-edit more than others) we devised a scheme that dis-
patches MT outputs to translators both randomly and satis-
fying the uniform assignment constraints. Seven documents
were hence prepared including all source segments of the HE
set and, for each source segment, one MT output selected
from one of the seven systems.

Documents were delivered to a language service provider
together with instructions to be passed on to the translators,
and the post-editing tasks were run using the tool developed
under the MateCat project7, an enterprise-level CAT tool.
Both the post-editing interface and the guidelines given to
translators are presented in Appendix B.

The resulting collected data consist of seven new refer-
ence translations for each of the 580 sentences of the HE set.
Each one of these seven references represents the targeted
translation of the system output from which it was derived.
From the point of view of the system output, one targeted
translation and other six untargeted translations are available.

Table 5 shows information about the characteristics of the
work carried out by post-editors. First, the post-editing effort
for each translator is given. Post-editing effort is to be inter-
preted as the number of actual edit operations performed to
produce the post-edited version and - consequently - it is cal-
culated as the HTER of all the system sentences post-edited
by each single translator. As we can see from the table, PE
effort is highly variable among post-editors, ranging from
19.51% to 42.60%. Data about standard deviation confirm
post-editor variability, showing that the seven translators pro-
duced quite different post-editing effort distributions.

To further study post-editor variability, we exploited the
official reference translations available for this TED track
and we calculated the TER of the outputs assigned to each
translator for post-editing (Sys TER Column in Table 5), as
well as the related standard deviation.

As we can see from the table, the documents presented to
translators (composed of segments produced by different sys-
tems) are very homogeneous, as they show very similar TER
scores and standard deviation figures. This also confirms that

7www.matecat.com

Table 5: Post-editing information for each Post-editor

PEditor PE Effort std-dev Sys TER std-dev
PE 1 24.93 17.74 40.27 20.32
PE 2 34.03 19.86 39.48 19.89
PE 3 42.60 22.47 40.61 20.19
PE 4 32.78 21.07 39.98 20.97
PE 5 19.51 15.55 40.82 20.95
PE 6 30.64 19.48 40.42 20.70
PE 7 34.60 23.92 39.39 20.62

the procedure followed in data preparation was effective.
The variability observed in post-editing effort - despite

the similarity of the input documents - is most probably due
to translators’ subjectivity in carrying out the post-editing
task. Thus, post-editor variability ai an issue to be addressed
to ensure a sound evaluation of the systems.

5.5.2. Evaluation Results

As seen in the previous section, being able to reduce post-
editors’ variability would allow a more reliable and consis-
tent evaluation of MT systems. To this purpose, the HTER
for each system submission was calculated under two differ-
ent settings, namely (i) using the targeted reference only (Tgt
PEref setting), and (ii) using all the seven references pro-
duced by all the post-editors for each sentence (All PErefs
setting).

The scores resulting from the application of the two
HTER settings are shown in Table 6, which also presents
a comparison of HTER scores and rankings with those ob-
tained using the related automatic metrics TER8.

Table 6: Official human evaluation results and comparisons
with other metrics
System HTER HTER TER TER
Ranking HE Set HE Set HE Set Test Set

all PErefs Tgt PEref ref ref
EU-BRIDGE 18.67 29.83 38.71 38.72
KIT 20.01 29.64 39.20 39.22
UEDIN 20.69 31.61 39.81 39.83
RWTH 21.06 31.64 39.70 39.95
FBK 21.41 32.29 40.38 40.56
MITLL-AFRL 22.24 32.31 41.37 41.47
PRKE-IOIT 22.26 32.01 41.81 41.52
Rank Corr. .857 .964 1.00

As shown in the table, the HTER reduction obtained in
the All PErefs setting (Column 2) with respect to the Tgt
PEref setting (Column 3) clearly shows that exploiting all
the available reference translations is a viable way to control
and overcome post-editors’ variability, obtaining an HTER

8Note that since HTER and TER are edit-distance measures, lower num-
bers indicate better performances



which is more informative about the real performances of
the systems. This is also confirmed by the range of standard
deviations observed for the scores of the systems, which for
Tgt PEref ranges from 20.57 to 23.18, while for All PEref
ranges from 12.84 to 14.31.

For this reason, the scores and overall ranking of the sys-
tems as resulting in the All PErefs setting have been chosen
as the official results of human evaluation.

In general, the very low HTER results obtained demon-
strate that the overall quality of the systems is very high.
Moreover, all systems are very close to each other. To es-
tablish the reliability of system ranking, for all pairs of sys-
tems we calculated the statistical significance of the observed
differences in performance. Statistical significance was as-
sessed with the approximate randomization method [40], a
statistical test well-established in the NLP community [41]
and that, especially for the purpose of MT evaluation, has
been shown [42] to be less prone to type-I errors than the
bootstrap method [43]. According to the approximate ran-
domization test based on 10,000 iterations, a winning system
cannot be indicated, as there is no system that is significantly
better than all other systems. Significant differences can
be found only between the top-scoring system (EU-BRIDGE)
and the three bottom-scoring ones. In particular, significance
with respect to FBK is at p ≤ 0.1, while significance with
respect to MITLL-AFRL and PRKE-IOIT is at p ≤ 0.05.

A number of additional observations can be drawn by
comparing the official results with results obtained with other
metrics (Columns 3,4,5 in Table 6).

In general, HTER reduces the edit rate with respect to
TER. More specifically, we can see a reduction of around
25% for HTER calculated with only one targeted refer-
ence(Tgt PEref setting), and of around 50% for HTER cal-
culated with all post-edited references (All PErefs setting).

Moreover, the correlation between evaluation metrics is
measured using Spearman’s rank correlation coefficient ρ ∈
[-1.0, 1.0], with ρ = 1.0 if all systems are ranked in same or-
der, ρ = -1.0 if all systems ranked in reverse order and ρ = 0.0
if no correlation exists. We can see from Table 6 that com-
pletely automatic metrics (TER) correlate well with the offi-
cial HTER. In particular, TER calculated on the whole 2012
test set correlates perfectly, confirming that automatic met-
rics are more reliable when the quantity of evaluation data
increases.

To conclude, the post-editing task introduced this year for
manual evaluation brought benefit to the IWSLT community,
and in general to the MT field. In fact, producing post-edited
versions of all the participating systems’ outputs allowed us
to carry out a quite informative evaluation by minimizing the
variability of post-editors, who naturally tend to diverge from
the post-editing guidelines and personalize their translations.
Moreover, a number of additional reference translations will
be available for further development and evaluation of MT
systems.

6. Conclusions
We have reported on the evaluation campaign organized for
the tenth edition of the IWSLT workshop. The evaluation
has addressed three tracks: automatic speech recognition of
talks (in English and German), speech-to-text translation,
and text-to-text translation, both from German to English,
English to German, and English to French. Besides the of-
ficial translation directions, many optional translation tasks
were available, too, including 12 additional languages. For
each task, systems had to submit runs on three different test
sets: a newly created official test set, and two progress test
sets created and used for the 2012 and 2011 evaluations, re-
spectively. This year, 18 participants took part in the eval-
uation, submitting a total of 217 primary runs, which were
all scored with automatic metrics. We also manually eval-
uated runs of the English-French text translation track. In
particular, we asked professional translators to post-edit all
system outputs on a subset of the 2012 progress test set, in
order to produce close references for them. While we have
observed a significant variability among translators, in terms
of post-edit effort, we could obtain more reliable scores by
using all the produced post-edits as reference translations.
By using the HTER metric, the post-edit effort of the best
performing system results remarkably low, namely less than
19%. Considering that this is still an upper bound of the
ideal HTER score, this percentage of post-editing seems to
be another strong argument supporting the utility of machine
translation for human translators.
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Appendix A. Automatic Evaluation
“case+punc” evaluation : case-sensitive, with punctuations tokenized

“no case+no punc” evaluation : case-insensitive, with punctuations removed
A.1. Official Testset (tst2013)

· All the sentence IDs in the IWSLT 2012 testset were used to calculate the automatic scores for each run submission.
· ASR and MT systems are ordered according to the WER and BLEU metrics, respectively.
· All automatic evaluation metric scores are given as percent figures (%).

TED : ASR English (ASREN )
System WER (# Errors)

NICT 13.5 (5,734)
KIT 14.4 (6,115)

MITLL-AFRL 15.9 (6,788)

RWTH 16.0 (6,827)

NAIST 16.2 (6,897)

UEDIN 22.1 (9,413)

FBK 23.2 (9,899)

PRKE-IOIT 27.2 (11,578)

TED : ASR German (ASRDE )
System WER (# Errors)

RWTH 25.2 (4,845)
KIT 25.7 (4,932)

FBK 37.5 (7,199)

UEDIN 37.8 (7,250)

TED : SLT English-French (SLTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 26.81 55.08 27.53 54.06
RWTH 25.62 57.21 26.41 56.09

UEDIN 22.45 61.34 23.30 60.06

MSR-FBK 22.42 63.69 23.72 62.20

TED : SLT English-German (SLTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 18.05 64.46 18.66 63.22
RWTH 17.27 66.33 17.88 65.09

TED : SLT German-English (SLTDeEn)

System
Ref. with disfluencies Ref. without disfluencies

case sensitive case insensitive case sensitive case insensitive
BLEU TER BLEU TER BLEU TER BLEU TER

KIT 19.34 62.27 19.80 61.34 19.54 62.74 20.01 61.80
UEDIN 14.92 68.12 15.39 67.28 15.03 68.70 15.52 67.86

TED : SLT English-Arabic (SLTEnAr)
System BLEU TER

QCRI 10.33 73.72

TED : SLT English-Chinese (MTEnZh)

System character-based word-based
BLEU TER BLEU TER

KIT 16.91 74.07 9.20 80.63

TED : MT English-French (MTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 38.86 42.96 39.74 42.02
KIT 38.63 43.20 39.60 42.11

UEDIN 38.45 43.96 39.39 42.91

FBK 37.69 44.13 38.46 43.23

RWTH 37.67 44.00 38.49 43.04

PRKE-IOIT 37.59 45.07 38.39 44.15

MITLL-AFRL 37.05 45.36 38.27 44.10

BASELINE 31.94 48.59 32.56 47.75



TED : MT English-German (MTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 25.71 54.46 26.47 53.34
RWTH 24.74 55.52 25.41 54.42

NTT-NAIST 24.60 54.86 25.79 53.37
UEDIN 24.00 55.94 24.68 54.87
POSTECH 22.43 57.57 23.00 56.58

BASELINE 19.58 59.81 20.14 58.84

TED : MT German-English (SLTDeEn)

System
Ref. with disfluencies Ref. without disfluencies

case sensitive case insensitive case sensitive case insensitive

BLEU TER BLEU TER BLEU TER BLEU TER

KIT 26.48 57.52 27.11 56.60 26.57 58.31 27.16 57.41

EU-BRIDGE 26.33 56.70 26.91 55.78 26.57 57.29 27.14 56.38
NTT-NAIST 25.69 60.96 26.29 60.06 25.83 60.75 26.45 59.82

UEDIN 25.54 59.99 26.12 59.07 25.35 60.98 25.87 60.08

RWTH 25.32 59.67 25.94 58.67 25.27 60.46 25.86 59.51

HDU 22.91 59.65 23.94 58.35 23.06 60.38 24.07 59.11

POSTECH 21.26 67.61 21.74 66.72 21.17 68.91 21.65 68.04

BASELINE 19.25 65.03 19.79 64.19 19.07 65.94 19.55 65.11

TED : MT English-Arabic (MTEnAr)
System BLEU TER

QCRI 15.78 65.43
KIT 15.51 65.64

BASELINE 12.12 68.73

UEDIN 11.49 70.58

TED : MT Arabic-English (MTArEn)

System case sensitive case insensitive
BLEU TER BLEU TER

QCRI 30.49 51.37 31.21 50.37

RWTH 29.95 50.61 31.07 49.44
MITLL-AFRL 26.64 55.17 27.54 54.05

UEDIN 26.29 56.69 26.92 55.70

BASELINE 22.71 59.02 23.52 57.94

TED : MT English-Spanish (MTEnEs)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 34.74 45.75 35.42 44.79
BASELINE 29.01 50.99 29.57 50.08

TED : MT Spanish-English (MTEsEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 39.12 41.36 39.74 40.59
BASELINE 33.18 45.58 33.68 45.00

TED : MT English-Farsi (MTEnFa)
System BLEU TER

FBK 10.12 71.58
UEDIN 9.49 72.92

BASELINE 8.94 72.74

TED : MT Farsi-English (MTFaEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 16.03 78.82 16.51 77.84
UEDIN 15.10 88.06 15.42 87.20

FBK 14.47 85.84 14.86 84.87

BASELINE 12.17 88.88 12.56 87.84

TED : MT English-Italian (MTEnIt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 29.17 50.84 29.90 49.87
BASELINE 26.59 52.75 27.16 51.88

TED : MT Italian-English (MTItEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 34.89 47.50 35.55 46.64
BASELINE 30.82 50.35 31.30 49.63

TED : MT English-Dutch (MTEnNl)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 25.52 55.92 26.49 54.31
BASELINE 22.82 57.66 23.54 56.33

TED : MT Dutch-English (MTNlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 32.73 51.32 33.74 49.93
BASELINE 28.00 54.49 28.94 53.08

TED : MT English-Polish (MTEnPl)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 14.29 73.54 15.04 72.06
UEDIN 11.51 77.66 12.03 76.48

BASELINE 10.31 76.19 10.79 75.05

TED : MT Polish-English (MTPlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 22.60 62.56 23.54 61.12
UEDIN 20.91 64.32 21.59 63.11

BASELINE 16.31 67.33 16.85 66.26



TED : MT English-Portuguese (MTEnPt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 33.18 44.92 33.92 43.90
BASELINE 29.65 46.85 30.18 46.06

TED : MT Portuguese-English (MTPtEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 37.33 42.91 37.80 42.31
BASELINE 35.80 42.93 36.14 42.44

TED : MT English-Romanian (MTEnRo)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 17.57 66.96 18.10 65.83
BASELINE 16.18 68.29 16.70 67.16

TED : MT Romanian-English (MTRoEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 29.82 50.53 30.58 49.55
BASELINE 24.85 54.21 25.46 53.23

TED : MT English-Russian(MTEnRu)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 16.14 70.28 16.15 69.12
HDU 15.87 69.00 15.95 67.63

BASELINE 13.69 71.30 13.69 70.22

TED : MT Russian-English (MTRuEn)

System case sensitive case insensitive
BLEU TER BLEU TER

HDU 23.78 59.51 25.00 58.04
UEDIN 22.67 61.99 23.37 60.93

MITLL-AFRL 21.65 60.71 22.59 59.38

BASELINE 18.57 64.99 19.12 63.90

TED : MT English-Slovenian(MTEnSl)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 13.68 67.68 14.21 66.55
RWTH 10.10 71.66 10.47 70.71

BASELINE 9.49 72.16 9.87 71.19

TED : MT Slovenian-English (MTSlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 24.06 58.40 24.87 57.08
RWTH 17.46 64.42 18.00 63.30

BASELINE 14.62 69.70 15.16 68.66

TED : MT English-Trukish(MTEnTr)

System case sensitive case insensitive
BLEU TER BLEU TER

TUBITAK 8.97 76.12 9.78 74.42
UEDIN 6.76 82.32 7.24 81.09

BASELINE 6.62 79.96 6.94 78.80

TED : MT Turkish-English (MTTrEn)

System case sensitive case insensitive
BLEU TER BLEU TER

TUBITAK 18.67 68.28 19.68 66.73
UEDIN 14.87 74.19 15.63 72.85

BASELINE 12.24 75.90 12.89 74.79

TED : MT English-Chinese(MTEnZh)

System character-based word-based
BLEU TER BLEU TER

CASIA 20.55 65.12 12.45 72.21
KIT 19.83 69.75 11.47 76.72

HKUST 18.66 70.36 10.85 78.12

UEDIN 18.57 69.71 10.56 77.90

BASELINE 18.15 72.34 10.01 81.77

TED : MT Chinese-English (MTZhEn)

System case sensitive case insensitive
BLEU TER BLEU TER

RWTH 16.17 65.37 17.00 64.17
UEDIN 15.26 69.73 15.91 68.61

MITLL-AFRL 14.85 68.99 15.53 67.85

CASIA 14.55 69.08 15.52 67.37

BASELINE 12.29 70.60 12.85 69.56

HKUST 9.58 74.82 10.17 73.75



A.2. Progress Testset (tst2011) and (tst2012)
· All the sentence IDs in the IWSLT 2011 testset were used to calculate the automatic scores for each run submission.
· ASR and MT systems are ordered according to the WER and BLEU metrics, respectively.
· For each task, the best score of each metric is marked with boldface.
· All automatic evaluation metric scores are given as percent figures (%).

TED : ASR English (ASREN )

tst2011
System IWSLT 2011 IWSLT 2012 IWSLT 2013

WER (# Errors) WER (# Errors) WER (# Errors)

FBK 16.2 (2,091) 15.4 (1,991) 13.6 (1,754)

KIT 15.0 (1,938) 12.0 (1,552) 9.3 (1,196)

MITLL-AFRL 13.5 (1,741) 11.1 (1,432) 10.6 (1,360)

NAIST — 12.0 (1,553) 9.1 (1,172)

NICT 25.6 (3,301) 10.9 (1,401) 7.9 (1,016)

PRKE-IOIT — — 14.6 (1,883)

RWTH — 13.4 (1,731) 10.2 (1,319)

UEDIN — — 10.2 (1,318)

tst2012
System IWSLT 2012 IWSLT 2013

WER (# Errors) WER (# Errors)

FBK 16.8 (3,227) 16.2 (3,090)
KIT 12.7 (2,435) 9.6 (1,834)

MITLL-AFRL 13.3 (2,565) 11.3 (1,360)
NAIST 12.4 (2,392) 10.0 (1,913)
NICT 12.1 (2,318) 8.6 (1,636)

PRKE-IOIT — 16.2 (3,101)
RWTH 13.6 (2,621) 11.3 (2,166)
UEDIN 14.4 (2775) 11.6 (2,212)

TED : SLT English-French test 2012(SLTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 32.21 48.58 32.86 47.65

MSR-FBK 29.92 53.30 31.03 52.10

TED : SLT English-French test2011(SLTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 31.06 50.70 31.93 49.61

MSR-FBK 27.21 56.22 28.32 54.82

TED : MT English-French test 2012(MTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 42.13 38.72 42.99 37.83

UEDIN 41.21 39.83 42.02 38.94

KIT 41.02 39.22 41.96 38.34

RWTH 40.06 39.95 40.79 39.11

PRKE-IOIT 39.94 41.52 40.64 40.75

MITLL-AFRL 39.76 41.47 40.97 40.31

FBK 39.51 40.56 40.11 39.80

TED : MT English-French test 2011(MTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 40.71 40.56 41.55 39.72

UEDIN 40.61 40.97 41.48 40.08

MITLL-AFRL 39.35 42.18 40.62 41.08

RWTH 39.25 41.24 40.16 40.29

KIT 39.11 41.74 40.33 40.63

PRKE-IOIT 38.80 42.86 39.54 42.12

FBK 38.41 42.02 39.09 41.25

TED : MT English-German test 2012 (MTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 23.24 56.17 24.00 55.02

NTT-NAIST 22.86 56.12 24.10 54.57

UEDIN 22.53 57.43 23.26 56.27

RWTH 22.32 57.11 23.04 55.91

POSTECH 20.43 59.14 21.02 58.05

TED : MT English-German test2011 (MTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 27.13 50.97 27.75 50.09

KIT 26.29 50.67 26.97 49.76

NTT-NAIST 26.04 50.13 27.27 48.82

RWTH 25.86 51.56 26.58 50.52

POSTECH 23.48 53.71 24.06 52.89



TED : MT English-Arabic test 2012(MTEnAr)
System BLEU TER

QCRI 15.54 65.57

KIT 15.07 66.46

UEDIN 12.37 69.79

TED : MT Arabic-English test 2012 (MTArEn)

System case sensitive case insensitive
BLEU TER BLEU TER

QCRI 30.26 49.55 31.13 48.51

RWTH 29.31 49.46 30.28 48.39

UEDIN 27.72 53.28 28.46 52.34

MITLL-AFRL 27.66 52.18 28.61 51.05

TED : MT English-Arabic test 2011(MTEnAr)
System BLEU TER

QCRI 15.54 69.19

KIT 14.59 70.60

UEDIN 11.90 72.60

TED : MT Arabic-English test 2011 (MTArEn)

System case sensitive case insensitive
BLEU TER BLEU TER

QCRI 27.76 55.17 28.64 54.02

RWTH 27.34 54.41 28.52 53.05

MITLL-AFRL 25.66 57.60 26.58 56.32

UEDIN 25.58 58.91 26.25 57.89

TED : MT English-Spanish test 2012 (MTEnEs)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 26.84 55.86 27.78 54.42

TED : MT Spanish-English test 2011(MTEsEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 30.78 48.65 31.67 47.48

TED : MT English-Spanish test 2011 (MTEnEs)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 33.17 47.77 34.02 46.59

TED : MT Spanish-English test 2012(MTEsEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 37.09 43.45 38.08 42.21

TED : MT English-Farsi test 2012 (MTEnFa)
System BLEU TER

FBK 10.94 72.66

UEDIN 10.24 74.24

TED : MT Farsi-English test 2012 (MTFaEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 14.98 89.78 15.52 88.79

FBK 14.40 87.26 14.95 86.13

TED : MT English-Farsi test 2011 (MTEnFa)
System BLEU TER

FBK 12.55 70.06

UEDIN 12.29 71.73

TED : MT Farsi-English test 2011 (MTFaEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 20.04 62.76 20.90 61.55

UEDIN 19.15 67.64 19.80 66.49

FBK 18.85 66.38 19.48 65.20

TED : MT English-Italian test 2012(MTEnIt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 25.28 56.67 26.09 55.55

TED : MT Italian-English test2012 (MTItEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 29.62 52.36 30.29 51.40

TED : MT English-Italian test 2011(MTEnIt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 24.40 57.35 25.15 56.30

TED : MT Italian-English test2011 (MTItEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 30.24 51.81 31.04 50.81

TED : MT English-Dutch test 2012(MTEnNl)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 26.66 53.21 27.74 51.62

TED : MT Dutch-English test2012 (MTNlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 33.02 47.96 34.46 46.19



TED : MT English-Dutch test 2011(MTEnNl)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 30.33 47.48 31.54 45.92

TED : MT Dutch-English test2011 (MTNlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 36.02 45.55 37.36 43.75

TED : MT English-Polish test2012 (MTEnPl)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 13.49 75.03 14.29 73.36

UEDIN 10.48 79.05 11.04 77.73

TED : MT Polish-English test2012 (MTPlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 19.77 65.34 20.75 63.79

UEDIN 18.51 66.75 19.39 65.33

TED : MT English-Polish test2011 (MTEnPl)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 15.66 68.65 16.61 67.16

UEDIN 13.10 70.96 13.69 69.86

TED : MT Polish-English test2011 (MTPlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 23.29 60.99 24.37 59.36

UEDIN 21.69 62.73 22.57 61.24

TED : MT English-Portuguese test 2012(MTEnPt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 34.88 43.66 35.84 42.50

TED : MT Portuguese-English test 2012 (MTPtEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 40.56 39.64 41.18 38.95

TED : MT English-Portuguese test 2011(MTEnPt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 33.59 44.41 34.40 43.37

TED : MT Portuguese-English test 2011 (MTPtEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 39.02 41.24 39.66 40.43

TED : MT English-Romanian test 2012 (MTEnRo)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 19.21 63.03 19.74 62.08

TED : MT Romainan-English test2012 (MTRoEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 31.84 49.19 32.52 48.28

TED : MT English-Romanian test 2012 (MTEnRo)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 23.19 56.60 23.77 55.72

TED : MT Romanian-English test2012 (MTRoEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 36.05 43.99 36.92 42.90

TED : MT English-Russian test 2012(MTEnRu)

System case sensitive case insensitive
BLEU TER BLEU TER

HDU 13.76 73.13 13.83 71.13

UEDIN 13.53 74.66 13.54 72.87

TED : MT Russian-English test 2012 (MTRuEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 20.71 62.78 21.58 61.50

MITLL-AFRL 19.61 62.46 20.53 61.14

HDU 18.20 63.40 19.37 61.74

TED : MT English-Russian test 2011(MTEnRu)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 15.93 67.63 15.94 66.45

HDU 15.53 67.43 15.61 65.79

TED : MT Russian-English test 2011 (MTRuEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 22.13 61.24 22.82 60.05

MITLL-AFRL 21.49 60.10 22.41 58.74

HDU 20.16 61.72 21.30 60.22

TED : MT English-Slovenian test 2012 (MTEnSl)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 12.35 70.12 12.88 69.05

RWTH 8.81 73.11 9.22 72.17

TED : MT Slovenian-English test2012 (MTSlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 21.20 61.54 22.03 60.27

RWTH 16.41 65.22 17.00 64.19



TED : MT English-Trukish test 2012 (MTEnTr)

System case sensitive case insensitive
BLEU TER BLEU TER

TUBITAK 9.29 75.46 10.00 73.85

UEDIN 7.41 81.67 7.84 80.20

TED : MT Turkish-English test 2012 (MTTrEn)

System case sensitive case insensitive
BLEU TER BLEU TER

TUBITAK 18.93 67.03 19.84 65.49

UEDIN 15.00 72.58 15.77 71.38

TED : MT English-Trukish test 2011 (MTEnTr)

System case sensitive case insensitive
BLEU TER BLEU TER

TUBITAK 9.16 75.89 10.19 73.90

UEDIN 7.36 81.30 8.14 79.57

TED : MT Turkish-English test 2011 (MTTrEn)

System case sensitive case insensitive
BLEU TER BLEU TER

TUBITAK 18.63 67.60 19.61 65.99

UEDIN 15.02 73.90 15.89 72.53

TED : MT English-Chinese test2012 (MTEnZh)

System character-based word-based
BLEU TER BLEU TER

CASIA 21.88 65.57 13.41 72.64

UEDIN 18.07 71.31 10.80 79.72

KIT 17.93 73.04 10.04 80.39

TED : MT Chinese-English test 2012(MTZhEn)

System case sensitive case insensitive
BLEU TER BLEU TER

RWTH 14.62 65.73 15.64 64.17

UEDIN 14.19 68.93 15.02 67.54

MITLL-AFRL 14.05 68.26 14.92 66.85

CASIA 12.36 68.76 13.52 66.98

TED : MT English-Chinese test2011 (MTEnZh)

System character-based word-based
BLEU TER BLEU TER

CASIA 24.04 62.90 14.94 70.60

KIT 20.41 69.37 11.76 77.88

UEDIN 19.75 68.51 11.54 78.20

TED : MT Chinese-English test 2011(MTZhEn)

System case sensitive case insensitive
BLEU TER BLEU TER

RWTH 16.61 63.37 17.57 61.96

UEDIN 16.10 65.45 16.82 64.18

MITLL-AFRL 15.92 65.68 16.82 64.40

CASIA 14.40 65.60 15.32 64.01



Appendix B. Human Evaluation

Interface used for the bilingual post-editing task

Post-editing instructions given to professional translators

In this task you are presented with automatic translations of TED Talks captions.

You are asked to post-edit the given automatic translation by applying the minimal edits required to transform the system output
into a fluent sentence with the same meaning as the source sentence.

While post-editing, remember that the post-edited sentence is to be intended as a transcription of spoken language. Note also
that the focus is the correctness of the single sentence within the given context, NOT the consistency of a group of sentences.
Hence, surrounding segments should be used to understand the context but NOT to enforce consistency on the use of terms. In
particular, different but correct translations of terms across segments should not be corrected.

Examples:

Source: This next one takes a little explanation before I share it with you.
Automatic translation: ...avant que je partage avec vous.
Post-editing 1: ...avant de le partager avec vous.
Post-editing 2: ...avant que je le partage avec vous. (preferred - minimal editing and acceptable in spoken language)

Source: And the table form is important.
Automatic translation: Et la forme de la table est importante.
Post-editing 1: La forme de la table est également importante.
Post-editing 2: Et la forme de la table est importante. (preferred - no editing - slightly less fluent but better fitting the source
speech transcription)

Source: Everyone who knew me before 9/11 believes...
Automatic translation: ...avant le 11/9...
Post-editing 1: ...avant le 11 septembre...
Post-editing 2: ...avant le 11/9... (preferred - no editing - better fitting the source)
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Abstract

We present the results of large-scale human semantic
MT evaluation with HMEANT on the IWSLT 2013
German-English MT and SLT tracks and show that
HMEANT evaluates the performance of the MT sys-
tems differently compared to BLEU and TER. Together
with the references, all the translations are annotated by
annotators who are native English speakers in both se-
mantic role labeling stage and role filler alignment stage
of HMEANT. We obtain high inter-annotator agree-
ment and low annotation time costs which indicate that
it is feasible to run a large-scale human semantic MT
evaluation campaign using HMEANT. Our results also
show that HMEANT is a robust and reliable semantic
MT evaluation metric for running large-scale evalua-
tion campaigns as it is inexpensive and simple while
maintaining the semantic representational transparency
to provide a perspective which is different from BLEU
and TER in order to understand the performance of the
state-of-the-art MT systems.

1. Introduction

This paper presents the results from the human seman-
tic MT evaluation with HMEANT on the IWSLT 2013
German-English MT and SLT tracks which show that
HMEANT provides a perspective which is different
from BLEU and TER in evaluating the performance of
the MT systems. The IWSLT evaluation campaign has
offered a variety of speech translation tasks over the past
decade but none of them included evaluation of system
performance using a semantic MT evaluation metric be-
cause of the inherent cost in evaluation in terms of both
the (a) amount of time, and (b) the level of expertise
needed by the human annotators. We choose HMEANT
as a way around these challenges given substantial em-

pirical evidence [1, 2] that HMEANT is a inexpensive,
simple, and representationally transparent semantic MT
evaluation metric that correlates with human translation
adequacy judgements more highly than HTER [3] and
other automatic MT evaluation metrics, such as BLEU
[4], NIST [5], METEOR [6], PER [7], CDER [8], WER
[9], and TER [3].

Although fast and inexpensive lexical n-gram based
objective functions like BLEU have driven MT system
development over the past decade, these metrics do not
enforce translation utility adequately and often fail to
preserve meaning [10, 11]. We believe that the sys-
tem development should also be driven by semantic MT
evaluation metrics which focus on getting the meaning
right. Recent results [12, 13, 14] which indicate that
more adequate translations are produced by tuning MT
systems using the semantic evaluation metric MEANT,
support us.

In this paper, we present the results of one of the
largest semantic MT evaluations to date, in terms of
both the number of systems and the number of transla-
tions evaluated, using HMEANT as the evaluation met-
ric. The aims of this evaluation campaign are two-fold:
(1) to demonstrate feasibility of running a large-scale
semantic MT evaluation campaign using humans, and
(2) to provide fine-grained statistics over a large num-
ber of systems that enable a fair comparison of seman-
tic human MT evaluation metrics and other automatic
metrics. While the former goal helps realize a practi-
cal semantically driven human MT evaluation metric
in the place of expensive human MT evaluation met-
rics such as HTER or simple translation ranking which
does not adequately reflect translation utility. The latter
goal not only provides useful insights into the differ-
ences between metrics gauging semantic similarity and
surface based metrics, but also quantifies the robustness



of HMEANT as an MT evaluation metric.
In the rest of the paper, we discuss the details of the

evaluation campaign and provide results on the inter-
annotator agreement on the tasks of semantic role an-
notation and alignment. We also provide an analysis of
the time taken for annotation and the alignment of the
semantic roles. We also report the results of different
participating systems according to the criterion of our
semantic evaluation metric HMEANT and its automatic
variant, MEANT [15].

2. Participating tracks and systems

To perform a full-scale semantic MT evaluation, all the
systems which participated in IWSLT 2013 German-
English MT and SLT tracks were evaluated. There were
17 systems participating in the MT track and 3 systems
participating in the SLT track.

The evaluation set consists of 136 sentences ran-
domly drawn from the test set (tst2013), which repre-
sents around 10% of the entire test set. The systems
from the MT track are evaluated against the reference
without disfluencies while the systems from the SLT
track are evaluated against the reference with disfluen-
cies. The details description of the tracks, the original
test set and the participating systems can be found in the
overview paper of IWSLT 2013 [16].

This is the largest scale semantic MT evaluation us-
ing HMEANT to date, in terms of both the number of
systems and the number of translations evaluated.

3. HMEANT

HMEANT is the weighted f-score over matching se-
mantic roles between the reference and the MT out-
put, where the labeling and alignment of frames and
role fillers is performed manually by minimally trained
annotators. HMEANT, which can be driven by low-
cost monolinguals of the output language, not only out-
performs the commonly used automatic MT evalua-
tion metrics, such as, BLEU, NIST, METEOR, WER,
CDER and TER, but also outperforms HTER in corre-
lating with human adequacy judgment at much lower
labor cost.

HMEANT is computed as follows:

1. Human annotators annotate the shallow semantic
structures of both the reference and the MT output
(Figure 1 shows examples of human shallow se-
mantic parses on both reference and MT output.)

2. Human judges align the semantic frames between
the references and the MT output by judging the
correctness of the predicates.

3. For each pair of aligned semantic frames,

(a) Human judges determine the translation
correctness of the semantic role fillers.

(b) Human judges align the semantic role fillers
between the reference and the MT output ac-
cording to the correctness of the semantic
role fillers.

4. Compute the weighted f-score over the matching
role labels of these aligned predicates and role
fillers according to the mathematical definitions
in the following.

Mi,j ≡ total # ARG j of aligned frame i in MT
Ri,j ≡ total # ARG j of aligned frame i in REF
Ci,j ≡ # correct ARG j of aligned frame i
Pi,j ≡ # partially correct ARG j of aligned frame i

wpred ≡ weight of similarity of predicates
wj ≡ weight of similarity of ARG j

wpartial ≡ weight of the partially correct translated ARG

mi ≡
#tokens filled in aligned frame i of MT

total #tokens in MT

ri ≡
#tokens filled in aligned frame i of REF

total #tokens in REF

precision =

∑
imi

wpred+
∑

j wj  (Ci,j+wpartialPi,j)

wpred+
∑

j wjMi,j∑
imi

recall =

∑
i ri

wpredSi,pred+
∑

j wj(Ci,j+wpartialPi,j)

wpred+
∑

j wjRi,j∑
i ri

where mi and ri are the weights for frame, i, in the
MT/REF respectively. These weights estimate the de-
gree of contribution of each frame to the overall mean-
ing of the sentence. Mi,j and Ri,j are the total counts of
argument of type j in frame i in the MT and REF respec-
tively. Ci,j and Pi,j are the count of the correctly and
partially correct translated argument j in frame i in the
MT output. The weights wpred and wj are the weights of
the predicates and role fillers of the arguments of type
j between the reference translations and the MT output.



Figure 1: Examples of human semantic role labeling. There are no semantic frames for MT3 since there is no
predicate.

Table 1: Example of SRL annotation for the MT2 output from Figure 1 along with the human judgements of translation
correctness for each argument. *Notice that although the decision made by the human judge for “in mainland China”
in the reference translation and “the mainland of China” in MT2 is “correct”, nevertheless the HMEANT computation
will not count this as a match since their role labels do not match.
REF roles REF MT2 roles MT2 decision
PRED ceased Action stop match
ARG0 their sale — — incorrect
ARGM-LOC in mainland China Agent the mainland of China correct*
ARGM-TMP for almost two months Temporal nearly two months correct
— — Experiencer SK - 2 products incorrect
PRED resumed Action resume match
ARG0 sales of complete range of SK - II

products
Experiencer in the mainland of China to stop

selling nearly two months of SK -
2 products sales

incorrect

ARGM-TMP Until after , their sales had ceased
in mainland China for almost two
months

Temporal So far partial

ARGM-TMP now — — incorrect

The weight wpartial is the weight of the partially correct
translated arguments. There is a total of 12 weights for
the set of semantic role labels in MEANT as defined
in [17] and a weight for the partially correct translated
arguments. These weights can be determined using su-
pervised estimation via a simple grid search to optimize
the correlation with human adequacy judgments [1] or
like UMEANT, estimated in an unsupervised manner

using relative frequency of each semantic role label in
the reference translations. U(H)MEANT can thus be
used when when human judgments on adequacy of the
development set are unavailable [18].

Figure 1 shows examples of human judges’ deci-
sions for semantic frame annotation on the reference
and the MT output. Table 1 shows examples of the
human judges’ decisions for semantic frame alignment



Table 2: Inter-annotator agreement for the human se-
mantic role labeling task.

reference MT output
IAA 80.86% 72.69%

and translation correctness for each semantic role for the
”MT2” output in Figure 1.

4. Human annotation

HMEANT consists of two human annotation steps: (1)
human semantic role labeling, which labels semantic
frames within the translations and (2) human role filler
alignment that determines the correctness of the transla-
tion according to the captured meaning structures. We
run the human annotation using HKUST’s efficient and
user friendly HMEANT web-based user interface work-
flow [19].

4.1. Semantic role labeling

Human semantic role labeling was carried out on the ref-
erences and all the submitted German-English systems
in the MT track and the SLT track to capture the mean-
ing of the translation into the ”who did what to whom,
when, where, why and how” structure.

4.1.1. Task description and setup

As opposed to HTER which is driven by professional
bilingual translators, the semantic role labeling task
in HMEANT is driven by monolinguals with minimal
training of 15 minutes. To increase the robustness of the
human semantic role labeling, we increased the training
time for the annotators from 15 minutes to 20 minutes.
The additional 5 minutes contribute to showing more
annotated examples that demonstrate how to annotate
the ungrammatical MT output.

Each system was annotated by two annotators who
are native English speakers to support estimation of the
annotation reliability. In addition, each annotator la-
beled the sentences from the evaluation set only once
to prevent them from getting extra out-of-context infor-
mation in understanding the meaning of the translation.

4.1.2. Inter-annotator agreement and time efficiency

Table 2 shows that the IAA is over 80% for labeling the
semantic roles manually in the reference translation and

Table 3: Inter-annotator agreement for the human role
filler alignment task.

alignment
IAA 63.23%

over 72% in the MT output. The high IAA shows that
the human semantic role labeling is robust and reliable.

Previous work shows that it takes the minimally
trained annotators approximately 1.5 minutes to finish
labeling the semantic roles of one translation output. In
this evaluation, the average time needed to label the se-
mantic roles for one translation output is significantly
decreased to 50 seconds due to the fact that the seman-
tic structures of the TED talk sentences are simpler than
formal newswire text.

4.2. Semantic role filler alignment

Human semantic role filler alignment was carried out
between the references and all the submitted German-
English systems in the MT track and the SLT track to
determine the translation correctness according to the
captured semantic structures in the previous human se-
mantic role labeling step.

4.2.1. Task description and setup

Similar to human semantic role labeling task, we in-
creased the training time for the native English speaking
annotators by 5 minutes for showing more examples that
demonstrate how to align the ungrammatical MT output
to the reference.

To support the reliability analysis of the evaluation,
each system was annotated by two annotators. Since
the annotators are constrained to determine the phrasal
translation correctness of the labeled role fillers only,
it is less likely that they could be contaminated by the
out-of-context information acquired due to seeing trans-
lations of the same sentence more than once. Therefore,
a single annotator allowed to align translations of the
same sentence from different systems.

4.2.2. Inter-annotator agreement and time efficiency

Table 3 shows that the IAA is over 63% for aligning the
semantic role fillers between the reference and the MT
output. The high IAA shows that the human semantic
role filler alignment task is robust and reliable.

Similar to the human semantic role labeling task,



Table 4: HMEANT, MEANT, BLEU and TER scores of all the systems participating in the IWSLT 2013 German-
English MT track on the evaluation set randomly drawn from tst2013 where the BLEU and TER scores are the results
of the official case insensitive, without disfluencies evaluation[16]. Italicized scores indicate systems that are ranked
differently from HMEANT by the corresponding metrics.

system HMEANT MEANT BLEU TER
KIT.primary 56.55 48.90 27.16 57.41
KIT.contrastive1 55.99 48.36
EU-BRIDGE.primary 55.89 48.97 27.14 56.38
EU-BRIDGE.contrastive1 55.62 47.28
KIT.contrastive2 55.11 46.87
UEDIN.primary 54.84 47.13 25.87 60.08
RWTH.primary 54.63 46.51 25.86 59.51
RWTH.contrastive 54.46 46.44
NTT-NAIST.primary 54.01 46.02 26.45 59.82
HDU.primary 53.99 45.99 24.07 59.11
HDU.contrastive2 52.47 45.37
HDU.contrastive1 51.54 44.96
NTT-NAIST.contrastive1 51.35 44.09
NTT-NAIST.contrastive2 50.29 42.78
NTT-NAIST.contrastive3 49.74 42.04
Baseline 49.12 41.91 19.55 65.11
KLE.primary 44.53 43.91 21.65 68.04

Table 5: HMEANT and MEANT scores of all the systems participating in the IWSLT 2013 German-English SLT
track on the evaluation set randomly draw from tst2013 where the BLEU and TER scores are the results of the official
case insensitive, with disfluencies evaluation[16]. Italicized scores indicate systems that are ranked differently from
HMEANT by the corresponding metrics.

system HMEANT MEANT BLEU TER
KIT.primary 45.96 37.54 19.80 61.34
UEDIN.primary 40.05 35.39 15.39 67.28
UEDIN.contrastive1 37.18 33.55

in this evaluation the average time taken by minimally
trained annotators to align the semantic roles between
the reference and the MT output significantly decreases
from 1.5 minutes to 42 seconds because the semantic
structures of the TED talk sentences are simpler com-
pared to formal newswire text. HMEANT scores are
calculated by averaging the scores obtained from the
two different annotations in each of the annotation task.

5. Results

From the results one can observe how HMEANT and
MEANT provide different rankings compared to BLEU
and TER. All four metrics HMEANT, MEANT, BLEU
and TER rate KIT primary and EU-BRIDGE primary

systems as closely tied in the first place according to
the numbers in Table 4. On the other hand, while
BLEU claims that NTT-NAIST primary system signif-
icantly outperforms UEDIN, RWTH, and HDU, both
HMEANT and MEANT indicate that all four teams in
the middle actually achieved comparable results. Sur-
prisingly, HDU which is ranked the best system accord-
ing to TER is ranked worst according to BLEU. These
differences in the ranking of different systems between
HMEANT, BLEU and TER indicates that HMEANT
does offer a different perspective compared to BLEU
and TER. Further, the evidence for the high correlation
of HMEANT with human adequacy judgement makes
HMEANT an ideal candidate for human semantic MT
evaluation. Table 5 reports the scores of all four met-



rics for the three systems in the SLT track. Between
KIT.primary and UEDIN.primary, all the metrics agree
that KIT is better by a wide margin.

From Table 4, we can also notice that the HMEANT
score of KLE.primary system is significantly smaller
than the other systems. This is because the annota-
tors failed to understand the translation output of the
KLE.primary system due to excessive amounts of punc-
tuations and symbols in the translations. Unlike BLEU
score which is better than the baseline, this dearth of ad-
equacy is appropriately represented by a sharp decrease
in the HMEANT score (compared to the baseline) indi-
cating that HMEANT reflects the translation adequacy
when traditional evaluation metrics like BLEU fail to do
so.

6. Conclusion

We presented the results of human semantic MT eval-
uation with HMEANT on the IWSLT 2013 German-
English MT and SLT tracks. We also showed that rank-
ings provided by HMEANT are different compared to
BLEU and TER thereby offering a different perspec-
tive on evaluating MT system performance. The em-
pirical evidence for HMEANT’s high correlation with
human judgement on translation adequacy, its seman-
tic motivation and representational transparency makes
HMEANT a viable human semantic MT evaluation
metric. Further, the high inter-annotator agreement and
low annotation time cost as demonstrated in this evalu-
ation indicate that HMEANT is robust, reliable and ef-
ficient to run a large scale human semantic MT eval-
uation. Given our results, we believe that it would be
essential to include HMEANT in evaluation campaigns
so as to provide a different semantically motivated view
of the state-of-the-art MT system performance to the re-
search community.
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Abstract
This paper gives a description of the University of Edin-

burgh’s (UEDIN) systems for IWSLT 2013. We participated
in all the MT tracks and the German-to-English and English-
to-French SLT tracks. Our SLT submissions experimented
with including ASR uncertainty into the decoding process via
confusion networks, and looked at different ways of punctu-
ating ASR output. Our MT submissions are mainly based on
a system used in the recent evaluation campaign at the Work-
shop on Statistical Machine Translation [1]. We additionally
explored the use of generalized representations (Brown clus-
ters, POS and morphological tags) translating out of English
into European languages.

1. Spoken Language Translation
We submit two systems to the Spoken Language Translation
track: English-French and German-English. These systems
were built to take maximum advantage of Edinburgh’s En-
glish [2] and German [3] 2013 IWSLT speech recognition
systems.

We explored different strategies for minimizing the mis-
match between unpunctuated ASR output and SMT models,
which are typically trained on punctuated text. We wanted
to examine whether it was better to infer punctuation in the
target during the translation process, or whether it was better
to resolve ambiguity in the source first, by punctuating ASR
output before translation. Previous work [4] has shown that
it is helpful to punctuate ASR before translating, especially
when using a strong punctuation model.

We also investigate how best to use the uncertainty in
the ASR output. Confusion networks have been used suc-
cessfully in speech translation [5]. They were proposed as a
way to simplify ASR word graphs [6] as each path from the
start node to the end node goes through all the other nodes.
We compared using confusion networks from our speech sys-
tems to 1-best input into the machine translation models.

1.1. ASR systems

The english ASR system combines tandem and hybrid deep
neural network based acoustic models, and applied adapta-
tion to each speaker in the test set. N-best lists produced

with an n-gram language model are rescored with a recurrent
neural network language model to produce the final results.
For more details see [2].

The German ASR lattices were generated using the
KALDI speech recognition toolkit [7]. A hybrid deep neu-
ral network architecture was trained, in which a DNN with
six hidden layers, containing 2048 nodes each, takes 39-
dimensional speaker-adapted LDA-MLLT feature vectors
as input to generate posterior probabilities over the 3000
context-dependent states of a HMM. Language modelling
was done with a 4-gram LM which was trained on approxi-
mately 30 million words, selected from a text corpus of 994
million words, according to maximal cross-entropy with the
TED domain. The lexicon was restricted to 300,000 words,
striking a balance between adequate word coverage and low
perplexity on the TED domain. The lattices were first gen-
erated with a heavily pruned version of this LM, and then
rescored with the full model. For details, see [3].

1.2. Experimental design

We trained a phrase-based model using Moses [8] on the par-
allel corpora described in Table 1. These are large paral-
lel corpora, with only TED talks [9] consisting of in-domain
data. Europarl v7 [10], News Commentary corpus and Multi
United Nations corpus [11], Gigaword corpus (French Giga-
word Second Edition, English Gigaword Fifth Edition) and
Common Crawl [12] consist of parallel data which contain
some noise, and a large number of examples which are likely
irrelevant for the target TED domain. We therefore used a do-
main filtering technique [13] which was applied successfully
in last year’s Edinburgh submission [14]. This uses bilin-
gual cross-entropy difference to select sentence pairs that are
similar to the in-domain data and dissimilar to the out-of-
domain data. For French-English we retained 10% of the
out-of-domain data, and for German-English, which has less
out-of-domain data, we retain 20%.

To optimize the translation model we used a modified
version of the MIRA implementation in Moses as described
in [15]. The language model used is a 5-gram language
model, trained with SRILM [16], and applies Kesner-Ney
smoothing. The final model is a linear interpolation of lan-
guage models trained separately on the corpora listed in the



Parallel Corpora en-fr de-en
TED(In Domain) 2.7/2.4 2.6/2.7
Europarl v7 52.8/58.2 48.7/42.5
News Commentary v7 3.4/3.9 4.0/3.9
Common Crawl 78.1/86.4 49.5/53.1
Multi UN 318.4/366.8 4.4/4.6
109 562.1/667.3 -
Monolingual Corpora fr en
TED(In Domain) 3.1 2.8
Europarl v7 61.5 60.5
News Commentary v7 4.0 3.9
Common Crawl 91.4 59.8
Multi UN 426.8 -
109 811.4 -

Table 1: Word counts (in millions) for corpora used to train
translation and language models.

tst2010
In+100%Out 30.8
In+10%Out 31.6 (+0.8)
In+10%Out, Strip Punc 28.4 (-3.2)

Table 2: Cased BLEU results for English-French baseline
models when tuned and tested on gold transcriptions.

bottom half of Table 1. The interpolation is done to optimize
entropy on the development set. For the German-English
systems we applied compound splitting [17] and syntactic
pre-ordering [18] on the German source side.

1.3. Baseline

In these experiments we establish what is the best baseline
model to use for further spoken language translation experi-
ments. Here we tune and test on transcribed TED talks. For
both French-English and German-English the tuning set is
their respective IWSLT dev2010 set, and the test set is their
respective IWSLT tst2010 set.

Table 2 presents the results of the English-French base-
line experiments. We can see that filtering the out-of-domain
data not only reduced model size, but it increases perfor-
mance by 0.8 BLEU points. We then wanted to test what
effect the lack of punctuation has on performance, without
the confounding factor of possible speech recognition errors.
So we tested our filtered model with a test set for which
punctuation on the source had been removed. In this pa-
per, whenever punctuation is stripped we exclude full stops
in acronyms such as “U.K.” and quotes such as “we’ll”, as
these occur in ASR output. We can see that performance is
severely degraded by 3.2 BLEU points. This shows that punc-
tuation alone accounts for a large part of the challenge in the
speech translation task.

Table 3 shows the results of the German-English base-

tst2010
In+100%Out 21.4
In+20%Out 27.8 (+6.4)
In+20%Out, No preord 24.3 (-3.5)
In+20%Out, No preord, Strip Punc 23.6 (-0.7)

Table 3: Cased BLEU results for German-English baseline
models when tuned and tested on gold transcriptions.

line experiments. We can see that filtering the out-of-domain
data had a big increase on performance, 6.4 BLEU points.
This means that out-of-domain data is either of poor quality
or is badly mismatched with the test domain. For experi-
ments with confusion networks, we would be unable to split
and preorder the input. We therefore experimented with re-
moving this preprocessing step. We can see that it has a big
negative effect on the translation quality, losing 3.5 BLEU
points. Although syntactic preordering of German input is
very helpful for transcriptions, it is logical to suppose that
applying it to ASR output with many errors would be less
successful. We then experimented further, removing punc-
tuation to reproduce the format of ASR input, and we lost a
further 0.7 BLEU points.

1.4. Dealing with Uncertainty

In this section we explore the different ways that MT systems
are able to use the uncertainty inherent in the ASR output, es-
pecially looking at punctuation insertion and confusion net-
works. We apply two models (with and without punctuation
on the input) from the baseline experiments, the final two
models in Table 2 and Table 3. The input to these experi-
ments is the 1-best ASR output and confusion network ASR
output from the Edinburgh ASR system submissions. For
French-English the tuning set is dev2010 and the test set is
tst2010. For German-English the tuning set is dev2012 and
there is no test set, so results are reported for development
data which is far from ideal.

The Kaldi and the HTK lattices were converted into stan-
dard lattice format and then into confusion networks or word
meshes using the SRILM nbest-lattice tool. In speech recog-
nition systems, high accuracy recognition is achieved by a
multi-pass process which often use lattices as an intermedi-
ate representation. These lattices routinely contain redundant
information which was generated due to small differences
in timing. There could be, for instance, 10 different arcs
emitting the same word with slightly different start times.
This greatly increases the size and difficulty in translating
the ASR output. We therefore apply a reduction step to the
lattices [19], which reduced their average size by a factor of
five. We set the number of iterations for reduction to 3. We
also calculate the posterior probability of the arcs, pruning
arcs with a variety of different thresholds, from 0.01 times
the most likely candidate to 0.0001 times the most likely can-
didate. Finally we remove arcs which emit null.



BLEU

Absolute 1-best 22.9
Absolute 1-best Punctuated 24.1 (+1.2)
Lattice 1-best 17.9 (-5.0)
CN prune p.t. 100 19.5 (+1.6)
CN prune p.t. 20 19.5 (+1.6)
CN prune p.t. 10 19.2 (+1.3)
CN prune p.t. 1 14.6 (-3.3)
CN prune p.t. 100 lattice 0.0001 19.3 (+1.4)
CN prune p.t. 100 lattice 0.001 19.3 (+1.4)
CN prune p.t. 100 lattice 0.01 19.4 (+1.5)

Table 4: Cased BLEU scores and decoding times in minutes
for en-fr models when tuned and tested on ASR output.

We apply standard tokenization strategies to all lan-
guages. For confusion networks we need to split the arcs
which carry a word which needs splitting. For instance an
arc with the word “Europe’s” becomse two arcs: “Europe”
and “’s”. We apply truecasing to all training and test data, in-
cluding confusion networks. Truecasing models are trained
on the tokenized parallel corpora. The most common case
for a word is then applied to all text.

The punctuation SMT model is trained on monolingual
data where the source side has had all punctuation stripped.
This model is run in a monotone decoding mode so as to
introduce as few changes as possible, limiting it as much as
possible to just inserting punctuation.

The results for the extensive en-fr experiments are pre-
sented in Table 4. We first experimented with taking the ab-
solute ASR 1-best output and using this for tuning and test-
ing. We can see that it has a BLEU score of 22.9. We use this
as the baseline result for comparison for the next results. We
then compared this with our punctuated model. This model
first passes the absolute 1-best through our SMT punctuation
model. We can see that this improves results considerably,
adding 1.2 points to the BLEU score. The absolute 1-best is
the result of minimum Bayes risk decoding and system com-
bination, where the lattices from the tandem and hybrid deep
neural network based acoustic models are combined using
ROVER. For our lattice and confusion network experiments
however, we use the lattice output from the hybrid system.
We lose some performance because not only do we miss out
on the benefits of system combination, but we also do not
benefit from a 4-gram language model and a final recurrent
neural network language model rescoring step. In the En-
glish ASR paper [2], the absolute 1-best has a WER of 17.0,
and the hybrid system has a WER of 18.6. We therefore in-
clude as our next system, the 1-best that we extract from the
hybrid model’s lattices using SRILM lattice-tool. The hybrid
lattice 1-best has a BLEU score of 17.94, which is a drop of
BLEU score of 5 points from the absolute 1-best. This is a
surprisingly large negative impact considering that the WER
of the hybrid system was only 1.6 points higher. Clearly the

BLEU

Absolute 1-best 17.0
Absolute 1-best Punctuated 16.1 (-0.9)
CN prune p.t. 100 11.1 (-5.9)

Table 5: Cased BLEU scores and decoding times for de-en
models when tuned and tested on ASR output.

en-fr de-en
Edinburgh ASR system 22.45 14.92
IWSLT ASR system 23.00 (+0.55) 14.99 (+0.07)

Table 6: Official test 2013 cased BLEU results for 1-best SLT
input. The Edinburgh ASR system input was our primary
system.

quality of the ASR system is of crucial importance to the fi-
nal translation. We use the BLEU score of the hybrid lattice
1-best to compare the performance of the confusion network
input. We discovered that decoding with confusion networks
and unfiltered phrase-tables was not feasible. It was using
enormous amounts of memory and time to cache and then
decode all the possible translations. 1-best translations do
not suffer nearly as much from this as having only one path
through a sentence, drastically reduces the total number of
possible input phrases. We discovered that we could speed up
decoding enormously if we filtered the phrase table for only
the top 100 translations for each input phrase. Most longer
phrases have a reasonable number of translations, but some
common phrases have enormous numbers of possible trans-
lations which are very poor. For instance, the source phrase
”a” in the en-fr system, has 402 thousand translations. We
therefore pruned the phrase table to eliminate the vast ma-
jority of these unhelpful translations, leaving us with only
the top n most likely translations. We can see that translat-
ing with pruned phrase tables improves upon translating with
just the lattice 1-best by 1.6 BLEU points. We can also see
that changing the pruning limit does not affect the score very
much, until a drastic limit of 1 is reached, where performance
drops by 3.3 BLEU points. We further experimented by using
the posterior probabilities on the lattice to prune the number
of alternative arcs. We found that posterior pruning had a
slightly negative effect, reducing the performance from con-
fusion network input where we only pruned phrase tables, of
between 0.2 and 0.3 BLEU points.

The results of our de-en experiments are presented in Ta-
ble 5. Here we see that the punctuated input does slightly
worse, but because these are development data results, we
do not rely upon them. We also see that confusion network
results are much worse than the absolute 1-best.



1.5. Official Results

The results in Table 6 show the official results on our primary
and contrastive submissions. The primary submissions used
the absolute 1-best, unpunctuated ASR output of the Edin-
burgh system submissions. The contrastive submissions used
the official IWSLT ASR output as input to the SMT decoder.
The contrastive submissions did slightly better.

2. Machine Translation Systems
Our machine translation systems are based on our setup [1]
that has been proven successful at the recent evaluation cam-
paign at the Workshop on Statistical Machine Translation
[20].

2.1. Baseline

The system uses the baseline Moses [8] phrase-based model
[21] (as given in the example files for the experimental man-
agement system), with the following additions:

• limitation of phrase length to 5
• sparse domain indicator, lexical, phrase length, and

count bin features [22]
• factored models for German–English and English–

German
• source-side German compound splitting [23]
• cube pruning with pop limit 1000 for tuning, 5000 for

testing [24]
• operation sequence model (OSM) with 4 additional

supportive features: 2 gap based penalties, 1 distance
based feature and 1 deletion penalty [25]

• batch k-best MIRA tuning [26]
• interpolated 5-gram KenLM language models [27]
• minimum Bayes risk decoding [28]
• no-reordering-over-punctuation heuristic [29]

In the IWSLT systems, we also used:

• compact phrase tables [30]
• filter out phrase translations with conditional probabil-

ity of less than 0.0001
• hierarchical lexicalized reordering (mslr) [31]
• MADA tokenizer for source-side Arabic [32]
• Stanford Chinese segmenter [33]

We also tried hierarchical phrase-based models for Chi-
nese, but did not achieve better results.

In addition to the data provided directly from the IWSLT
organizers, we also included whenever applicable:

• Common Crawl parallel corpus, as provided by WMT
2013 [34]

• Europarl version 7 parallel corpus1 [35]
• news commentary parallel corpus, as provided by

WMT 2013
1http://www.statmt.org/europarl/

Language Into English From English
Arabic 24.8 7.6
Chinese 11.8 9.8
Dutch 32.8 26.5
Farsi 14.5 8.0
French 33.3 33.2
German 30.5 22.9
Italian 29.7 23.7
Polish 17.7 9.7
Portuguese 36.0 30.8
Romanian 31.7 21.1
Russian 19.1 13.1
Slovenian 24.7 18.0
Spanish 39.5 33.9
Turkish 13.5 7.2

Table 7: Baseline system performance for machine transla-
tion systems (Section 2.1): Cased BLEU scores on test2010
using NIST’s mteval-v13a. Test on tune for Slovenian.
Moses multi-bleu.perl for Chinese target.

• news language model data provided by WMT 2013
• LDC Gigaword for French, Spanish, and English as

output language

We built systems for all language pairs of the IWSLT evalu-
ation campaign. The quality scores (BLEU) of the resulting
systems as measured on the development test set is given in
Table 7.

2.2. Brown Cluster Language Models

As suggested by [36], we explored the use of Brown clus-
ters [37]. We computed the clusters with GIZA++’s mkcls
[38] on the target side of the parallel training corpus. Brown
clusters are word classes that are optimized to reduce n-gram
perplexity.

By generating the Brown cluster identifier for each output
word, we are able to add an n-gram model over these identi-
fiers as an additional scoring function. The inclusion of such
an additional factor is trivial given the factored model imple-
mentation [39] of Moses. The n-gram model is trained on the
target side of the TED corpus made available by the IWSLT
organizers.

The motivation for using Brown clusters stems from the
success of using n-gram models over part-of-speech and
morphological tags and the lack of the required taggers and
analyzers for many language pairs. Brown clustering induces
word classes that are similar to part-of-speech tags (for in-
stance, placing adjectives with the same inflection into one
class), with some additional semantic grouping (for instance,
grouping all color adjectives).

Results are shown in Table 8. While the Brown clus-
ter sequence models do not help for some of the language
pairs for which we have plentiful training data (French, Span-



Language B0 50 200 600 1000

Dutch 26.5 26.7 26.2 26.3 26.5
+0.2 –0.4 –0.2 ±0.0

French 33.2 33.3 33.4 33.1 33.1
+0.1 +0.2 –0.1 –0.1

Polish 9.7 9.9 10.1 10.1 10.4
+0.2 +0.4 +0.4 +0.7

Portuguese 30.8 31.6 32.2 32.4 32.4
+0.8 +1.4 +1.6 +1.6

Russian 13.1 13.3 13.5 13.5 14.0
+0.2 +0.4 +0.4 +0.9

Slovenian 18.0 18.7 18.6 17.7 18.0
+0.7 +0.6 –0.3 ±0.0

Spanish 34.1 34.3 34.6 34.5 34.0
+0.2 +0.5 +0.4 –0.1

Turkish 7.2 7.4 7.5 7.5 7.5
+0.2 +0.3 +0.3 +0.3

Table 8: Target sequence model (“language model”) over
Brown clusters: BLEU scores for different number of classes
(50, 200, etc.) and improvement over the baseline (B0).
Translation from English only.

ish, Dutch), we see good gains for others, especially for Por-
tuguese and the morphologically rich Russian. For the first
mentioned set of language models, we are also able to use
part-of-speech tag sequence models (See Baseline systems
in Table 10), but also without significant gains. Improve-
ments are generally fairly robust independent of the number
of clusters used.

2.3. Operation Sequence Models over Generalized Rep-
resentations

The integration of the OSM model into phrase-based de-
coding [40, 41] addresses the problem of phrasal indepen-
dence assumption since the model considers context beyond
phrasal boundaries. However, due to data sparsity the model
often falls back to very small context sizes. We investigated
the use of generalized representations (pos, morphological
analysis and word clusters) in the OSM model. The expecta-
tion is that given the sparse training data for many of the lan-
guage pairs, defining this model over the more general word
classes would lead to a model that is able to consider wider
context and learn richer lexical and reordering patterns.

2.3.1. Brown Clusters

Using Brown clusters on the source side, enables us to use the
cluster identifiers also for the operation sequence model. We
added an operation sequence model over source and target
clusters to each of the configurations of language and num-
ber of clusters reported in Table 8. We show improvements
over each of these settings in Table 9. We generally see im-
provements, although there is no clear pattern with regard to
number of clusters. The biggest gains are for the use of 1000
clusters for French and Spanish — the languages where the

Language B0 50 200 600 1000

Dutch 26.5 26.9 26.5 26.6 26.5
+0.2 +0.3 +0.3 ±0.0

French 33.2 33.8 33.7 33.6 33.8
+0.5 +0.3 +0.5 +0.7

Polish 9.7 10.1 10.2 10.2 10.1
+0.2 +0.1 +0.1 –0.3

Portuguese 30.8 31.8 32.4 32.3 31.9
–.02 +0.2 –0.1 –0.5

Russian 13.1 13.6 13.7 13.8 13.6
+0.3 +0.2 +0.3 –0.4

Slovenian 18.0 18.6 18.9 18.2 18.0
–0.1 +0.3 +0.5 ±0.0

Spanish 34.1 34.7 34.6 34.6 34.6
+0.4 ±0.0 –0.1 +0.6

Turkish 7.2 7.3 7.3 7.5 7.5
–0.2 –0.2 ±0.0 ±0.0

Table 9: Operation sequence model over Brown clusters:
BLEU scores for different number of classes and improve-
ment over the baseline of just using the Brown cluster se-
quence model (“language model”), as reported in Table 8.

sequence model alone did not give much improvement.
We also tried using OSM models over different numbers

of clusters simultaneously for English-to-{French, Spanish
and Dutch} pairs. Small gain was observed in the case of
English-to-Spanish as the best system improved from 34.7 to
35.0. No further gains were observed in the case of other two
pairs. For each system, our official submission is the system
with the best performance on the development test set.

2.3.2. POS and Morph Tags

We also tried using the OSM models over POS tags for
English-to-{German, French, Spanish and Dutch} pairs. For
German-English pairs we additionally used morphological
tags on the German-side. We used LoPar [42] to obtain mor-
phological analysis and POS annotation of German and MX-
POST [43], a maximum entropy model for English POS tags.
For other languages we used TreeTagger [44].

Model English-German German-English
Baseline 22.9 30.5
+OSM(pos,pos) 23.2 +0.3 31.0 +0.5
+OSM(pos,morph) 23.9 +1.0 31.2 +0.7
+OSMall 24.2 +1.3 31.1 +0.6

English-French English-Spanish
Baseline 33.1 33.9
+OSM(pos,pos) 33.0 -0.1 34.4 +0.5

English-Dutch
Baseline 26.6
+OSM(pos,pos) 26.6 ±0.0

Table 10: Evaluating POS- and Morph-based OSM Models

The baseline systems shown in Table 10 used POS tags
as an additional factor on source and target side and POS



target sequence model as an additional language model fea-
ture. English-to-German baseline used morphological target
sequence model instead of POS sequence model. German-to-
English baseline used morphological tags as additional factor
on the source-side and POS tags on target-side.

Table 10 shows the effect of adding OSM models over
POS and morph tags on top of the factor-augmented base-
line systems. Adding an OSM model over [pos,morph]
(source:pos,target:morph) combination gave best results for
English-to-German. Similarly adding an OSM model over
[morph,pos] (source:morph, target:pos) gave best results for
German-to-English. Adding both the models simultane-
ously (+OSMall) gave further improvements for English-
to-German but none for German-to-English pair.

Augmenting baseline systems with POS factors did not
yield any improvement for English-to-{French, Spanish and
Dutch} pairs. Adding POS-based OSM model did not help
either, except for English-to-Spanish pair. Using cluster-ids
instead of POS tags was found to be more useful for these
pairs.

In a post-evaluation analysis we confirmed whether using
generalized OSM models actually consider a wider contex-
tual window than its lexically driven variant. We found that
the probability of an operation is conditioned on less than a
trigram in the OSM model over surface forms. In compar-
ison OSM models over POS, morph or cluster-ids consider
a window of roughly 4 previous operations thus considering
more contextual information.

3. Summary
We have described our SLT and MT submissions to IWSLT-
13 evaluation campaign. For SLT we experimented with dif-
ferent punctuation strategies and with using confusion net-
work input. Punctuating the input as a separate preprocess-
ing step is helpful, and improves en-fr results by 1.2 BLEU
points. Working with confusion networks requires pruning
of the phrase table so that the search space does not ex-
plode with very unlikely translations. We found that switch-
ing from the absolute 1-best ASR output to the hybrid lat-
tice output from the ASR system had a very negative impact
on translation (-5 BLEU points), which was surprising as the
WER of the hybrid lattice system was not much worse. This
suggests that WER is crucial for spoken language translation
quality. Translating confusion networks however, improved
translation quality by 1.2 BLEU points. Our MT submissions
are based on the phrase-based pipeline as used in the re-
cent WMT campaign. We additionally explored using Brown
clusters, and linguistic annotations in factored-based phrase-
translation model and the operation sequence model. Adding
OSM model over POS and Morph tags gave improvements of
+1.3 in English-to-German and +0.7 in German-to-English
pairs. We showed the efficacy of using Brown clusters as
additional factor in Phrase-based and OSM models. Our in-
tegration consistently improved the baseline system giving
significant improvements in most cases. We obtained an av-

erage BLEU point improvements of up to +0.7 ranging from
+0.3 to +1.6 translating from English to 8 European language
pairs that contained a mixture of data sparse and morphologi-
cally rich languages. We also showed that using Brown clus-
ters outperform POS tag in some language pairs. Table 11
show BLEU scores for our official submissions.
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Abstract

This paper describes the systems used for the MSR+FBK
submission for the SLT track of IWSLT 2013. Starting from
a baseline system we made a series of iterative and addi-
tive improvements, including a novel method for processing
bilingual data used to train MT systems for use on ASR out-
put. Our primary submission is a system combination of five
individual systems, combining the output of multiple ASR
engines with multiple MT techniques. There are two con-
trastive submissions to help place the combined system in
context. We describe the systems used and present results on
the test sets.

1. Introduction
Our work for IWSLT 2013 [1] began with a baseline system
that consisted of piping the 1-best output from FBK ASR
system [2] through a phrase-based machine translation sys-
tem [3]. We made a series of additive improvements to both
the ASR and MT components, culminating in a combined
system that significantly outperformed our baseline on the
tst2010 test set. The biggest MT improvements came from
augmenting the training data with data normalized to make
it more similar to ASR output. The biggest ASR improve-
ments came from using DNNs and doing speaker and lan-
guage model adaptation.

We used three different ASR systems, which we will re-
fer to in this paper as FBK, MSRA and MSRA-2. The FBK
system is described in section 2.1. The MSRA and MSRA-2
systems are described in section 2.2.

We used four different MT systems, referred to hereafter
as TREELET, PHRASE-BASED, PHONEME and OOD-
PHONEME. The TREELET system is a tree-to-string trans-
lation system as described in [4]. The PHRASE-BASED
system is a phrase-based machine translation system as de-
scribed in [3]. The PHONEME system is a phrase-based sys-
tem where the source side of the in-domain training data has
been altered using a novel technique that makes it look more
like ASR output. The technique used to alter the training data
is novel. The OOD-PHONEME system is the same as the
PHONEME system, but with the addition of out-of-domain
normalized data.

Our primary submission was a system combination
of five systems: FBK-TREELET, FBK-PHRASE-BASED,
FBK-PHONEME, MSRA-PHONEME, and MSRA2-OOD-
PHONEME. The system combination was performed using
techniques described in [5].

In section 2 we discuss the ASR systems we used. Sec-
tion 3 describes the work we did to insert punctuation into the
ASR output. In section 4 we describe the machine translation
systems we used. Results are discussed in section 5.

2. ASR Systems
Our system combination used the output from two different
ASR engines. The first is the FBK engine described in [6].
The second is a system developed at Microsoft Research.

2.1. FBK ASR System

The FBK English speech recognizer is an HMM-based tri-
phone large-vocabulary continuous-speech recognition sys-
tem with acoustic models trained on both TED talks and out-
of-domain data, such as the HUB4 broadcast news speech
corpus. Lightly-supervised training is used to select reliable
data from the TED talks, since the transcripts are inexact.
The language model is constructed by filtering out all but
100 million words of the Gigaword and WMT 2013 out-of-
domain corpora, as well as 2.7 million words from the pro-
vided in-domain data. Each corpus is used to train a dis-
tinct 4-gram language model, which are used to rescore the
word graphs produced in the second recognition pass. Addi-
tionally, a linearly interpolation of the LMs is used for word
graph rescoring. Word graph rescoring is used in the sec-
ond recognition pass. System combination is performed with
ROVER on the alternative rescoring methods. System per-
formance on several IWSLT development and test sets are
reported in Table 1. More details of the system can be found
in [2].

2.2. MSR ASR System

The MSRA recognizer is an HMM-based triphone/trigram
large-vocabulary continuous-speech recognition system that
is fairly standard except that it uses a deep neural network
for acoustic modeling—specifically a CD-DNN-HMM, or



context-dependent deep-neural network hidden Markov
model [7, 8]. The system was developed out of a speaker-
independent Switchboard system trained on 2000h of data
(the SWBD and Fisher corpora), as described in [9]. That
same model was used (with minor vocabulary tweaks) for a
live demonstration of speech-to-speech [10], where one can
get a subjective impression for its accuracy. In the following,
we will describe how this system was adapted to the IWSLT
task.

2.2.1. IWSLT Acoustic Model

The SWBD acoustic model is suboptimal for TED talks in
that they are wideband recordings with a large variation of
non-native accents. We switched training data to the TED-
Lium collection [11], which consists of about 56000 utter-
ances from 774 talks, which amounts to 118 hours of usable
training speech after segmentation. The resulting DNN has 7
hidden layers of dimension 2048, and 9304 output classes.

The feature extraction was updated for wideband record-
ings and to reflect the latest experience w.r.t. DNNs. We
used a raw 40-channel Mel-filterbank instead of PLPs, 10-th
root non-linearity, and a wider frame window of 23 frames
or about 1/4 of a second), instead of derivatives. This was
followed by the usual mean-variance normalization.

The model training consisted of a first training round
using the cross-entropy (CE) objective with regard to the
“ground-truth” state-level time alignments created from a
GMM starting model; realigning those using that DNN fol-
lowed by further CE iterations; and then finally sequence
training using the frame-smoothed maximum mutual infor-
mation (FS-MMI) criterion [12].

The training process and model parameterization were
chosen based on prior experience with different tasks without
additional specific tuning for the IWSLT task.

2.2.2. IWSLT Language Model

The trigram language model was replaced by one trained
on the provided “ASR LM Training Data English” since
the SWBD language model was not admissible for this
task, and interpolated with a second trigram language model
trained on a large out-of-domain (OOD) collection (Giga-
word, NewsCrawl, Europarl). Due to the vast size of this
OOD collection, we aggressively pruned the OOD trigram
to keep it at manageable size. The vocabulary was selected
using a minimum word frequency of 40. The resulting vo-
cabulary size was 110,813.

Table 1: Word error rates of FBK’s primary English ASR
submission on various IWSLT test sets.

WER[%]
System dev2010 tst2010 tst2011 tst2012 tst2013
Primary 17.0 15.7 13.6 16.2 23.2

2.2.3. Speaker Adaptation

Lastly, we used the fDLR feature transform for unsupervised
speaker adaptation on each talk. fDLR, or feature-space dis-
criminative linear regression [9], is a direct adaptation of the
well-known fMLLR transform (also known as CMLLR), but
using the discriminative cross-entropy criterion with back-
propagation instead of maximum likelihood.

The fDLR process consists of a first-pass recognition that
was configured to emit state-level alignments; inserting a vir-
gin linear layer (the fDLR transform) at the bottom of the
DNN stack; and then applying back-propagation to update
the 402 tied fDLR parameters until convergence, using the
first-pass recognition output as the “ground truth.”

2.2.4. Results

Table 2 shows word-error rates (WERs) for three previous
IWSLT test sets (dev2010, dev2012.en-sl, tst2010.en-fr). We
see that the unmodified SWBD system performs 7 to 9 per-
centage points worse than the IWSLT-adapted system. We
also see once again the benefit of the deep neural network:
The WER of the TEDLium GMM starting model gets im-
proved by the comparable DNN by a relative 30 to 37% (row
“+ realign + CE training”).

On top of that, the gain from sequence training is in the
range of 3 to 6% relative. The row marked “sequence train-
ing” is the system labelled MSRA in the rest of this paper.
The OOD LM gives us another 5 to 9%. Finally, fDLR
speaker adaptation yields an up to 8% relative reduction.
This is the system we will henceforth call MSRA-2. De-
spite doing no IWSLT-specific tuning (beyond swapping the
training data), the resulting error rates are competitive with
the best systems of IWSLT 2012.

Table 2: Word error rates of the MSRA recognizer on three
previous IWSLT test sets for various configurations. The two
rows in boldface are the MSRA and MSRA-2 systems, re-
spectively.

WER[%]
System dev2010 tst2010 dev2012

SWBD DNN baseline 20.5 19.2 25.7
TEDLium, GMM start 25.0 25.5 29.4
+ DNN, CE-trained 17.6 15.7 18.7
+ realign + CE training 17.4 15.6 18.6
+ sequence training 16.3 15.1 17.8
+ OOD LM 15.2 13.8 16.8
+ speaker adaptation 14.6 12.9 15.5

3. Punctuation Insertion
3.1. Punctuation restoration strategies

Punctuation restoration is an important task for Spoken Lan-
guage Translation (SLT). Speech recognition systems pro-
vide neither punctuation nor sentence boundaries in the pro-



duced text. In this work, the sentence boundaries are pro-
vided by the IWSLT evaluation task; therefore we focus only
on intra-sentence punctuation restoration.

Generally, there are three strategies for punctuation
restoration for SLT.

1. Inserting punctuation on the output of the ASR system
before feeding it as the input to the machine translation
system. In this case, we can use conventional machine
translation systems trained on punctuated text in both
source and target languages.

2. Handling punctuation insertion as part of the transla-
tion process, where translation is done from ASR-like
unpunctuated text as the source and fully punctuated
text as the target.

3. Proceeding as in the second strategy but producint un-
punctuated target text and trying to restore punctuation
on the produced target text.

Previous work in [13] showed that the first strategy
provides the best results with machine translation quality.
Therefore, in the current work we choose the first strategy
where we process the ASR output to restore intra-sentence
punctuation as a preprocessing step before translation.

3.2. The Approach

Using SMT for punctuation restoration was introduced in
[14], where a phrase-based translation system was trained
to translate from unpunctuated source text to punctuated tar-
get text with pseudo bilingual data obtained by removing
punctuation from the source side and leaving the target side
punctuated. They showed significant improvement on the
IWSLT-2007 evaluation when they deployed this approach
as a post-processing step for restoring punctuation for un-
punctuated target text. More recently, [13] evaluated the
same approach as a preprocessing step for ASR output and
as a post-processing step for unpunctuated target translation.
They found that using it as a preprocessing step is signifi-
cantly better than post-processing. In this work, we adopt
the same approach as a preprocessing step.

Our system is a phrase-based MT system; we use a
monotonic decoder with no reordering and no distortion
penalty. The language model is a 5-gram LM trained on the
target side of the parallel data.

3.3. Data and data preparation

Our training data is English data from IWSLT out-of-domain
data. We selected 26M sentences of the English side of the
data from Europarl and News Broadcast. We processed the
data to remove all punctuation except for periods, commas,
semi-colons, question marks, apostrophes and exclamation
points. This processed data represents the target side of our
MT system. The source side of the translation data is ob-
tained by removing the sentence boundary punctuation (peri-
ods, commas, semi-colons, question marks and exclamation

BLEU Case Insensitive Case Sensitive
Baseline 22.5 20.83
Punctuation Restored 24.42 (+1.92) 22.71 (+1.88)

Table 3: Punctuation Restoration Results

points). Therefore, the purpose of the system is to produce
punctuated text form unpunctuated text within the sentence.
We use two sets of 5000 sentences from the TED talks data as
our development and test sets for the punctuation restoration
system.

3.4. Results

We evaluate the system on the translation task directly; where
we restore punctuations and compare the effect of restoring
the punctuation on the overall translation quality. We use
the English-French translation task; where the baseline is
translating without punctuation restored. The table shows
the translation results with and without punctuation for the
English-French translation task. The baseline has no punc-
tuation restored. The system shows significant improvement
of 8.5% over the baseline in terms of overall BLEU score.

4. MT Systems
This section describes the various machine translation sys-
tems we used.

4.1. Training Data

We used the same training data to train all of our machine
translation systems. For in-domain parallel data, we used
the TED corpus provided by the competition. Out-of-domain
parallel data was

1. Gigaword

2. MultiUN

3. Europarl V7

4. Parallel News commentary V8

5. WMT 2013 News Commentary (Common Crawl)

Data to build the French target language model was

1. News Commentary V8

2. News Crawl

3. French Gigaword V3

4. European Language Newspaper Text LDC95T11

4.2. Baseline System

Our baseline system is a typical phrase-based statistical ma-
chine translation system. Details of the system are described
in [3]. The decoder is very similar to the one used by Moses
[15].



4.3. Treelet System

In addition to our phrase-based baseline system, we also
used a syntax-based tree to string MT system, as described
in [4]. Although the BLEU score of this system individually
is somewhat lower than that of the baseline phrase-based sys-
tem, it is able to capture certain phenomena that are hard to
capture in phrase-based systems. It is thus a very useful com-
ponent for system combinations.

4.4. Phoneme-motivated Text Normalization

Machine translation relies heavily on the data it uses in train-
ing. Simply training a MT system on text corpora and apply-
ing it to spoken language translation creates a search space
that is inaccessible by the output of the ASR system. There-
fore, it is very important to have a representative training
corpus for translating spontaneous speech, instead of written
text. Unfortunately, bilingual spontaneous speech corpora of
sufficient size for high-quality MT are not widely available.
We chose to adapt our written training data to look more like
speech.

The ASR output deviates from written text in the follow-
ing ways:

1. Delinquencies, such as restarts and word deletions.

2. Tokens in their pronounced form. For example, the to-
ken 1990 can have different pronounced forms based
on its context; namely “nineteen ninety” or “one thou-
sand nine hundred ninety”. Other symbols may also be
pronounced or ignored depending on the context.

3. ASR errors. These errors may come from homophone
confusions, e.g. theirs vs. there’s; reference words not
appearing in the lexicon (OOV words), misrecognized
phonemes, e.g. is instead of its; and biases from the
language model. In the case of OOV errors, the words
not appearing in the ASR lexicon are substituted with
phonetically similar in-vocabulary words.

We consider the ASR system as a channel that maps tran-
scripts into recognition results. Were there training data that
maps speech recognition outputs to translations, we could
train a machine translation system without relying on text
corpora. Since this is rarely the case, we attempt to adapt
the MT data into ASR-like output to anticipate both poten-
tial ASR errors and text normalizations that transform texts
into a canonical form.

To motive our work, let’s consider a concrete example of
ASR output:

Transcript: And there are...
ASR output: And their are...
Reference : Et il y a...
MT output : Et leur font...

We can see that there and their are commonly confused
homophones. While this error may occur frequently in ASR

output, a machine translation system that is trained on written
text in professional domains will not encounter this error and
will not have sufficient statistics to translate their are as il y
a. Therefore, in our work we try to simulate the recognition
behavior of the ASR system by converting written text into
the phoneme space, and then map back to the text space using
a phrase-based MT system trained using components from
the system we want to simulate.

4.4.1. System Configuration

Inspired by the expositions of [16, 17], we first normal-
ize each word in FBK’s ASR lexicon into a phoneme se-
quence by performing text-to-speech (TTS) analyses with
an in-house synthesizer. The phoneme sequences and their
target lexical forms are used respectively as source and tar-
get parallel training data for a monotonic phoneme-to-word
phrase-based MT system. We use two 4-gram LMs from
FBK’s IWSLT 2012 primary submission [6], which were
trained with modified Kneser-Ney smoothing [18] on TED
and WMT data. Due to the small amount of training data, we
assign uniform forward and backward phrase probabilities to
each phoneme sequence to word mapping. We omit lexical
probabilities.

With the aforementioned components, we can now tune a
phrase-based machine translation system that translates from
the actual phoneme sequence into ASR text output. The op-
timization can be done by randomly sampling a small devel-
opment set from the 1-best ASR outputs on dev2010 from
FBK’s IWSLT 2012 primary submission. The corresponding
transcripts are used as input in MERT. We apply the tuned
phoneme-to-word translation system to all the training data
and concatenate the synthesized bitexts with existing written
bitexts as additional training data. Figure 1 provides a graph-
ical depiction of the pipeline.

As we mentioned, the method we proposed tries to ad-
dress the problem of ASR errors. The generated bitext has
the following properties:

• All the numerals and symbols are converted into their
pronounced form.

• Homophone errors and combination errors are injected
into the new bitext.

• The text will not contain any OOVs that don’t ap-
pear in the ASR system’s lexicon. OOV words will
be mapped to their most likely alternatives.

4.4.2. Expanding Pronunciation Hypotheses

Since our TTS analyzer in the .NET framework provides the
single best phoneme sequence for an utterance, we expanded
the phoneme sequences generated for each word in the ASR
lexicon by performing TTS analysis on each transcript line in
the TED training data and aligning the phoneme sequences
to each corresponding word. Pronunciations for word en-
tries not appearing in the ASR lexicon are ignored. We also
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Figure 1: Phonetic normalization pipeline

captured count statistics on each pronunciation sequence to
word mapping. These counts were used to rank the forward
and backward probabilities of the pronunciation phrase table
by (1/1 + r), where r is the rank of the pronunciation map-
ping.

4.4.3. Results

We compare the normalization techniques described above
against a baseline MT system containing only un-normalized
text. Our first system (TED norm) performs the normal-
ization technique in 4.4.1, using uniform phrase translation
probabilities. In the second system, we normalize all of the
MT training data and use the phrase-based translation prob-
ability features estimated from the TED data, as described in
4.4.2.

Both the original and improved channel model results are
provided in Table 4 using FBK’s output.

4.5. System Combination

In testing, we combined outputs from the five single sys-
tems using the incremental indirect hidden Markov model
(IHMM) proposed in [5, 19], which has been shown to give
superior performance in several MT benchmark tests [20].
The parameters of the IHMM are estimated indirectly from
a variety of sources including semantic word similarity, sur-
face word similarity, and a distance-based distortion penalty.
The pairwise IHMM was extended to operate incrementally
in [19], where the confusion network is initialized by form-

Normalization tst2010
None 23.60
TED-only 24.50
ALL 25.03

Table 4: Evaluation results for text normalization. RAW
refers to un-normalized training corpora. Normalization
techniques use TTS analysis to convert input data into
phoneme sequences, followed by channel modeling trained
from the ASR lexicon (LEX) and optionally the TED train-
ing data to generate normalized text.

ing a simple graph with one word per link from the skeleton
hypothesis, and each remaining hypothesis is aligned with
the partial confusion network. This allows words from all
previous hypotheses be considered as matches and leads to
better performance compared to the pairwise IHMM. The in-
cremental IHMM is also more computationally efficient than
fully joint optimization methods such as [21], and provides a
good trade-off between accuracy and runtime cost. In our im-
plementation, each of these five systems produces a 10-best
output for system combination. The semantic word similar-
ity of the IHMM is derived from the French/English word
translation probabilities learned on the TED parallel train-
ing data using the word-dependent HMM-based alignment
method proposed in [22]. The language model is a trigram
LM trained on the French side of the TED parallel data. The
system combination parameters are tuned on the first half of
the IWSLT tst2010 set, while the second half is reserved as
the devtest set.

5. Results
Here we present the results of testing our various systems on
test sets.

5.0.1. Test Data

Because we observed mismatches between the dev2010 and
tst2010 test sets which made dev2010 unsuitable for use in
tuning our system combination, we decided to use half of
tst2010 as a development test set and the other as a held-
out test set. Throughout the rest of the paper we will re-
fer to these sets as tst2010-dev and tst2010-test.1 It should
be noted that only the system combination parameters were
trained on the tst2010-dev. None of the individual systems
used tst2010-dev for training or parameter tuning, so results
on these sets are valid test results. However we have cho-
sen to report results for the individual systems on the two
halves of tst2010 separately in order to make them com-
parable with the results of the combined system. As the
reader will note, the results on the two halves are generally
very close. Reported results are case-sensitive, punctuation-
sensitive BLEU.

1Tst2010-dev contains talks 767, 769, 779, 783, and 785, while tst2010-
test contains talks 790, 792, 799, 805, 824, and 827.



System tst2010-dev tst2010-test
fbk.baseline 22.05 21.57
fbk.phoneme 21.75 21.85
fbk.ood-phoneme 22.16 22.52
fbk.treelet 20.41 20.8
msra.baseline 22.04 21.83
msra.phoneme 22.18 22.09
msra.ood-phoneme 22.67 22.74
msra.treelet 20.92 21.19
msra-2.baseline 22.88 22.41
msra-2.phoneme 23.11 22.84
msra-2.ood-phoneme 23.46 23.61
msra-2.treelet 21.69 22.15
syscombo3 (First three) 22.9 22.41
syscombo5 (all five) 24.4 24.08

Table 5: BLEU Results from all systems on tst2010-dev and
tst2010-test. Our primary submission was syscombo5. Con-
trastive1 msra-2.ood-phoneme, our best single system. Con-
trastive2 is fbk.ood-phoneme
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Figure 2: BLEU Results by ASR system

5.0.2. Test results

In Table 5, we report results for each ASR system + MT sys-
tem combination. In figure 2, we can see the BLEU scores
for each ASR system, grouped by translation system. In fig-
ure 3, we can see BLEU scores for each MT system, grouped
by ASR system. The trends are very clear. On the ASR side,
the benefits of using DNNs, speaker adaptation and a large
out-of-domain LM are quite clear and robust across MT sys-
tems. For the MT systems, the advantage of adapting the
training data with the phoneme method is also clear, with
OOD-PHONEME systems outperforming systems with only
in-domain adapted data across the board. System combina-
tion of 5 systems buys about 1 BLEU point on top of the best
single system.

Table 6 contains our results on the official SLT test set
(tst2013) as well as the progress test sets tst2010, tst2011
and tst2012. As the reader can see, our results on tst2010
and tst2012 were very different from those on tst2011 and
tst2013. On tst2010, syscombo5 (our primary submission)
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Figure 3: BLEU Results by MT system

scores a full BLEU point above msra-2.ood-phoneme, which
is in turn almost a full point above fbk.ood-phoneme (con-
trastive2). Syscombo5 also scores highest on tst2012. Con-
versely, fbk.ood-phoneme scores higher than syscombo5 on
tst2013 (by nearly two BLEU points!) and on tst2011. The
odd-yeared and even-yeared test sets seem to show signifi-
cant signals pointing in different directions. We have thus far
been unable to find a good explanation for this discrepancy.
There are several possible factors.

Regarding the ordering of two phoneme-normalized sys-
tems (fbk.ood-phoneme vs. msra-2.ood-phoneme), it is
worth noting that the data normalizations for both systems
were derived from the FBK dictionaries and language mod-
els. This suggests an obvious bias in favor of fbk.ood-
phoneme over msra-2.ood-phoneme. Perhaps the effects of
this bias were weaker in the tst2010 set than in the other test
sets. We plan to train a normalizing system using the vocab-
ulary from the msra-2 system in order to test the significance
of this effect.

The difference in the ordering of the syscombo5 system
in relation to the other systems is even starker and more dif-
ficult to explain. Strong distributional similarity between
tst2010-dev and tst2010-test might have led to overfitting on
that test set. However this seems unlikely given that the sets
of talks contained in the two splits are disjoing. Furthermore,
that hypothesis fails to explain the very strong performance
of syscombo5 on tst2012.

Metric tst2010∗∗ tst2011 tst2012 tst2013

P BLEU 24.08 27.21 29.92 22.42
TER – 0.5622 0.5330 0.637

C1
BLEU 23.61 26.72 – 20.96
TER – 0.5706 – 0.654

C2
BLEU 22.16 27.55 29.47 24.36
TER – 0.5647 0.5358 0.599

Table 6: Results of submitted English-French runs evaluated on
the IWSLT TED test sets. Note re. tst2010**: Because we used the
first half of tst2010 as a development set for system combination in
our primary submission, we report results only for the second half
of tst2010. As one can see in Table 5, the BLEU scores for the
two halves are generally very close, so this is a decent proxy for the
whole test set.
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Abstract

We present the first ever results showing that Chinese
MT output is significantly improved by tuning a MT
system against a semantic frame based objective func-
tion, MEANT, rather than an n-gram based objective
function, BLEU, as measured across commonly used
metrics and different test sets. Recent work showed that
by preserving the meaning of the translations as cap-
tured by semantic frames in the training process, MT
systems for translating into English on both formal and
informal genres are constrained to produce more ade-
quate translations by making more accurate choices on
lexical output and reordering rules. In this paper we de-
scribe our experiments in IWSLT 2013 TED talk MT
tasks on tuning MT systems against MEANT for trans-
lating into Chinese and English respectively. We show
that the Chinese translation output benefits more from
tuning a MT system against MEANT than the English
translation output due to the ambiguous nature of word
boundaries in Chinese. Our encouraging results show
that using MEANT is a promising alternative to BLEU
in both evaluating and tuning MT systems to drive the
progress of MT research across different languages.

1. Introduction

We present the first ever results of tuning a MT sys-
tem against a semantic frame based objective function
in order to produce a more adequate Chinese transla-
tion output. We compare the performance of our sys-
tems in IWSLT 2013 TED talk MT tasks on Chinese-
English and English-Chinese translation with that of the
baseline SMT systems tuned against BLEU. We show
that the improvement of tuning a MT system against
MEANT on Chinese translation output is more signif-
icant because of the nature of ambiguous word bound-

aries in Chinese. Our encouraging results show that us-
ingMEANT is a promising alternative to BLEU in eval-
uating and tuning MT systems to drive the progress of
MT research across different languages.

In the past decade, the progress of MT research is
predominantly driven by the fast and cheap n-gram based
MT evaluation metrics, such as BLEU [1], which as-
sume that a good translation is one that shares the same
lexical choices as the reference translation. Despite en-
forcing fluency, it has been established that these met-
rics do not enforce translation utility adequately and of-
ten fail to preserve meaning[2, 3]. Unlike BLEU, or
other n-gram basedMT evaluationmetrics, theMEANT
family of metrics [4, 5, 6] adopt at outset the princi-
ple that a good translation is one from which humans
can successfully understand at least the central mean-
ing of the input sentence as captured by the basic event
structure— “who did what to whom, when, where and
why”[7]. [6]MEANT measures similarity between the
MT output and the reference translations by comparing
the similarities between the semantic frame structures
of output and reference translations. For evaluating En-
glish translations, we have shown that MEANT corre-
lates better with human adequacy judgment than com-
monly used MT evaluation metrics, such as BLEU [1],
NIST [8], METEOR [9], CDER [10], WER [11], and
TER [12].

We recently showed that the translation adequacy
across different genres (ranging from formal news to in-
formal web forum) is improved by replacing surface ori-
ented metrics like BLEU or TER with a semantic frame
based objective function, MEANT, when tuning the pa-
rameters of MT systems [13, 14]. However, the ques-
tion of whether the same approach of tuning MT sys-
tems against a semantic objective function might im-
prove translation adequacy when translating into other



languages, such as Chinese, is left unanswered.
Although there exists no studies on correlation be-

tween human adequacy judgement and MEANT scores
on Chinese output, we hypothesize that the benefits of
tuning against MEANT that we see for English: better
adequacy and fluency carries over into Chinese. It is
because a high MEANT score is contingent on correct
lexical choices as well as getting the syntactic and se-
mantic structures right, which is language independent.

The proposed approach of incorporating semantic
information into SMT by tuning the model against a se-
mantic frame based evaluation metric is independent of
assumptions about the underlying translation model ar-
chitecture. Therefore, we show that MT systems from
different SMT approaches, flat phrase-based and hier-
archical phrase-based, both benefit from the semantic
information incorporated through our approach.

2. Related work

2.1. MT evaluation metrics

N-gram or edit distance based metrics such as BLEU
[1], NIST [8], METEOR [9], CDER [10], WER [11],
and TER [12] do not correctly reflect the similarity of
the basic event structure—“who didwhat to whom, when,
where and why”— of the input sentence. In fact, a num-
ber of large scale meta-evaluations [2, 3] report cases
where BLEU strongly disagrees with human judgments
of translation adequacy.

This has caused a recent surge of work on devel-
oping MT evaluation metrics that would outperforms
BLEU in correlation with human judgment. AMBER
[15] shows a high correlationwith human adequacy judg-
ment [16], however, it is very hard to interpret and indi-
cate what errors the MT systems are making.

ULC [17, 18] is an automatic metric that incorpo-
rates several semantic similarity features and shows im-
proved correlation with human judgement of transla-
tion quality [19, 17, 20, 18] but no work has been done
towards tuning an SMT system using a pure form of
ULC perhaps due to its expensive run time. Similarly,
SPEDE [21] is an integrated probabilistic FSMand prob-
abilistic PDAmodel that predicts the edit sequence needed
for the MT output to match the reference. Sagan [22] is
a semantic textual similarity metric based on a complex
textual entailment pipeline. These aggregated metrics
require sophisticated feature extraction steps; contain
several dozens of parameters to tune and employ expen-
sive linguistic resources, like WordNet and paraphrase

tables. Like ULC, these metrices are not useful in the
MT system development cycle for tuning due to expen-
sive running time. The metrics themselves are also ex-
pensive in training and tuning due to the large number
of parameters that need to be estimated.

ROSE [23] is a weighted linear model of shallow
linguistic features which is cheaper in run time but still
contains several dozens of weights that need to be tuned,
which makes it hard to port the metric to different do-
mains. TINE [24] is an automatic recall-oriented eval-
uation metric which aims to preserve the basic event
structure. However, it performs comparably to BLEU
and worse than METEOR on correlation with human
adequacy judgment.

In contrast, there is very little work on designingMT
evaluation metrics for evaluating Chinese or other lan-
guages with ambiguous word boundaries. For instance,
studies show that simply adapting the commonly used
MT evaluationmetrics to evaluate Chinese on character-
level showed a higher correlation with human judgment
than the original word-level evaluationmetrics [25]. Later,
TESLA-CELAB is introduced as a hybrid character-level
andword-levelMT evaluationmetric for evaluatingChi-
nese [26]. Although TESLA-CELAB correlates signif-
icantly better with human judgment for evaluating Chi-
nese than BLEU, no work has been done towards tuning
an SMT system for translating into Chinese using it.

2.2. The MEANT family of metrics

MEANT [6], which is the weighted f-score over the
matched semantic role labels of the automatically aligned
semantic frames and role fillers, outperforms BLEU,
NIST, METEOR, WER, CDER and TER in correlat-
ing with human adequacy judgment. MEANT is eas-
ily portable to other languages requiring only an au-
tomatic semantic parser and a large monolingual cor-
pus in the output language for identifying the semantic
structures and the lexical similarity between the seman-
tic role fillers of the reference and translation.

Precisely, MEANT is computed as follows:

1. Apply an automatic shallow semantic parser to
both the references andMToutput. (Figure 1 shows
examples of automatic shallow semantic parses
on both reference and MT output.)

2. Apply the maximum weighted bipartite matching
algorithm to align the semantic frames between



Figure 1: Examples of automatic shallow semantic parses. The input is parsed by a Chinese automatic shallow
semantic parser. The reference and MT output are parsed by an English automatic shallow semantic parser. There are
no semantic frames for MT3 since there is no predicate.

the references and MT output by the lexical sim-
ilarities of the predicates.

3. For each pair of aligned semantic frames,

(a) Determine the similarity of the semantic role
fillers using Lexical similarity scores.

(b) Apply themaximumweighted bipartitematch-
ing algorithm to align the semantic role fillers
between the reference and MT output ac-
cording to their lexical similarity.

4. Compute the weighted f-score over the matching
role labels of these aligned predicates and role
fillers acording to the mathematical definitions in
the following.

Mi,j ≡ total # ARG j of aligned frame i in MT
Ri,j ≡ total # ARG j of aligned frame i in REF

Si,pred ≡ similarity of predicate in aligned frame i
Si,j ≡ similarity of ARG j in aligned frame i

wpred ≡ weight of similarity of predicates
wj ≡ weight of similarity of ARG j

mi ≡
#tokens filled in aligned frame i of MT

total #tokens in MT

ri ≡
#tokens filled in aligned frame i of REF

total #tokens in REF

precision =

∑
imi

wpredSi,pred+
∑

j wjSi,j

wpred+
∑

j wjMi,j∑
imi

recall =

∑
i ri

wpredSi,pred+
∑

j wjSi,j

wpred+
∑

j wjRi,j∑
i ri

where mi and ri are the weights for frame, i, in the
MT/REF respectively. These weights estimate the de-
gree of contribution of each frame to the overall mean-
ing of the sentence. Mi,j and Ri,j are the total counts
of argument of type j in frame i in the MT and REF
respectively. Si,pred and Si,j are the lexical similarities
(as computed based on a context vector model) of the
predicates and role fillers of the arguments of type j
between the reference translations and the MT output.
The weights wpred and wj are the weights of the lexical
similarities of the predicates and role fillers of the argu-
ments of type j between the reference translations and
the MT output. There is a total of 12 weights for the set



of semantic role labels in MEANT as defined in [27].
For MEANT, wpred and wj are determined using super-
vised estimation via a simple grid search to optimize the
correlation with human adequacy judgments [4]. For
UMEANT, wpred and wj are estimated in an unsuper-
vised manner using relative frequency of each semantic
role label in the reference translations. UMEANT can
thus be used when when human judgments on adequacy
of the development set are unavailable [5].

2.3. Tuning against better evaluation metrics

Previousworks show that tuningMT system against bet-
ter evaluation metrics improve the translation quality
[28, 29]. Recent studies [13, 14] also shows that tun-
ingMT system againstMEANTproducesmore robustly
adequate translations than the common practice of tun-
ing against BLEU or TER across different data genres,
such as formal newswire text, informal web forum text
and informal public speech. Therefore, we believe that
tuningMT systems against MEANTwould improve the
adequacy on Chinese MT output.

3. Experimental setup

In this section, we describe the details of our systems
for the English-Chinese and Chinese-English TED talk
MT tasks in terms of data, preprocesing, SMT pipeline
and MEANT settings.

3.1. Data and preprocessing

Since our focus in this evaluation campaign is running
contrastive experiments on tuning different MT systems
against different MT evaluation metrics, we have delib-
erately constrained our training data to in-domain data
only. For the translation model we have only used the
officially released parallel training data, while for the
language model we have only used the output side of
the released training data. Similarly, no additional data
was used as a part of development set other than the of-
ficially released development set. In order to test the
consistency of the experimental results the test sets of
IWSLT2011 and 2012were used in addition to the IWSLT
2013 test set. We performminimal preprocessing on the
training data running a maximum entropy Chinese seg-
menter [30] along with numex/timex segmenter on the
Chinese data and punctuation tokenization and true cas-
ing on the English data.

3.2. SMT pipeline

With the goal of improvingMT utility by usingMEANT
as an objective function to drive minimum error rate
training (MERT) [31] of state-of-the-art MT systems,
we setup our baseline usingMoses [32], an off-the-shelf
translation toolkit. In this paper we have two baselines:
a flat phrase-based MT and a hierarchical phrase-based
MT [33]. This allows us to use Moses to compare the
performance ofMEANT-tuned systems in these two dif-
ferent MT paradigms.

The language models are trained using the SRI lan-
guage model toolkit [34]. For both translation tasks,
we used a 6-gram language model. We use ZMERT
[35] to tune the baseline because it is a widely used,
highly competitive, robust, and reliable implementation
of MERT that is also fully configurable and extensible
with regard to incorporating new evaluation metrics.

3.3. MEANT for evaluating Chinese

Since UMEANT is shown to be more stable when eval-
uating translations across different language pairs [36],
we use aUMEANT framework along the lines described
in [37] for evaluating both English and Chinese.

However, for evaluating Chinese, MEANT has to be
equipped with a Chinese shallow semantic parser in or-
der to capture the semantic frames in the Chinese trans-
lation output. For this purpose, we used C-ASSERT
[38] because of its high accuracy.

Since the primary objective in this experiment is study-
ing the feasibility of tuningMT systems against Chinese
MEANT, we limited ourselves to using a window-size-
3 context vector model trained on the word segmented
monolingual Chinese gigaword corpus, for estimating
the phrasal similarity of the semantic role fillers, rather
than investigating which combination of window-size,
similarity function and phrasal aggregation function that
would perform the best in evaluating Chinese.

3.4. Submitted systems

For the English-Chinese TED talks MT task, we sub-
mitted translation output from three systems. The pri-
mary system is our MEANT-tuned Moses flat phrase-
based MT system and the two contrastive systems are
the BLEU-tuned Moses flat phrase-based and BLEU-
tuned Moses hierarchical phrase-based systems. In this
paper, we have also include our latest results on theMEANT-
tuned Moses hierarchical phrase-based system.



Table 1: Translation quality of the participated English-Chinese MT systems on the IWSLT 2013 test set where (p)
indicates our primary submission; (c1) and (c2) indicate the two contrastive submissions and (n) indicates our not-
submitted system.

char-level word-level
official official internal

System BLEU TER BLEU TER BLEU TER NIST WER PER CDER MEANT
(p) MEANT-tuned flat 18.66 70.36 10.85 78.12 11.44 79.24 4.25 83.07 64.80 77.04 25.65
(c1) BLEU-tuned flat 18.08 72.00 10.38 82.02 10.93 83.58 4.06 87.19 69.07 81.03 24.88
(c2) BLEU-tuned hier 18.02 72.12 10.37 81.80 10.88 83.63 4.05 87.16 69.44 81.07 23.98
(n) MEANT-tuned hier — — — — 11.83 72.31 4.59 76.09 58.86 70.78 25.72

Table 2: Translation quality of the participated English-Chinese MT systems on the IWSLT 2012 test set where (p)
indicates our primary submission; (c1) and (c2) indicate the two contrastive submissions and (n) indicates our not-
submitted system.

word-level (internal)
System BLEU TER NIST WER PER CDER MEANT
(p) MEANT-tuned flat 10.89 81.20 4.18 84.61 67.54 79.38 24.24
(c1) BLEU-tuned flat 10.65 86.23 3.98 89.33 72.81 84.17 23.76
(c2) BLEU-tuned hier 10.47 86.53 3.95 89.56 73.34 84.34 22.37
(n) MEANT-tuned hier 9.04 78.33 3.73 81.42 66.15 76.60 22.93

For the Chinese-English TED talksMT task, we sub-
mitted translation output from four systems. In addition
to the primary MEANT-tuned Moses flat phrase-based
MT system and the two contrastive BLEU-tuned Moses
flat phrase-based and BLEU-tuned Moses hierarchical
phrase-based systems, we have also submitted transla-
tion output from the contrastive MEANT-tuned Moses
hierarchical phrase-based system.

4. Results

Table 1, 2, and 3 show that the MEANT-tuned systems
in the English-Chinese TED talks MT task achieves sig-
nificantly better scores than the two contrastive BLEU-
tuned systems across all evaluation metrics on all three
test sets. The results is surprising because MEANT-
tuned system beats BLEU-tuned systems even onBLEU,
the metric which the BLEU-tuned systems are highly
optimized on. This encouraging results confirm that
MEANT is a better metric for evaluating and tuningMT
system on Chinese.

Table 4, 5 and 6 show that the BLEU-tuned systems
in the Chinese-English TED talks MT task only per-
forms well on BLEU, the metric which they are highly
optimized on. However, MEANT-tuned systems beats
the BLEU-tuned systems on other evaluation metrics
across all three test sets. More precisely, MEANT-tuned
Moses flat phrase-based system achieves the best error
metric scores (TER, WER, CDER) while the MEANT-

tuned Moses hierarchical phrase-based system achieves
better scores in NIST, PER and METEOR. This results
show that tuningMT system against BLEUwould easily
result in overfitting instead of producing good transla-
tion in practice. On the other hand, since a highMEANT
score rely on correct lexical choices as well as syntac-
tic and semantic structures, tuning MT systems against
MEANT would hardly result in overfitting while pro-
ducing translations that more robustly express themean-
ing in the original input accurately.

5. Conclusion

In this paper, we have presented the first ever results that
tuning a MT system for translating into Chinese against
MEANT significantly improves translation quality, in-
stead of tuning against BLEU. MEANT-tuned English-
ChineseMT system successfully achieves the best scores
across commonly used metrics on all test sets. Since a
high MEANT score rely on correct lexical choices as
well as syntactic and semantic structures, tuning MT
systems against MEANT would hardly result in overfit-
ting while producing translations that more robustly ac-
curately express the meaning in the original input. This
effect is more obvious when we are translating into a
non-English language.

We have to point out that in this feasibility study we
have doneminimal adaptation on the settings ofMEANT
for evaluating Chinese. We expect the performance of



Table 3: Translation quality of the participated English-Chinese MT systems on the IWSLT 2011 test set where (p)
indicates our primary submission; (c1) and (c2) indicate the two contrastive submissions and (n) indicates our not-
submitted system.

word-level (internal)
System BLEU TER NIST WER PER CDER MEANT
(p) MEANT-tuned flat 12.24 79.56 4.39 82.42 65.66 77.28 25.87
(c1) BLEU-tuned flat 11.12 85.12 4.12 87.94 71.44 82.57 25.33
(c2) BLEU-tuned hier 10.89 83.63 4.05 87.16 69.44 81.07 23.16
(n) MEANT-tuned hier 10.14 76.66 3.96 79.21 64.20 74.41 23.51

Table 4: Translation quality of the participated Chinese-English MT systems on the IWSLT 2013 test set where cased
and uncased BLEU and TER are the official results. (p) indicates our primary submission; (c1), (c2) and (c3) indicate
the three contrastive submissions. MET stands for METEOR.

cased uncased
official official internal

System BLEU TER BLEU TER BLEU TER NIST MET WER PER CDER MEANT
(p) MEANT-tuned flat 9.58 74.82 10.17 73.75 10.61 73.82 4.57 42.49 75.66 58.97 70.81 31.42
(c1) MEANT-tuned hier 10.20 75.92 10.79 74.83 11.29 74.59 4.65 43.05 77.32 58.96 71.73 32.50
(c2) BLEU-tuned flat 10.16 76.05 10.84 74.88 11.32 74.54 4.65 43.24 77.05 58.94 71.70 31.46
(c3) BLEU-tuned hier 10.24 76.95 10.90 75.76 11.41 75.17 4.62 43.30 78.07 59.72 72.39 31.86

MEANT-tuned systems to be even better when the op-
timal settings are used. This encouraging results show
that using MEANT is a promising alternative to BLEU
in both evaluating and tuning MT systems to drive the
progress of MT research across different languages.
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Abstract 

This study presents the NICT automatic speech recognition 
(ASR) system submitted for the IWSLT 2013 ASR evaluation. 
We apply two types of acoustic features and three types of 
acoustic models to the NICT ASR system. Our system is 
comprised of six subsystems with different acoustic features 
and models. This study reports the individual results and 
fusion of systems and highlights the improvements made by 
our proposed methods that include the automatic segmentation 
of audio data, language model adaptation, speaker adaptive 
training of deep neural network models, and the NICT 
SprinTra decoder. Our experimental results indicated that our 
proposed methods offer good performance improvements on 
lecture speech recognition tasks. Our results denoted a 13.5% 
word error rate on the IWSLT 2013 ASR English test data set. 

1. Introduction 

The IWSLT 2013 Automatic Speech Recognition is an 
ongoing evaluation whose goal is to automatically transcribe 
TED 1  talks from audio to text [1]. TED is a nonprofit 
organization that promotes the dissemination of ideas. People 
can access TED talks on its website. Due to speech disfluency, 
emotional speech, noisy speech, different channels and 
speakers, the automatic transcription of TED talks is 
challenging. This year, the evaluation contains English and 
German speech materials as well as the automatic and 
mandatory segmentation of audio data. Since some talks are 
with non-native speakers, this year’s evaluations are 
particularly challenging. 

Automatic speech recognition has been widely applied in 
different kinds of applications [2]-[4]. To achieve better 
speech recognition performance, many techniques [5]-[9] 
have been proposed to address the problems in speech 
recognition. Cui et al. [5] presented a new semi-supervised 
learning method that exploits cross-view transfer learning for 
speech recognition through a committee machine that consists 
of multiple views learned from different acoustic features and 
randomized decision trees. A multi-objective scheme is 
generalized to a unified semi-supervised learning framework 
that can be interpreted into a variety of learning strategies 
under different weighting schemes. Huang et al. [6] proposed 
a joint analysis approach which simultaneously considers the 
vocal tract length normalization and the averaged temporal 
information of cepstral features. The Gaussian mixture model 
estimates conditional parameters in a data-driven manner. 
Chelba et al. [8] reviewed an approach to acoustic modeling 
that borrows from n-gram language modeling to increase both 
the amount of training data and the model size to 
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approximately 100 times larger than the current sizes used in 
ASR. They experimented with contexts that span seven or 
more context-independent phones, and up to 620 mixture 
components per state. Hinton et al. [9] provided an overview 
of deep neural networks (DNNs) for acoustic modeling. Most 
speech recognition systems use hidden Markov models 
(HMMs) to deal with the temporal variability of speech and 
Gaussian mixture models (GMMs) to determine how well 
each state of each HMM fits a frame or a short window of 
frames of coefficients that represents the acoustic input. 
DNNs trained using new methods have outperformed GMMs 
on a variety of speech recognition benchmarks. In addition, 
Kaldi2 [10] is an open-source toolkit of ASR written in C++. 
The core library support state-of-the-art techniques of 
modeling and feature extraction including DNN models, 
subspace Gaussian mixture models (SGMMs), decoder of 
finite-state transducers, and so on. In this study, we adopt 
Kaldi and NICT SprinTra for ASR system development and 
investigate speech recognition techniques on data analysis, 
feature extraction, acoustic and language models, and speech 
decoders. 

The rest of this paper is organized as follows. Section 2 
introduces data analysis and segmentation. We present the 
construction of combining multiple features and models for 
lecture speech recognition in Section 3. In Section 4, we 
describe our experiment setup, experiment results as well as a 
discussion of the results. Finally, we conclude this work in 
Section 5. 

2. Data Analysis and Segmentation 

We used three types of speech data to build acoustic models: 
the Wall Street Journal (WSJ), HUB4 English Broadcast 
news, and collected TED talks. We obtained WSJ and HUB4 
from the Linguistic Data Consortium (LDC3). We crawled 
760 TED talks from its online website published before 
December 31, 2010. The data are summarized in Table 1. 
WSJ is read speech. HUB4 is spontaneous broadcast news 
speech. TED is lecture style speech. Totally, we have about 
300 hours of speech to build acoustic models with transcripts. 

Both WSJ and HUB4 provide manual transcripts that can 
be directly used for acoustic model training. Text captions or 
subtitles of TED are provided with the speech recording, but 
speech segmentation and word alignment are not available. 
We used the SailAlign toolkit for speech segmentation and 
speech-text alignment [11]. SailAlign, which provides 
decoder-based segmentation with acoustic and language 
model adaptation, runs with HTK in which the acoustic model 
is trained by WSJ. Based on the segmentation results, the 
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speech-text alignment can be viewed as text-text alignment 
using dynamic programming to minimize the distance 
between reference and hypothesized texts. 

In this study, the techniques of speaker clustering and 
automatic segmentation are applied to training and test audio 
data sets. First, speaker clustering has been widely adopted 
for clustering speech data based on speaker characteristics so 
that speaker-based cepstral mean normalization (CMN) and 
speaker adaptive training (SAT) [12] can be applied for better 
automatic speech recognition performance. TED talks are not 
always monologue; they might include interviews or 
conversations. We apply the vector space strategy to 
represent spoken utterances and conduct speaker clustering to 
group the spoken utterances into a number of speaker clusters 
in each talk. Experimental analysis is available in our earlier 
study [13]. 

Second, the length of a TED talk may range from 3 to 18 
minutes with speech, laugh, applause, music, etc. For a good 
speech transcription, we apply the automatic segmentation 
processing to the audio data to remove non-speech segments 
(Fig. 1). Energy-based voice activity detection (VAD) is first 
used to detect the voice segments. Then the log-likelihood 
score with sliding windows is computed to detect speech/non-
speech segments based on two GMMs trained using labeled 
speech/non-speech data. Finally, we merge the speech 
segments with a short interval between them and discard short 
segments. Merging and discard are based on a threshold of 
170 ms. 

3. System Description 

3.1. Feature Extraction 

Feature extraction is crucial to estimate numerical 
representation from speech samples. In this study, we 
extracted two sets of acoustic features to build acoustic 
models. The first set is Mel-frequency cepstral coefficient 
(MFCC), which is popular in speech recognition applications 
[14]. In MFCC feature extraction, 16-KHz speech input is 
coded with 13-demensional MFCCs with a 25ms window and 
a 10ms frame-shift. Each frame of the speech data is 
represented by a 39-dimensional feature vector that consists 
of 13 MFCCs with their deltas and double-deltas. Nine 
consecutive feature frames are spliced and projected to 40 
dimensions using linear discriminant analysis (LDA) and 
maximum likelihood linear transformation (MLLT). The 
second acoustic feature is a perceptual linear predictive 
cepstrum (PLP) [15], which has the same LDA and MLLT. 
Both have 40 dimensions. 

3.2. Subsystem Descriptions 

The HMM models were with maximum 10,000 tied states and 
160,000 Gaussian mixture components. We investigated three 

kinds of acoustic models: training of maximum mutual 
information (MMI), SGMM, and DNN. 

Maximum Mutual Information Training: We maximized 
the auxiliary function in the M-steps of the EM estimation of 
the HMM parameters. The likelihood of the data given HMM 
is bound to increase when the value of the auxiliary function 
increases. In model space MMI training, we maximize a 
model’s correctness by formulating an objective function and 
penalizing confusable models to the true model [16]. fMMI is 
feature space discriminative training with the same objective 
function as model space MMI training. After applying a 
global matrix, a high dimension feature vector is projected 
and added to the original features. In this study, we first apply 
speaker adaptive training on a triphone HMM system. Then 
discriminative training is applied with a feature space boosted 
fMMI followed by tree rebuilding and model space MMI 
training with indirect differential [17]. 

Subspace GMM Training: The subspace Gaussian mixture 
model is a compact representation of a large collection of a 
mixture of Gaussian models [18]-[20]. SGMM’s basic idea is 
that all phonetic states share a common GMM structure, but 
the means and mixture weights vary in the total parameter 
space. Since most parameters are shared, we have more 
robust parameter estimation. We initialize the model by 
training a single GMM on all the speech classes that are 
pooled together. This is the universal background model 
(UBM). We use a total of 800 Gaussians in the UBM. Before 
SGMM training, SAT is used on the triphone system that is 
related to MLLR adaptation. 

DNN Training: The deep neural networks are feed-
forward, artificial neural networks that show more than one 
hidden layers between inputs and outputs [9, 21]. Recently, 
DNN has become a popular technique because it indicates 
good results for modeling speech acoustics. Many studies 
show that neural network based HMMs significantly 
outperform Gaussian mixture model based HMMs. In this 
study, starting from a DNN trained using cross-entropy, 
sequence discriminative training is then applied based on the 
state level minimum Bayesian risk criterion (sMBR) [22]. 
sMBR’s objective function is explicitly designed to minimize 
the expected error corresponding to state labels, but we 
minimize the cross-entropy at the frame-level. We build 
DNNs by using five hidden layers and 2100 neurons (the 
structure is 300-2100-2100-2100-2100-2100-8070) (Fig. 2). 
DNN’s input features are obtained by splicing together 15 
frames (seven on each side of the current frame) and 
projected down to 300 dimensions using LDA. To better fit 
new speakers and environments, DNN acoustic models have 
been further adapted for specific talks using speaker adaptive 
training. Due to the limited amount of data in each talk, an 
efficient and effective method of speaker adaptive training of 
DNN models is only to adapt the middle layer (the third 
hidden layer). Speaker adaptation for DNN is difficult. In 

 

Figure 1: Illustration of the automatic segmentation of audio 
data. 

Table 1: Details of acoustic training data. 

Name Data Type Hours 

TED - Lecture  167.8 

HUB4 LDC97S44, LDC98S71 Broadcast    62.9 
WSJ LDC93S6B, LDC94S13B Read    81.1 

 



most studies, a speaker independent DNN (SI-DNN) is first 
trained. Then a speaker adaptation DNN is done by retraining 
the DNN parameters for different speakers either on all layers 
or some specific layers in the DNN [23, 24]. 

In this study, we propose a new speaker adaptive DNN 
training framework (SAT-DNN). We first assume that 
speaker specific processing is done in one layer in the DNN. 
All other layers are related to the speaker independent 
processing. Based on this assumption, we constructed a DNN 
with one layer as a speaker dependent layer, and the other 
layers are shared cross all speakers. In the DNN training, the 
parameters related to the speaker dependent layer are 
modified for each speaker while the parameters for all the 
shared layers are updated for all speakers. Explicitly 
specifying one layer as a speaker dependent layer in training 
focuses the training much more on speaker adaptation in 
DNN. 

3.3. N-best ROVER 

We considered a combination of two subsystems of MMI and 
SGMM in last year’s evaluation [25]. This year, we built six 
subsystems using three types of acoustic models with two 
types of acoustic features. We integrated multiple 
complementary features and models for a better performance 
(Fig. 3). Several methods can be used to combine different 
recognition results. One popular approach is called recognizer 
output voting error reduction (ROVER) [26, 27]. Cui et al. [5] 
applied ROVER as a decision committee that votes for the 
labels of unlabeled data by cross validation. The combination 
can be carried out at the text output level as an n-best ROVER 
by output voting. We combine all decoding directories by 
composing the lattices. In this paper, different combination 
weights are applied to MMI, SGMM and DNN subsystems 
with 0.25, 0.25, and 0.5, respectively. 

3.4. Language Model Adaptation and RNN Rescoring 

We used the CMU pronouncing dictionary which has 133.3K 
words. We extended 39 phones of the dictionary to a 336 
monophone set based on the accent and position information. 
The language models (LM) are modified Kneser-Ney 
smoothed 4-gram LMs trained on official data using the 
SRILM toolkit [28]. We used two different pruning 4-gram 

LMs in our experiments. The small 4-gram LM has 212 MB, 
and the big 4-gram LM has 9.6 GB and its perplexity is 115.4. 
Due to hardware and software limits, speech is decoded using 
the small 4-gram LM and rescored using the big 4-gram LM 
on MMI and SGMM subsystems. We use the first pass 
decoding results to adapt the language models that are used 
for second pass decoding [29]. In addition to conventional 4-
gram LMs, we also applied a recurrent neural network (RNN) 
based LM [30] to rescore the n-best results. The sigmoidal 
recurrent network was built with the RNN-LM toolkit [31]. 

3.5. NICT SprinTra Decoder 

In this paper, the ASR decoding process was based on 
weighted finite state transducers (WFSTs) [32], which 
integrate the acoustic and language models at the lattice level. 
We used the NICT SprinTra decoder, which has two major 
advantages [33]. First, the NICT SprinTra has smaller 
memory requirement and shows much faster decoding speed 
than the Kaldi decoder. Both NICT SprinTra and Kaldi use 
OpenFST 4  tools and library [34], but we use different 
structures to build the decoding graph. We also computed the 
so-called real-time (RT) factor. On the small 4-gram LM, 
SprinTra’s decoding time was about 0.729×RT measured on 
an Intel Xeon CPU at 2.6GHz. This is better than the 
1.023×RT of Kaldi and about a 30% difference in decoding 
time. Running on the big 4-gram LM, NICT SprinTra is ten 
times faster than Kaldi. Second, since the NICT SprinTra 
decoder decodes speech using the one pass method without 
language model rescoring, it is more accurate than decoding 
using language model rescoring. The word error rates vary 
from 0.1% to 0.3% between NICT SprinTra and Kali. This 
also denotes the gain using the big 4-gram LM decoding or 
rescoring. 

4. Experiments 

4.1. Training of Different Acoustic Data Sets 

We experimented on the IWSLT 2013 ASR English test data 
set, which contained 4.5 hours of lecture speech, with 28 talks 
including 14 males and 14 females. There were at least eight 
non-native speakers (four males and four females) and one 
child. The effect of reverberation can be found in ten lectures. 
Non-native speech may be the main reason for the decrease of 
recognition accuracy. System performance was assessed 
using Word Error Rate (WER). Table 2 shows the results of 

                                                            
4 http://www.openfst.org/ 

 
Figure 3: The combination of multiple systems for speech 

recognition using ROVER. 
 

speaker 
data

Figure 2: Illustration of speaker adaptive training of deep 
neural network models. 

 



the MFCC-DNN subsystem using different training data sets. 
All results were conducted on the entire lecture without any 
segmentation. Our experiments indicated that more data 
improved performance. Only the TED training was not good 
enough to recognize the TED speech of the IWSLT 2013 
ASR English test data set. We achieved 15.7% WER using 
TED+HUB4+WSJ for the single MFCC-DNN subsystem, 
although HUB4 and WSJ were different types of speech from 
TED. We used the 15.7% WER result as the baseline in the 
following experiments. 

4.2. Step-by-Step Improvements 

Based on an MFCC-DNN baseline of 15.7% WER, Table 3 
summarizes the step-by-step WER reductions with our 
proposed methods. First, the WER can be reduced to 14.8% 
using six ROVER subsystems. Due to error propagation and 
non-speech segments, the entire lecture decoding indicated 
poor performance. Adding an automatic segmentation 
technique reduced the WER from 14.8% to 14.5%, or 3.4% 
relative WER reduction. In addition, WER reductions of 1.4% 
and 4.3% were achieved for LM adaptation and SAT on DNN. 
Both adaptation methods were used to adjust models to better 
fit new speakers and environments. Our proposed methods 
offered more than 10% WER reduction on average. Our best 
result was 13.5% WER on the IWSLT 2013 ASR English test 
data set. Note that the application order of these techniques 
impacted the gain. For example, to get good speech 
transcriptions for adaptation, the LM adaptation technique is 
based on automatic segmentation results of audio data and six 
ROVER subsystems. In addition, the single MFCC-DNN 
subsystem indicated about 1.0% absolute WER reduction 
using the automatic segmentation of audio data, LM 
adaptation, and SAT on DNN. 

4.3. Subsystems and ROVER Results 

Table 4 shows the speech recognition evaluation of a 
combination of multiple features and models. Our 
experiments suggest the following observations. First, the 
MFCC and PLP features indicated similar results in most 
cases. Second, we evaluated the results of individual 
subsystems (1S). The DNN acoustic models significantly 

outperformed SGMM and MMI. Even the SGMM and MMI 
performances were much worse than DNN, and a 
combination of six subsystems (6S) further reduced the WER 
using ROVER. Compared with the 13.5% WER of six 
ROVER subsystems, the best result of the single MFCC-
DNN system was 14.0% WER. The ROVER result was about 
13.9% if we only considered MFCC features on three 
acoustic models (3S). Interestingly, we can obtain 13.9% 
WER using ROVERs of MFCC-DNN and PLP-DNN. 

4.4. Summary Results 

Table 5 indicated the detailed results of each talk on the 
IWSLT ASR 2013 English test data set. Non-native speakers 
have the higher error rate in most cases. The WER is lower 
than 5% in the best condition but over 30% in the worst 
condition. Due to child voices and non-native speakers, 
talkid1699 denoted the worst recognition result. Furthermore, 
the IWSLT ASR 2011 (tst2011) and 2012 (tst2012) test data 
sets were used as progressive tests. There are eight and 11 
talks in tst2011 and tst2012, respectively. Compared with this 
year’s result of 13.5% WER, 7.7% and 8.2% WER results 
were achieved for tst2011 and tst2012 using our proposed 
approaches. 

5. Conclusions 

In this study, we propose a combination of multiple features 
and models for lecture speech recognition. We build six 
subsystems using three types of acoustic models (MMI, 
SGMM, and DNN) with two types of acoustic features 
(MFCC and PLP). The n-best ROVER denotes a good 
solution for a subsystem combination. We discover 
techniques of discriminative training and the adaptation of 
both acoustic and language models show great contributions 
to ASR. We propose the automatic segmentation of audio 
data, language model adaptation, speaker adaptive training of 
DNN models, and NICT SprinTra decoder. The results of our 
proposed methods demonstrate good performance 
improvement on the IWSLT 2013 ASR data set. There is still 
room for improvement when considering both good and a 
large amount of data. 
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Abstract
This paper reports on the participation of FBK at the
IWSLT2013 evaluation campaign on automatic speech
recognition (ASR): precisely on both English and German
ASR track. Only primary submissions have been sent for
evaluation.

For English, the ASR system features acoustic models
trained on a portion of the TED talk recordings that was au-
tomatically selected according to the fidelity of the provided
transcriptions. Two decoding steps are performed interleaved
by acoustic feature normalization and acoustic model adapta-
tion. A final step combines the outputs obtained after having
rescored the word graphs generated in the second decoding
step with 4 different language models. The latter are trained
on: out-of-domain text data, in-domain data and several sets
of automatically selected data.

For German, acoustic models have been trained on au-
tomatically selected portions of a broadcast news corpus,
called ”Euronews”. Differently from English, in this case
only two decoding steps are carried out without making use
of any rescoring procedure.

1. Introduction
The IWSLT 2013 Evaluation Campaign, similarly to the one
carried out for IWSLT2012 [1], addresses the automatic tran-
scription/translation of TED Talks 1: a collection of public
speeches on a variety of topics.

This year, for the transcription of English audio tracks
we have focused on automatic selection and exploitation of
training data, both audio and text.

We have trained acoustic models (AMs) on both in-
domain audio data, extracted from videos downloaded from
TED talk WEB site (i.e. http:// www.ted.com/talk/), and
out-of-domain data including the broadcast news speech cor-
pus ”HUB4” provided by linguistic data consortium (LDC).
Since audio recordings of TED talks have only associated
”non-exact” transcriptions, a lightly supervised training ap-
proach [2] has been applied in order to select reliable data for
AM training.

For language model (LM) training, out-of-domain data
come from several sources and contain about 5 billions (5G)
of words. In addition, a set of in-domain data, containing
about 2.7 millions (2.7M) of words, has been provided by or-
ganizers. Then, similarly to what done in our ASR submis-
sion of last year [3], we have used the automatic transcrip-
tion of each given English TED talk for automatically select-

1http://www.ted.com/talks

ing from the out-of-domain text data a set of 100M words.
From each text source a corresponding LM was trained and
used for rescoring word graphs (WGs) generated in the sec-
ond decoding step. In addition, an interpolated LM, resulting
from the linear interpolation of all of the different LMs, has
been used for rescoring. Our primary submission has been
obtained after having combined, using the ROVER approach
[4], all of the different rescored ASR hypotheses.

German AMs were trained using ”Euronews” videos
downloaded in the last few years from the portal
http://de.euronews.com/. Since each video has associated a
reference text, that doesn’t not contain the exact transcrip-
tion of the corresponding audio track, we have applied also
in this case a lightly supervised approach [2] for AM train-
ing. Doing this, about 256 hours of audio data, including
silences, were selected. Cut-off date for the latter data was
March 2013.

German data for LM has been first normalized applying a
procedure that split numbers and compound words automat-
ically found inside training documents. One 4-gram LM has
been trained on about 1.7G of words, coming from news, Eu-
ropean Parliament, IWSLT13 training data. Cut-off of train-
ing data date was end of June 2012.

2. Automatic transcription systems
In this section we summarize the main features of the FBK
primary systems used for transcribing TED talks delivered
in English and German. This year, differently from previous
evaluation campaigns, time boundaries of speech segments
to be transcribed are not given. Hence, automatic speech seg-
mentation has to be carried out.

2.1. Automatic speech segmentation

The input audio signal is first divided into segments by a
start-end point detector module. The obtained segmenta-
tion is refined using an acoustic classifier, based on Gaus-
sian mixture models (GMMs), which also performs clas-
sification of segments into several classes including non-
speech classes [5]. Then, the obtained homogeneous non-
overlapping speech segments are clustered by using a method
based on the Bayesian information criterion. At the end of
this process, each audio file to transcribe has assigned a set
of temporal segments, each having associated a label that
indicates the cluster to which it belongs (e.g. “female 1”,
“male 1”, etc). The resulting segmentation and clustering is
then exploited by the recognition system to perform cluster-
wise feature normalization and acoustic models adaptation



during two decoding passes described below.

3. English transcription system
3.1. Acoustic data selection

For AM training, HUB4 speech corpus was initially used.
It contains around 164 hours of broadcast news speech with
related word transcriptions, that include also ”filler-words”.
These latter ones have been mapped into 6 different ”sponta-
neous speech” models. After having trained triphone Hidden
Markov Models (HMMs) on HUB4, domain specific acous-
tic data (i.e. a certain number of TED talks recordings) were
exploited for lightly supervised training [2].

Recordings of TED talks released before the cut-off date,
31 December 2010, were downloaded with the correspond-
ing subtitles which are content-only transcriptions of the
speech. In content-only transcriptions anything irrelevant
to the content is ignored, including most non-verbal sounds,
false starts, repetitions, incomplete or revised sentences and
superfluous speech by the speaker. A simple but robust pro-
cedure was implemented to select only audio data with an
accurate transcription.

The collected data consisted in 820 talks, for a total du-
ration of ∼216 hours, with ∼166 hours of actual speech.
The provided subtitles are not a verbatim transcription of the
speeches, hence the following procedure was applied to ex-
tract segments that can be deemed reliable. The approach is
that of selecting only those portions in which the human tran-
scription and an automatic transcription agree. To this end,
a “background” 4-gram language model was first trained on
all the talk transcriptions. Subsequently, a specific Language
Model (LM) was built for each talk by adapting the language
model to the human transcription of the talk. A preliminary
automatic transcription was performed on the talks with the
pre-trained HUB4 AM and the talk-specific LM (note that,
in doing this, optional ”spontaneous speech” models were al-
lowed among words). The output of the system was aligned
with the reference transcriptions, and the matching segments
were selected, resulting in an overlap of ∼120 hours of ac-
tual speech out of the total of 166. By using these segments
together with the segments labeled as silence, a TED-specific
acoustic model was trained, as detailed in the following sec-
tion. The label/select/train procedure was repeated two more
times, resulting in a portion of selected actual speech that
grew to ∼142 hours and then to ∼144 hours. Given the mod-
est improvement in the third iteration, the procedure was not
repeated further. In conclusion, the method made available
87% of the training speech, which was considered satisfac-
tory.

In total, after automatic selection, we get around 307
hours (∼164 hours from HUB4 plus ∼144 hours from TED
recordings) of transcribed speech for training acoustic mod-
els.

3.2. AM training

Thirteen Mel-frequency cepstral coefficients, including the
zero order coefficient, are computed every 10ms using a
Hamming window of 20ms length. First, second and third or-
der time derivatives are computed after segment-based cep-

stral mean subtraction to form 52-dimensional feature vec-
tors. Acoustic features are normalized and HLDA-projected
to obtain 39-dimensional feature vectors as described below.

AMs were trained exploiting a variant of the speaker
adaptive training method based on Constrained Maximum
Likelihood Linear Regression (CMLLR) [6]. In our training
variant [7, 8, 9] there are two sets of AMs: the target models
and the recognition models. The training procedure makes
use of an affine transformation to normalize acoustic features
on a cluster by cluster basis with respect to the target models.
For each cluster of speech segments, an affine transformation
is estimated through CMLLR [6] with the aim of minimizing
the mismatch between the cluster data and the target models.
Once estimated, the affine transformation is applied to clus-
ter data in order to normalize acoustic features with respect
to the target models. Recognition models are then trained
on the normalized data. Leveraging on the possibility that
the structure of the target and recognition models can be de-
termined independently, a Gaussian Mixture Model (GMM)
can be adopted as the target model for training AMs used in
the first decoding pass [7]. This has the advantage that, at
recognition time, word transcriptions of test utterances are
not required for estimating feature transformations. Instead,
target models for training recognition models used in a sec-
ond or third decoding pass are usually triphones with a single
Gaussian per state [8]. In all cases, the same target models
are used for estimating cluster-specific transformations dur-
ing training and recognition.

In the current version of the system, a projection of
the acoustic feature space based on Heteroscedastic Linear
Discriminant Analysis (HLDA) is embedded in the feature
extraction process as follows. A GMM with 1024 Gaus-
sian components is first trained on an extended acoustic fea-
ture set consisting of static acoustic features plus their first,
second and third order time derivatives. For each cluster
of speech segments, a CMLLR transformation is then es-
timated w.r.t. the GMM and applied to acoustic observa-
tions. After normalizing the training data, an HLDA trans-
formation is estimated w.r.t. a set of state-tied, cross-word,
gender-independent triphone HMMs with a single Gaussian
per state, trained on the extended set of normalized fea-
tures. The HLDA transformation is then applied to project
the extended set of normalized features in a lower dimen-
sional feature space, that is a 39-dimensional feature space.
Recognition models used in both the first and second de-
coding pass are trained from scratch on normalized HLDA-
projected features. HMMs for the first decoding pass are
trained through a conventional maximum likelihood proce-
dure. Recognition models used in the second decoding pass
are speaker-adaptively trained, exploiting as target-models
triphone HMMs with a single Gaussian density per state.

For each phone set and decoding pass, a set of state-
tied, cross-word, gender-independent triphone HMMs were
trained for recognition. Around 170,000 Gaussian densities,
with diagonal covariance matrices, were allocated for each
model set.



3.3. LM training

Text data used for training LMs are those released for the
IWSLT2013-SLT Evaluation Campaign. Before training
LMs, texts were cleaned, normalized (punctuation was re-
moved, numbers and dates were expanded) and double lines
were removed. Then, they have been grouped into the fol-
lowing three sets, on which a corresponding LM was trained:

• giga5 GIGAWORD 5-th edition. Contains documents
stemming from seven distinct international sources of
English newswire. It is released from the Linguistic
Data Consortium (see http://www.ldc.upenn.edu/). In
total it contains about 4G words.

• wmt13 Formed by documents in WMT12 news
crawl, news commentary v7 and Europarl v7 (see
IWSLT2013 official web site for some more details
about these corpora). In total it contains about 1G
words.

• ted13 An in-domain set of texts extracted from TED
talks transcriptions used for training. It contains about
2.7M words.

For each of the three sources listed above, we trained a
4-gram backoff LM using the modified shift beta smoothing
method as supplied by the IRSTLM toolkit [10]. The three
LMs CONTAIN, respectively, about:

• giga5 130M bigrams, 231M 3-grams, 422M 4-grams;

• wmt13 64M bigrams, 69M 3-grams, 92M 4-grams;

• ted13 687K bigrams, 223K 3-grams, 132K 4-grams.

Word pronunciations in the lexicon are based on a set of
45 phones. They were generated by merging different source
lexica for American English (LIMSI ’93, CMU dictionary,
Pronlex). In addition, phonetic transcriptions for a number
of missing words were generated by using the phonetic tran-
scription module of the Festival speech synthesis system.

The wmt13 LM was used to compile a static Finite State
Network (FSN) which includes LM probabilities and lexicon
for the first two decoding passes. The latter LM was pruned
in order to obtain a network of manageable size, resulting in
a recognition vocabulary of 200K words and into about: 42M
bigrams, 34M 3-grams and 31M 4-grams.

As seen in section 1 the ASR hypotheses generated in
the second decoding step were used to automatically select
documents from all of the available out-of-domain data, i.e.
giga5 and wmt13. To do this we employed a similarity mea-
sure based on the well known TFxIDF (term frequencies x
inverse document frequencies) [11] features. More specifi-
cally, we selected 100M of words for each given TED talk
and trained a corresponding talk-dependent LM (in the fol-
lowing we will refer the latter with aux100M). Details of the
automatic selection approach can be found in [12].

3.4. Word graphs rescoring

Word graphs are generated in the second decoding step. To
do this, all of the word hypotheses that survive inside the

trellis during the Viterbi beam search are saved in a word lat-
tice containing the following information: initial word state
in the trellis, final word state in the trellis, related time in-
stants and word log-likelihood. From this data structure and
given the LM used in the recognition steps, WGs are built
with separate acoustic likelihood and LM probabilities asso-
ciated to word transitions. To increase the recombination of
paths inside the trellis and consequently the densities of the
WGs, the so called word pair approximation [13] is applied.
In this way the resulting graph error rate was estimated to be
6.0% on the development set used for IWSLT2011 evaluation
campaign (i.e. 19 TED talks), about 1

3 of the corresponding
WER, that resulted to be 17.6%.

WGs are rescored using an interpolated LM that com-
bine all of the four LMs described above, giga5, wmt13,
aux100M and the in-domain LM ted13. To do this, the orig-
inal LM probability on each arc of each WG is substituted
with the linearly interpolated probability. Note that the de-
velopment set used to train the interpolation weights is again
the ASR output of the second decoding step and, therefore,
talk specific interpolation weights are estimated. Note also
that acoustic model probabilities associated to arcs of WGs
remain unchanged.

In addition WGs were rescored using singularly each one
of the above mentioned LMs, thus obtaining 5 different out-
puts for each automatically transcribed talk (including the
ones obtained with the interpolated LM). These latter ASR
output hypotheses have been combined, using ROVER, in
order to produce the final submission. Note that the latter fi-
nal ROVER combination makes use of word confidence mea-
sures.

4. German transcription system
German ASR makes only use of first and second decoding
passes described for English ASR. For German we didn’t
perform any data selection, in order to build focused LMs,
as well as any WG rescoring step.

4.1. AM training

German AMs were trained using Euronews videos
downloaded in the last few years from the portal
http://de.euronews.com/. Each video has associated a
reference text, that could be just a summary, an accurate
transcription of the news, or the transcription of a part of the
news. We apply lightly supervised training, in a way similar
to that described for English ASR, to select segments for
training. Three iterations have been used before stopping the
selection process, resulting into about 256 hours of training
audio data, including silences.

4.2. Linguistic processing and LM training

In German, compound words are a significant percentage of
the common lexicon, and should be taken into account to
avoid unacceptable out-of-vocabulary (OOV) rate. We built
an automatic system that, given a lexicon of German words
ordered by frequency, decides which words have to be con-
sidered as compounds and propose a splitting.

We extracted form the lexicon a set of words that can



be considered ”basewords”. These latter words are shorter
than a predefined threshold (e.g. 15 characters) and exhibit a
frequency higher than another threshold (e.g. greater than 2).

Then we defined, by hand, a ”falsebasewords” file which
contain some acronyms (17 in the actual version, namely: der
die das er es sc sch fts ic des wal sge ger cht ati rwe ler) than
cannot be basewords but that were frequently observed. The
defined acronyms are used to form wrong decompositions.

Finally, an algorithm was implemented that detects if a
suspected compound word can be obtained by concatenat-
ing basewords. Among the possible decompositions, the one
is chosen which minimizes a cost function favoring longer
words. Some German compound rules were added to the
algorithm, that basically allow the insertion of the suffixes
”s”,”n”,”es”,”en”. A sample of decompositions is given in
Table 1.

compound word decomposition
Krankenversicherung kranken+ +Versicherung
Ministerpräsidenten Minister+ +Präsidenten
Bundesgeschäftsführer Bundes+ +Geschäfts+ +Führer
Sicherheitskonferenz Sicherheits+ +Konferenz
Auseinandersetzungen auseinander+ +Setzungen
Bundesverfassungsgericht Bundes+ +Verfassungs+ +Gericht
Oberstaatsanwaltschaft Oberstaatsanwaltschaft

Table 1: Example of compound word decomposition.

Finally, a method was implemented to join compound
words after ASR.

A German 4-gram LM was trained after the split of num-
bers and compound words on a corpus, formed by crawled
news and European Parliament transcriptions, containing
about 1.6G of words. Cut-off date was end of June 2012.
In-domain text data have also been used for LM adaptation.

5. Official results
Final results (%WER), after adjudication, of the English sys-
tem for:
tst2011, primary 13.6%
tst2012, primary 16.2%
tst2013, primary 23.2%.

Final result, after adjudication, of the German system for:
tst2013, primary 37.5%.

6. Conclusions
We presented descriptions of our ASR systems used to sub-
mit runs to the IWSLT2013 Evaluation Campaign for both
English and German audio track. Both systems were trained
applying lightly supervised training to audio data that do not
have associated ”accurate” transcriptions.

English ASR system makes also use of a procedure that
allows to rescore WGs with a combination of several LMs,
some of them trained on sets of automatically selected data.
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Abstract
We describe the Arabic-English and English-Arabic statis-
tical machine translation systems developed by the Qatar
Computing Research Institute for the IWSLT’2013 evalua-
tion campaign on spoken language translation. We used one
phrase-based and two hierarchical decoders, exploring var-
ious settings thereof. We further experimented with three
domain adaptation methods, and with various Arabic word
segmentation schemes. Combining the output of several
systems yielded a gain of up to 3.4 BLEU points over the
baseline. Here we also describe a specialized normalization
scheme for evaluating Arabic output, which was adopted for
the IWSLT’2013 evaluation campaign.

1. Introduction
We describe the Arabic-English and English-Arabic statis-
tical machine translation (SMT) systems developed by the
Qatar Computing Research Institute (QCRI) for the 2013
open evaluation campaign on spoken language translation or-
ganized in conjunction with the International Workshop on
Spoken Language Translation (IWSLT). Below we give an
overview of the settings we experimented with:

• Decoders: We used a phrase-based SMT (PBSMT),
as implemented in Moses [1], and two hierarchical de-
coders: Jane [2] and cdec [3]. See Section 6 for details.

• Decoder settings: There are a variety of settings avail-
able for the above decoders. We explored a number of
them, most notably, operation sequence model, mini-
mum Bayes risk decoding, monotone-at-punctuation,
dropping out-of-vocabulary words, etc. We selected to
retain those settings that improved the overall transla-
tion quality as measured on the dev-test set. See Sec-
tion 4 for further details.

• Arabic segmentation: To reduce data sparseness,
Arabic words are typically segmented into multiple to-
kens, e.g., by segmenting out conjunctions, pronouns,
articles, etc. We experimented with standard segmen-
tation schemes such as D0, D1, D2, D3, S2 and ATB,
as defined in MADA [4, 5]. See Section 5 for details.

• Domain adaptation: We experimented with three do-
main adaptation methods to make better use of the
huge UN data, which is out-of-domain: (i) Modified
Moore-Lewis filtering, (ii) phrase table merging, and
(iii) phrase table backoff. See Section 7 for details.

For our final submission, we synthesized a translation by
combining the output of our best individual system with the
output of other systems that are both relatively strong and can
contribute to having more diversity, e.g., using a different de-
coder or a different segmentation scheme.

We achieved the most notable improvements in terms of
BLEU when translating from Arabic-to-English using an op-
eration sequence model (+0.6 BLEU on tst2010), phrase ta-
ble merging and phrase table backoff (+0.6 BLEU), interpo-
lated language model (+1.5 BLEU), and system combination
using different decoders and different segmentation schemes
(+0.6 BLEU). For the English-to-Arabic direction, we ob-
served smaller improvements compared to the reverse direc-
tion, but there the absolute baseline was also much lower.

Finally, we proposed normalization for Arabic output
evaluation, which was adopted as official for IWSLT’2013.1

2. Data
For the Arabic-English language pair, the IWSLT’2013 train-
ing data consisted of a small in-domain bitext, i.e. the TED
talks2 (IWSLT), and a large out-of-domain bitext, i.e. the
multiUN corpus (UN). There were also tuning and develop-
ment bitexts: dev2010 and tst2010. Conversely, for language
modeling, a larger number of monolingual corpora were per-
missible. They are all listed in Table 1, together with their
corresponding word count statistics.

3. Baseline
Data. We built a baseline system using the Moses toolkit and
the IWSLT training data only, i.e., the TED talks. At devel-
opment time, we tuned and tested on the provided dev2010
and tst2010 datasets.

1The normalizer is freely available at http://alt.qcri.org/tools/.
2https://wit3.fbk.eu/mt.php?release=2013-01



Monolingual corpora # Words

English
IWSLT mono 2.7M
109 English-French 575M
SETimes 4.2M
UN (Es-En + En-Fr) 597M
UN (Ar-En) 115M
News Crawl 2007-2009 643M
News Crawl 2009-2012 745M
Common Crawl 185M
Wiki Headlines 1.1M
Europarl v.7 54M
News Commentary v.8 5.3M
Gigaword v.5 4,032M

Arabic
IWSLT mono 2.7M
UN 134M
News Commentary Arabic v.8 4.8M
Gigaword Arabic v.5 1,373M

Table 1: Admissible training data for language modeling.
Here English is tokenized, and Arabic is ATB-segmented.

Preprocessing. We segmented the Arabic side of the bi-
text following the ATB scheme and using the Stanford word
segmenter [6]. For the English side, we used the standard
tokenizer of Moses, and we further applied truecasing/lower-
casing when English was the target/source language.

Training. We built separate directed word alignments
for English-to-Arabic and for Arabic-to-English using IBM
model 4 [7], and we symmetrized them using the grow-diag-
final-and heuristics [8]. We then extracted phrase pairs with
a maximum length of seven, and we scored them using maxi-
mum likelihood estimation with Kneser-Ney smoothing, thus
obtaining a phrase table where each phrase pair has the stan-
dard five translation model features. We also built a lexi-
calized reordering model [9]: msd-bidirectional-fe. For lan-
guage modeling, we used KenLM [10] to build a 5-gram
Kneser-Ney smoothed model, trained on the target side of
the training bi-text. Finally, we built a large joint log-linear
model, which used standard PBSMT feature functions: lan-
guage model probability, word penalty, the parameters from
the phrase table, and those from the reordering model.

Tuning. We tuned the weights in the log-linear model
by optimizing BLEU [11] on the tuning dataset, using PRO
[12]. We allowed the optimizer to run for up to 10 iterations,
and to extract 1000-best lists on each iteration.

Decoding. On tuning and testing, we used monotone-at-
punctuation. On testing, we further used cube pruning.

Table 2 shows the results3 for the baseline English-to-
Arabic and Arabic-to-English SMT systems, compared to the
baseline results reported on the WIT3 webpage.

3 For tst2010, we report MultEval BLEU and TER0.8: on tokenized and
recased output for English, and on QCRI-normalized output for Arabic. For
tst2011, tst2012, and tst2013, the organizers used slightly different scorers.

Arabic-English English-Arabic
System BLEU 1-TER BLEU 1-TER

IWSLT baseline 23.6 43.0 11.9 28.6
Our baseline 24.7 45.6 12.6 29.1

Table 2: Our vs. IWSLT baseline results for English-to-
Arabic and Arabic-to-English SMT, evaluated on tst2010.

4. System Settings
Below we discuss the decoder settings and extensions we
experimented with, focusing on Arabic-to-English. Table 3
shows the impact of each feature when added to the baseline.

Tuning. [13] have shown that PRO tends to generate too
short translations.4 They have suggested that the root of the
problem was that PRO optimizes sentence-level BLEU+1,
which smooths the precision component of BLEU, but leaves
the brevity penalty intact, which destroys the balance be-
tween them. They have proposed a number of fixes, the
simplest and most efficient among them being to smooth the
brevity penalty as well.5 In our experiments, this yielded
+0.2 BLEU for Arabic-to-English on tst2010.

Operation sequence model. The operation sequence
model (OSM) is an n-gram-based model, which represents
the aligned bitext into a sequence of operations, e.g., gen-
erate a sequence of source and target words or perform re-
ordering. The model memorizes Markov chains over such
sequences, thus fusing lexical generation and reordering into
a single generative model. OSM offers two advantages. First,
it considers bilingual contextual information that goes be-
yond phrase boundaries. Second, it provides a better reorder-
ing mechanism that has richer conditioning than a lexicalized
reordering model: the probability of an operation is condi-
tioned on the n previous translation and reordering decisions.
We used the Moses implementation of OSM [15], which has
yielded improvements at WMT’13 [16]. In our experiments,
it yielded +0.6 BLEU for Arabic-to-English on tst2010.

Minimum Bayes risk decoding. We also experimented
with minimum Bayes risk decoding (MBR)[17], which, in-
stead of outputting the translation with the highest probabil-
ity, prefers the one that is most similar to best n translations.
In our case, using MBR did not improve over the baseline.

Translation options per input phrase. By default,
Moses uses up to 20 translation options per input phrase, but
[16] have shown better results with 100. In our experiments,
this yielded +0.1 BLEU for Arabic-to-English on tst2010.

Transliterating OOVs. Out-of-vocabulary (OOV)
words are problematic for languages with different scripts.
Thus, we tried transliteration as post-processing: we ex-
tracted 1-1 word alignments from a subset of the UN bitext,
and we used them to train a character-level transliteration
system [18, 19] using Moses. As Table 3 shows this did not
help, probably due to the small number of OOVs in tst2010.

4See [14] for a discussion about more potential issues with PRO.
5Available in Moses: --proargs=’--smooth-brevity-penalty’



Arabic-English (tst2010)
System BLEU 1-TER

Baseline (B) 24.7 45.6
OSM 25.3 46.1
MBR 24.7 45.7
Ttable 100 24.8 45.6
PRO-fix [13] 24.9 44.7
TRANSLIT 24.7 45.6
Drop UNK 24.8 45.7

Table 3: Impact of each feature when added to the baseline.

Dropping OOVs. An alternative to transliteration is to
just drop all OOV words as part of the decoding process. We
did this on both tuning and testing, and it yielded +0.2 BLEU
for Arabic-to-English on tst2010.

Language model. For language modeling (LM), we
used most of the available data shown in Table 1, processed
with the Moses tokenizer for English, and with the Stan-
ford ATB segmenter for Arabic. For each data source, we
trained a separate 5-gram LM with Kneser-Ney smoothing.
We then interpolated these models, minimizing the perplex-
ity on the target side of dev2010.6 Finally, we binarized them
using KenLM [10] with probing and no quantization. Table 4
shows that using these LMs yields +1.5 BLEU for English,
but only +0.6 for Arabic; this is probably due to less data
being available for Arabic LM training.

BLEU tst2010
System Arabic-English English-Arabic

Baseline (TED LM) 24.7 10.6
Large LM 26.2 11.2

Table 4: The impact of using a large LM on tst2010.

5. Arabic Segmentation

In Arabic, various clitics such as pronouns, conjunctions
and articles appear concatenated to content words such as
nouns and verbs. This can cause data sparseness issues, and
thus clitics are typically segmented in a preprocessing step.
There are various standard segmentation schemes defined in
MADA [4, 5] such as D0, D1, D2, D3 and S2, for which
we used the MADA+TOKAN toolkit [20], as well as ATB,
which we performed using the Stanford segmenter [6]. Ta-
ble 5 shows the results when training on the TED bitext only.
We can see that ATB performed the best overall with a BLEU
score of 24.7, followed by S2 with a score of 24.5.

6For Gigaword, a preliminary interpolation between models computed
over two-year partitions of the corpus (e.g., 2005 and 2006) was necessary
because of memory limitations of the machines we used to train the LMs.

Arabic-English (tst2010)
System BLEU 1-TER

SEG-D0 22.4 43.0
SEG-D1 23.6 44.2
SEG-D2 24.1 45.2
SEG-D3 24.4 45.5
SEG-S2 24.5 45.7
SEG-ATB 24.7 45.6

Table 5: Using different Arabic segmentation schemes.

Arabic-English (tst2010)
System BLEU 1-TER

Moses PBSMT 24.7 45.6
cdec 24.3 44.6
Jane 24.1 43.6

Table 6: Baseline results with different decoders.

6. Decoders
In our experiments, we used several decoders. Table 6 shows
the baseline results for each of them.

Moses PBSMT. We used the phrase-based model as im-
plemented in Moses [1]. It is described in our baseline above.

cdec. We further experimented with the hierarchical
cdec decoder [3]. We used its default features: forward and
backward translation features, singleton features, a glue-rule
probability, and a pass-through feature (to handle OOVs).
We tuned the parameters using MIRA with IBM BLEU as
the objective function and a k-best forest size of 250.

Jane. We also used another hierarchical phrase-based
decoder: Jane 2.2 [2]. We used the standard features: phrase
translation probabilities and lexical smoothing in both direc-
tions, word and phrase penalties, a distance-based distortion
model, and a 5-gram LM. We optimized the weights using
MERT [21] on 100-best candidates with BLEU as objective.

7. Adaptation
The IWSLT dataset contains a small in-domain corpus (TED
talks) and a large out-of-domain corpus (UN). In this sec-
tion, we explore various ways to make best use of the out-of-
domain data to improve the baseline system.

7.1. Modified Moore-Lewis Filtering (MML)

Moore and Lewis [22] presented a method for selecting rel-
evant sentences from out-of-domain data for language mod-
eling. Axelrod et al. [23] further extended it to parallel cor-
pora, considering both the source and the target side of the
bi-text, as well as in-domain and out-of-domain data, when
scoring each sentence pair; their method is known as modi-
fied Moore and Lewis, or MML. They have shown that MML
can yield improvements in SMT quality when selecting as
little as just 1% of the out-of-domain training bi-text.



System Training BLEU 1-TER

baseline IWSLT 24.7 45.6

MML1 IWSLT+2%UN 24.4 45.6
MML2 IWSLT+3%UN 24.4 45.6
MML3 IWSLT+4%UN 24.3 45.1
MML4 IWSLT+5%UN 24.2 45.6
MML5 IWSLT+100%UN 21.9 42.8

Table 7: Arabic-to-English: training on the IWSLT bi-text
plus various MML-filtered UN bi-texts.

We experimented with MML, selecting varying percent-
ages of out-of-domain UN data. Note that this additional
data impacts all models: the translation model, the reodering
model, and the language model. However, in order to allow
for more fair head-to-head comparison, in Table 7 we show
experimental results where we limit the LM training data to
IWSLT only. We can see that each MML-adapted system
suffers a drop in performance compared to the baseline sys-
tem, which can be attributed to the differences between the
in-domain and the out-of-domain data in terms of sentence
structure, vocabulary, and style. Note that using just 2% and
3% of UN data works best, but this is still worse than not
using UN data at all.

7.2. Merging Translation and Reordering Models

Given the negative results with MML, we also tried an al-
ternative way to make use of the out-of-domain UN data,
namely phrase table merging as described in [24, 25]. In
the merged phrase table, we kept either (a) both phrases,
or (b) the one coming from the in-domain data only. In ei-
ther case, we added three additional binary features for each
phrase pair indicating whether it came from (i) the in-domain
data, (ii) the out-of-domain data, and (iii) both. Similarly, we
merged reordering models, where we preferred the scores
from the in-domain model. We further experimented with
merging a phrase table for IWSLT with one for 3% of UN.

The results are shown in Table 8; note that this time we
use the large interpolated language model presented in Ta-
ble 4.. We show results for merging IWSLT with 3% of the
UN data (MER1, MER2) as well as with the full UN (MER3,
MER4), with duplicates kept (MER1, MER3) or removed
(MER2, MER4). For comparison, we also show the baseline
of using IWSLT only. We can see that using the full UN data
works best, yielding +0.6 BLEU points of improvement.

7.3. Backoff Phrase Tables

The Moses toolkit allows for the use of a backoff phrase ta-
ble in addition to a main phrase table. The phrases from the
backoff phrase table are used when the translation of a phrase
is unknown to the main phrase table. The backoff order deter-
mines the maximum phrase length for which this operation
is allowed.

System Training BLEU 1-TER

baseline IWSLT 26.2 46.6

MER1 IWSLT & 3%UN 26.2 46.4
MER2 IWSLT & 3%UN, no-dup 26.5 46.7

MER3 IWSLT & UN 26.6 47.0
MER4 IWSLT & UN, no-dup 26.8 47.1

Table 8: Arabic-to-English: phrase table merging.

In our experiments, we considered the phrase table built
using the in-domain data as the main phrase table, and that
built using the full UN data as the backoff phrase table. We
tried n-grams of different orders for the backoff. Table 9
shows the results for backoff orders of 4, 5 and 6; again,
we use the large interpolated language model presented in
Table 4.. We can see that backoff orders of 4 and 5 per-
formed best, achieving results that are very similar to what
we obtained with phrase tables merging: comparing Table 9
to Table 8, we see the same BLEU score of 26.8, and a bit
different 1-TER score. We believe that this indicates that the
UN data is mostly useful for specific cases, e.g., to translate
unknowns, but that it should not be blindly concatenated to
the in-domain data because this hurts the performance.

System Backoff order BLEU 1-TER

baseline 0 26.2 46.6

BO1 4 26.8 47.2
BO2 5 26.8 47.2
BO3 6 26.7 47.2

Table 9: Arabic-to-English: phrase table backoff.

7.4. Best Adaptation

In the remainder of this paper, we will consider the MER4
system as our best adapted system. Note that when we also
use OSM trained on the IWSLT bi-text, the BLEU score fur-
ther improves by +0.6 points. Table 10 shows these results.

System BLEU 1-TER

MER4 26.8 47.1
MER4+OSMin 27.4 47.9

Table 10: Arabic-to-English: our best adapted system
MER4 combined with OSM.

8. Arabic-to-English Machine Translation
We built several Arabic-to-English SMT systems based on
the settings described in the previous sections; we further
used system combination to produce our final translation.
Below we give details about the individual systems.



System Training BLEU 1-TER

SEG-D1 IWSLT-3%UN 25.5 45.7
SEG-D2 IWSLT-3%UN 26.3 46.5
SEG-D3 IWSLT-3%UN 26.4 47.2
SEG-S2 IWSLT-3%UN 26.7 47.3
SEG-ATB IWSLT-3%UN 27.0 47.4

cdec IWSLT 25.4 45.4
cdec-UN IWSLT-3%UN 25.3 45.6
Jane IWSLT 24.7 42.5

FF IWSLT-100%UN 27.5 47.9

Table 11: Arabic-to-English SMT systems (tst2010).

Segmentation. We built five phrase-based SMT systems,
each using a different MADA segmentation scheme for the
Arabic side: D1, D2, D3, S2 and ATB. We did not seg-
ment the complete UN data with each of these segmentation
schemes due to time constraints. Instead, we used the 3%
UN data filtered using MML to build a phrase table, which
we then merged with the phrase table for IWSLT, preferring
IWSLT phrase pairs in case of duplicates; this yielded sys-
tems coresponding to the MER2 line in Table 8. We further
used OSM and MBR.

Decoder. We used three decoders: one phrase-based
(Moses) and two hierarchical (cdec and Jane). Note that most
of the settings described in Section 4 are applicable to the
phrase-based decoder only. We trained cdec and Jane on the
IWSLT data only, while still using the large interpolated LM.
For cdec, we further built another system which was trained
on a concatenation of the IWSLT data and the 3% UN data.

Full featured run. Finally, we further extended the
MER4-OSMin system (see Table 10), which uses the com-
plete UN data and the adapted OSM, with two additional set-
tings: (i) MBR and (ii) ttable 100. This is our best indiviual
run that does not use system combination, which we will call
Full Featured (FF) below. We submitted it as our contrastive
run to the competition.

Table 11 summarizes the results for all our Arabic-to-
English SMT systems.

8.1. System Combination Results

We recombined hypotheses produced by various subsets of
the systems in Table 11 using the Multi-Engine MT system
(MEMT) [26]. The results are presented in Table 12. We
can see that combining all segmentations yields +0.4 BLEU
over our best individual system FF. Further adding cdec to
the combination, yields another +0.2 BLEU; this was our pri-
mary system for Arabic-to-English.

8.2. Official Results

Table 13 shows the official results of our Arabic-to-English
contrastive and primary systems. PRM is our primary sys-
tem, a system combination of all systems in Table 11.

System BLEU 1-TER

FF 27.5 47.9
FF, SEG-ALL 27.9 47.4

FF, cdec-UN 27.7 47.2
FF, cdec-UN, Jane 27.6 47.4

FF, SEG-ALL, cdec, cdec-UN 28.1 47.6

Table 12: Arabic-to-English syscomb (tst2010).

System tst2011 tst2012 tst2013
BLEU 1-TER BLEU 1-TER BLEU 1-TER

FF 26.9 44.8 28.7 49.7 30.0 48.9
PRM 27.8 44.8 30.3 50.5 30.5 48.6

Table 13: Arabic-to-English: official scores (mteval-v13a).

9. English-to-Arabic Machine Translation
For English-to-Arabic translation, we experimented with dif-
ferent segmentation schemes: D0, D1, D2, D3, S2 (using
MADA), and ATB (using the Stanford segmenter). Note
that this is more complicated here than for Arabic-to-English
because the segmentation is on the target side; thus, for
English-to-Arabic SMT, there is need for (i) a separate LM
for each segmentation, and (ii) desegmentation of the output.

A separate LM for each segmentation. Since the seg-
mentation is on the target side, it applies to the language
model as well. This means that if we wanted to experi-
ment with different segmentations, we needed a separate lan-
guage model for each of them, which is time- and resource-
consuming. In practical terms, this prevented us from build-
ing strong language models for D0, D1, D2, D3 and S2,
for which we used an LM trained on the Arabic side of the
IWSLT bi-text only. It was for the ATB segmentation only
that we could build a strong LM through interpolation, sim-
ilarly to our Arabic-to-English LM, that also used the Giga-
word Arabic, UN, and News Commentary data (see Table 1).

Desegmentation. Unlike the Arabic-to-English direc-
tion, where the segmentation was on the input side and thus
the output was unaffected, here the segmentation had to be
undone. For example, if we use an ATB-segmented target
side, we end up with an ATB-segmented translation output,
which we have to desegment in order to obtain proper Ara-
bic. Desegmentation is not a trivial task since it involves
some morphological adjustments, see [27] for a broader dis-
cussion. For desegmentation, we used the best approach de-
scribed in [27]; in fact, we used their implementation.

Normalization. Translating into Arabic is tricky because
the Arabic spelling is often inconsistent in terms of punc-
tuation (using both Arabic UTF8 and English punctuation
symbols), digits (appearing as both Arabic and Indian char-
acters), diacritics (can be used or omitted, and can often be
wrong), spelling (there are many errors in the spelling of
some Arabic characters, esp. Alef and Ta Marbuta; also, Waa



appears sometimes separated). These problems are espe-
cially frequent in informal texts such as TED talks. Thus, we
normalized Arabic to make it more consistent. We first con-
catenated back the conjunction Waa when detached (it is al-
most never detached in proper Arabic). We then used MADA
to normalize the following: (i) punctuation: converted Ara-
bic UTF8 punctuation to English, (ii) digits: converted all
Indian digits to the standard Arabic digits 0,1,. . .,9, (iii) dia-
critics: dropped them all, (iv) spelling: fixed potential errors
in the different forms of Alef, Alef Maqsura, Ta Marbuta, etc.
Finally, we converted all instances of “..”, which are common
in informal Arabic text, but are never used in English, to “...”.

Tokenization and detokenization. We further had to
perform tokenization and detokenization. Note that this is
different from segmentation: segmentation is about split-
ting words into multiple words, while tokenization is mainly
about separating punctuation from words. For tokenization,
we used the Europarl tokenizer: note that it does not work on
general Arabic text (e.g., because it cannot handle the UTF8
Arabic punctuation symbols), but it works just fine on our
normalized Arabic. For detokenizing the final Arabic deseg-
mented output, we used the Moses detokenizer; again, it only
works because it sees normal English punctuation.

Scoring the Arabic SMT output. While the systems
participating in IWSLT’2013 were supposed to output proper
Arabic, directly scoring their output against the references
with the NIST scoring tool v13a is problematic because of
the above-described inconsistencies in Arabic, which also
happen in the references for the tuning and the testing sets (in
addition to training). Since these variations are quite random
and depend on the style of the author of each piece of text, it
does not make sense for a translation system to try to model
them. Yet, they can affect evaluation scores a lot!7 Thus,
we normalize both the SMT output and the reference with
the QCRI normalizer: it applies the above-described normal-
ization and also performs tokenization. Then, we calculate
a BLEU and a TER score using MultEval, which does not
perform internal tokenization (unlike the NIST scoring tool).
This scoring procedure is official for the English-to-Arabic
translation direction at IWSLT’2013.

9.1. Individual and Combined Systems

The results for the individual systems are shown in Table 14.
We can see that ATB performs best, which is to be expected
since it uses a much larger LM. However, adding the UN bi-
text in phrase table combination had a very minor impact on
BLEU, only adding +0.2 points to FF.

Similarly to the Arabic-to-English system, we used
MEMT to combine the outputs of several systems. The chal-
lenge was to make these outputs compatible: they were to
be (1) desegmented, and (2) re-segmented using the ATB
scheme. This allowed us to perform system combination us-
ing the large Arabic ATB language model.

7E.g., the score for the organizer’s baseline system goes up from 9.61
(after tokenization with Europarl) to 11.89 when using the QCRI normalizer.

System Training BLEU 1-TER

SEG-D0 IWSLT 12.3 30.2
SEG-D1 IWSLT 12.6 30.6
SEG-D2 IWSLT 12.5 30.7
SEG-D3 IWSLT 12.5 30.5
SEG-S2 IWSLT 12.5 30.2
SEG-ATB IWSLT, big-LM 13.6 31.3

cdec IWSLT 12.7 29.8
Jane IWSLT 12.2 28.8

FF IWSLT+UN, big-LM 13.8 31.4

Table 14: English-to-Arabic SMT systems (tst2010).

System BLEU 1-TER

FF 13.8 31.4

FF, SEG-ALL, cdec 13.7 30.2

Table 15: English-to-Arabic syscomb (tst2010).

We tried many system combinations, but we were unable
to improve over FF. Table 15 shows our best combination;
even though it yielded -0.1 BLEU points on tst2010, we sub-
mitted it as primary, to be consistent with Arabic-to-English.

9.2. Official Results

Table 16 shows the official results of our English-to-Arabic
contrastive and primary runs. We can see that the system
combination performed slightly better, after all.

10. English-to-Arabic Spoken Translation
Translating the ASR output poses several additional chal-
lenges over translating properly transcribed text such as
(1) finding sentence boundaries, (2) restoring case, and
(3) restoring punctuation. Note that for this year’s compe-
tition, speech segmentation was provided by the organizers,
which solves (1). We further trained our English-to-Arabic
SMT system on lowercase English input, thus eliminating
the need for (2). Lastly, we addressed (3) by considering
two levels of punctuation restoration. As a baseline, we
just inserted a full stop at the end of each sentence. Next,
we treated punctuation marks as hidden events occurring be-
tween words. Thus, the problem was reduced to finding the
most likely tag sequence using an n-gram language model.

System tst2011 tst2012 tst2013
BLEU 1-TER BLEU 1-TER BLEU 1-TER

FF 15.15 31.66 15.68 35.28 15.68 35.82
PRM 15.54 30.81 15.54 34.43 15.78 34.57

Table 16: English-to-Arabic: our official results (calculated
using the QCRI normalizer, then MultEval).



For this purpose, we used the hidden-ngram tool from
the SRILM toolkit [28]. We trained the LM on the tok-
enized monolingual English portion of the IWSLT training
data. The list of punctuation marks (tags) included the fol-
lowing: comma (,), semi-colon (;), colon (:), quotation marks
(”), question marks (?), period (.), and ellipsis (...) .

For our contrastive SLT system, we reused the best
English-to-Arabic system from the previous section (FF). Ta-
ble 17 shows the results for different methods for punctuation
restoration. Note that decoding with a simple full stop addi-
tion improved the score by about +1.3 BLEU points. Further
restoring the rest of the punctuation marks yielded an addi-
tional improvement of +1.3 BLEU points. As a reference, we
also include the Oracle input, i.e., the MT text input (with the
same sentence segmentation as the ASR’s 1-best).

System tst2010
BLEU 1-TER

Raw 1-best input 6.2 21.1
+ full stop at the end 7.5 23.6
+ punctuation restoration 8.8 23.7

Text input (Oracle) 14.0 31.3

Table 17: English-to-Arabic SLT: punctuation restoration.

10.1. System Combination Results

Similarly to the English-to-Arabic text translation, we used
MEMT to combine the output of several systems. The com-
bined output yielded +0.1 BLEU points over the best system.

10.2. Official Results

Table 18 shows the official results for our English-to-Arabic
SLT submissions: contrastive (FF single-best) and primary
(PRM, system combination). The systems are the same as
for English-to-Arabic text translation.

System tst2013
BLEU 1-TER

FF 10.27 26.24
PRM 10.33 26.28

Table 18: English-to-Arabic SLT: our official results (calcu-
lated using the QCRI normalizer, then MultEval).

11. Conclusion
We have presented the Arabic-English and English-Arabic
SMT systems developed by the Qatar Computing Research
Institute for the IWSLT’2013 evaluation campaign on spoken
language translation. We experimented with three decoders
and various settings thereof, we tried different domain adap-
tation methods, and we performed system combination. For
the Arabic side, we also used various segmentation schemes.

For domain adaptation, we achieved best results with the
full UN data and phrase table merging. The SMT systems
built using different MADA segmentation schemes for Ara-
bic (the ATB segmentation was strongest) and using differ-
ent decoders (Moses performed better than cdec and Jane.)
added diversity and were useful for system combination.

For English-to-Arabic, we observed that the gains from
the various decoding settings, domain adaptation and system
combination were all lower compared to those for the Arabic-
to-English system. We plan to investigate this in future work.

Finally, we proposed normalization for Arabic output
evaluation, which was adopted as official for IWSLT’2013.
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Abstract
We participated in the IWSLT 2013 Evaluation Campaign for
the MT track for two official directions: German↔English.
Our system consisted of a reordering module and a statisti-
cal machine translation (SMT) module under a pre-ordering
SMT framework. We trained the reordering module using
three scalable methods in order to utilize training instances as
many as possible. The translation quality of our primary sub-
missions were comparable to that of a hierarchical phrase-
based SMT, which usually requires a longer time to decode.

1. Introduction
Word reordering is one of the most difficult problems in ma-
chine translation. Formally, word reordering refers to arrange
the source words into a target-like order, i.e. finding a permu-
tation of the source words. Because searching for all possible
permutations is an NP-complete problem, statistical machine
translation (SMT) systems have restricted their search space
for efficiency. For example, the simple distortion model in
phrase-based SMT (PBSMT) prohibit a long distance jump
beyond a window size during translation. Therefore, PBSMT
suffers from the lack of ability for word reordering at a long
distance.

Pre-ordering is one of the most prevailing approaches to
overcome this limitation of PBSMT. It is a pre-processing
method that reorders the source sentence in advance to
the later translation using PBSMT. We categorize previous
works into three categories. First, pre-ordering using local
information reorders either a (flat) word or chunk sequence
[1, 2, 3, 4]. Second, pre-ordering using syntactic information
manipulates a syntactic tree so that yield a reordered sentence
[5, 6, 7, 8, 9]. Third, pre-ordering using an ad-hoc structure
for word reordering induces a discriminative parser trained
from a parallel corpus, and apply the parser to obtain a re-
ordered source sentence [10, 11].

Both the second and third approaches work with hierar-
chical structures of the source sentence. While the second ap-
proach requires a syntactic parser which might not be avail-
able for resource-poor languages, the third one requires only
a small manual word aligned corpus in addition to a large par-
allel corpus. Hereinafter, therefore, we focus on the third ap-
proach. Because of the efficiency, the hierarchical structures
of the third approach restrict word reordering within a con-

Figure 1: The overall architecture of our system, consisting
of a reordering module (reordering parser) and a SMT mod-
ule

tinuous sequence under a sub-structure, i.e., the hierarchical
structures obey Inversion Transduction Grammar (ITG) [12]
constraints.

We participated in the IWSLT 2013 Evaluation Cam-
paign for the MT track, and submitted runs for two official
directions: German↔English. As German and English have
different word orders, we applied a pre-ordering method to
resolve the difference requires word reordering.

2. System description

Our system consists of two modules: a reordering module
and a SMT module. The reordering module rearranges the
words in the source sentence, and the SMT module translates
the reordered sentence into the target sentence. The overall
architecture of our system is shown in Figure 1. Because
we utilized an off-the-shelf SMT system [13] as the SMT
module, we focus on the reordering module here.

2.1. Discriminative reordering parser

We briefly summarize the discriminative reordering parser
in this section. The most relevant work of this paper was
proposed to induce a tree for word reordering produced by
a discriminative parser [11]. The goal of their method is to
find the best permutation π̂ for a given source sentence F ,
according to the following discriminative model.



Algorithm 1: Online learning for a training instance

1 procedure UpdateWeight(F, A, w)
2 D ← Parse(F, w)
3 Ḋ ← argmaxD∈D Score(D|F,w) + L(D|F,A)
4 D̂ ← argminD∈D L(D|F,A)− αScore(D|F,w)

5 if L(D̂|F,A) 6= L(Ḋ|F,A) then
6 w← β(w + γ(φ(D̂, F )− φ(Ḋ, F )))
7 end

π̂ = argmax
π

Score(π|F )

Score(π|F ) = Score(D|F,w)

=
∑
i

wiφi(D,F ) (1)

where D is a reordering tree for word reordering which yields
π, and wi and φi are the ith feature weight and function,
respectively.

To learn the weight vector w, they used the loss-driven
large-margin training [14] by finding Ḋ with the highest
model score (Eq. 1) and D̂ with the smallest loss. A loss
function L(D|F,A) is defined by word alignment A, where
[11] suggested two kinds of loss functions. Finally, the
weight is updated using the difference between the model
parse Ḋ and the oracle parse D̂. It is computationally
intractable to search over all possible permutations for π.
Hence, Ḋ and D̂ are selected among K-best parses encoded
in a hyper graph D. To break the tie, Score(D|F,w) and
L(D|F,A) are mutually augmented when selecting Ḋ and
D̂. The online learning for a training instance 〈F,A〉 with
the current weight vector w is shown in Algorithm 1 (taken
from [11]).

2.2. Scalable training method

We illustrate three methods to scale up the online learning
method which iterates several epochs over the training in-
stances. First, we adopted a faster search algorithm known
as Cube Growing, and integrated it into a parallel CYK pars-
ing method. Second, the feature generation process run in
parallel because it is a major bottleneck of parsing efficiency.
Third, the features generated at the first iteration are stored
on disk and used in the remaining epochs. In a consequence,
our proposed methods enable us to utilize tens of thousands
training instances in our experiments.

2.2.1. Cube Growing in parallel CYK parsing

Cube Growing is a dynamic programming algorithm for
searching over a hyper graph, proposed by [15]. It pro-
duces the kth-best parse on-the-fly, and thus does not enu-
merate unnecessary hypotheses during the search process.
More specifically, two data structures manage the hypothe-

Algorithm 2: Cube Growing in parallel CYK parsing

1 procedure Parse
input : A sentence w1 . . . wN

output: A hyper graph with K-best parses
2 for L ∈ [1, N ] do
3 for l ∈ [0, N − L] // in parallel
4 do
5 r ← l + L
6 ModifiedCubeGrowing(l, r)
7 end
8 wait for terminating the cell-level parallelization
9 end

10 root← The root cell
11 for k ∈ [1,K] do
12 LazyKthBest(root.q, k)
13 end
14

15 procedure ModifiedCubeGrowing
input : A cell covering [l, r]
output: A priority queue q with candidates

16 for m ∈ (l, r] do
17 left← cell [l,m]
18 right← cell [m,r]
19 L← peek(left.q)
20 R← peek(right.q)
21 push( q, Hyp(L, R)) // straight
22 push( q, Hyp(R, L)) // inverted
23 end
24

25 procedure LazyKthBest
input : A priority queue q and the demanded k
output: The kth hypothesis in b

26 b← the list of best hypothesis
27 while size(b) < k + 1 and size(q) > 0 do
28 best← pop(q)
29 LazyNext(q, best)
30 push(b, best)
31 end
32

33 procedure LazyNext
input : A priority queue q and the hypothesis best
output: An extended priority queue q’
/* best.L and best.R are the left

and right children of best,
respectively */

34 L← LazyKthBest(left, rank(best.L)+1)
35 if L exists then
36 push(q, Hyp(L, best.R)) // straight
37 push(q, Hyp(best.R, L)) // inverted
38 end
39 R← LazyKthBest(right, rank(best.R)+1)
40 if R exists then
41 push(q, Hyp(best.L, R)) // straight
42 push(q, Hyp(R, best.L)) // inverted
43 end



ses: a list of best hypotheses and a priority queue of can-
didates for the next best hypothesis. If the kth-best parse is
already produced, it is the kth hypothesis in the best list. Oth-
erwise, Cube Growing enumerates hypotheses by taking the
best candidate from the priority queue until the kth hypothe-
sis can be found. Whenever the best candidate is taken from
the priority queue, successors of the candidate are pushed
on the priority queue, if possible. To obtain the successors,
Cube Growing is recursively performed.

[16] proposed that the original CYK parsing algorithm
can be parallelized in three levels: sentence-level, cell-level,
and grammar-level. Although they reported the grammar-
level parallelization achieved the fastest result using thou-
sands of GPUs, we adopted the cell-level parallelization. It is
possible to parallelize the original CYK parsing at cell-level
because the hypotheses in different chart cells covering same
number of words in the sentence do not affect each other.
Unfortunately, this property does not hold anymore in Cube
Growing because k-best hypotheses are enumerated on de-
mand. Therefore, a race condition arises if we directly apply
Cube Growing in the cell-level parallelization.

We modified Cube Growing to fit in the cell-level paral-
lelization. To avoid the race condition, the modified Cube
Growing directly accesses to the priority queue for the first
best hypothesis. It is postponed to move the first best hy-
pothesis to the best list until the second best hypothesis is
requested. From the second best parses, the modified Cube
Growing does not run in parallel, which is identical to the
original one. Algorithm 2 shows the entire procedures for
the cell-level parallelization with the modified Cube Grow-
ing.

2.2.2. Parallel feature generation

The feature function φ in the discriminative model (Eq. 1) is
further decomposed into the edge level in a reordering tree.

φi(D,F ) =
∑
d∈D

φi(d, F ) (2)

Score(D|F,w) =
∑
d∈D

∑
i

wiφi(d, F ) (3)

where d is a hyper edge in the hyper graph. Because most
of feature functions φi(d, F ) involve string operations, the
feature generation becomes a major bottleneck of parsing ef-
ficiency. In a pilot study of our experiments, the feature gen-
eration is the most time-consuming process, which takes over
80% of the total parsing time.

Our proposed method parallelizes the feature generation
in advance to produce a reordering tree. For a length-N sen-
tence, there are N(N − 1)/2 hyper edges in the hyper graph
D. For each hyper edge, there are two possible orientations
straight and inverted. Hence, the feature generation is per-
formed N(N − 1) times in total.

With careful design of the feature function, the feature
generation can be parallelized: If the feature function is de-

Table 1: The statistics of corpora. Figures are the number
of sentences. The first column shows the number of par-
allel sentences, and the second and third column show the
numbers of monolingual sentences in German and English,
respectively.

Data source Parallel German English
WIT3 [17] 138,499 146,206 158,641
Newswire 58,908 Not Used
Europarl 2,399,123 Not Used

Comman Crawl 1,920,209 Not Used
News Commentary 178,221 204,276 247,966
News Crawl 2007 0 1,965,298 3,782,548
News Crawl 2008 0 6,690,332 12,954,477
News Crawl 2009 0 6,352,613 14,680,024
News Crawl 2010 0 2,899,914 6,797,225
News Crawl 2011 0 16,037,788 15,437,674
News Crawl 2012 0 20,673,844 14,869,673

Total 4,694,960 54,970,271 68,828,228

fined only in a single level of the tree, in other words, a fea-
ture set generated from the feature function for a hyper edge
is independent from that for the other edge. Therefore, two
feature sets for two orientations are stored for each hyper
edge, and thus N(N − 1) feature sets in the hyper graph in
total.

2.2.3. On disk feature

For each iteration, the feature sets generated by the fea-
ture function are identical, and the feature weights are only
updated. To avoid redundant feature generation processes,
reusing the generated features help the later iteration speed
up. As the number of generated features is usually huge,
however, it might be impossible store them in memory.

Our proposed method writes the features on disk after
the generation instead of keeping them in memory. We sim-
ply create a file for each sentence with a identification of the
sentence in the file name. At the actual parsing time, the gen-
erated features are recovered from the file for each sentence.
Then the parser begins to search the best permutation π us-
ing the features according to the discriminative model. For
each iteration, in other words, we skip the feature generation
process and reuse the generated features at the first time.

3. Experimental result
In our experiments, we developed a reordering parser based
on [11], LADER1, and utilized a phrase-based SMT system
Moses [13] for a reordering module and SMT module, re-
spectively. The tokenize.perl2 segmented German and
English sentences into words. Word alignment of the seg-
mented sentence pairs was performed using MGIZA++ [18]
for both German↔English directions, and refined using the

1https://github.com/hwidongna/lader
2http://statmt.org/wmt08/scripts.tgz



Table 2: The official evaluation results. XYZ in the first col-
umn refers the source X, the target Y and the priority of our
run, where 1 is the primary and 2 is the contrastive. tst2013*
denotes the results are measured on the reference with disflu-
ency.

Case-sensitive Case-insensitive
Run Data BLEU TER BLEU TER
DE1 tst2013* 0.2126 0.6760 0.2174 0.6671
DE1 tst2013 0.2117 0.6890 0.2165 0.6804
ED1 tst2011 0.2348 0.5370 0.2406 0.5289
ED1 tst2012 0.2043 0.5913 0.2102 0.5805
ED1 tst2013 0.2243 0.5757 0.2300 0.5657
ED2 tst2011 0.2370 0.5337 0.2432 0.5256
ED2 tst2012 0.2036 0.5892 0.2105 0.5780
ED2 tst2013 0.2237 0.5764 0.2296 0.5665

grow-diag-final-and heuristics. A reordering parser
utilized words and their automatically derived classes in the
feature function. The training instances of the reordering
parser were randomly selected among the word-aligned sen-
tence pairs that licensed under ITG (around 3.5M sentences).
For each iteration, the feature weights were updated using
10K instances according to Algorithm 1 and the maximum
number of iterations was set to 100. We used the data sup-
plied by the organizers of listed on the IWSLT 2013 Evalua-
tion Campaign site. Table 1 summarizes the data statistics.

We submitted three runs: one for German-to-English
(DE1) and two for English-to-German (ED1 and ED2). Our
primary runs (DE1 and ED1) were the results of the pre-
ordering framework explained in Section 2. ED2 was a con-
trastive run using a hierarchical phrase-based SMT, which
requires a longer time to decode. The decoding time of ED1
is almost half of ED2 excluding the reordering time. Table 2
shows the official results of the evaluation. The results from
the other participant can be found in the overview paper [19].
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Abstract

This work describes the statistical machine translation
(SMT) systems of RWTH Aachen University developed for
the evaluation campaign International Workshop on Spoken
Language Translation (IWSLT) 2013. We participated in
the English→French, English↔German, Arabic→English,
Chinese→English and Slovenian↔English MT tracks and
the English→French and English→German SLT tracks. We
apply phrase-based and hierarchical SMT decoders, which
are augmented by state-of-the-art extensions. The novel
techniques we experimentally evaluate include discrimina-
tive phrase training, a continuous space language model, a
hierarchical reordering model, a word class language model,
domain adaptation via data selection and system combina-
tion of standard and reverse order models. By application of
these methods we can show considerable improvements over
the respective baseline systems.

1. Introduction
We describe the statistical machine translation (SMT) sys-
tems developed by RWTH Aachen University for the
evaluation campaign of IWSLT 2013. We participated
in the machine translation (MT) track for the language
pairs English→French, English↔German, Arabic→English,
Chinese→English and Slovenian↔English and the spoken
language translation (SLT) tracks for the language pairs
English→French and English→German. We apply state-
of-the-art phrase-based and hierarchical machine translation
systems as well as an in-house system combination frame-
work. To improve the baselines, we evaluated several differ-
ent methods in terms of translation performance. These in-
clude a discriminative phrase training technique, continuous
space language models, a hierarchical reordering model for
the phrasal decoder, word class (cluster) language models,
domain adaptation via data selection, application of two sep-
arate translation models or phrase table interpolation, word
class translation and reordering models, optimization with
PRO and a discriminative word lexicon. Further, on the small
scale Slovenian↔English tasks we compare the performance

of the two word alignment toolkits GIZA++ and fast align.
For the spoken language translation task, the ASR output is
enriched with punctuation and casing. The enrichment is per-
formed by a hierarchical phrase-based translation system.

This paper is organized as follows. In Section 2 we de-
scribe our translation software and baseline setups. Sections
2.3 and 2.4 introduce the novel discriminative phrase training
technique and the continuous space language model, whose
application shows improvements on several tasks. Our ex-
periments for each track are summarized in Section 3 and we
conclude with Section 4.

2. SMT Systems
For the IWSLT 2013 evaluation campaign, RWTH utilized
state-of-the-art phrase-based and hierarchical translation sys-
tems as well as our in-house system combination frame-
work. GIZA++ [1] or fast align [2] are employed to train
word alignments. All language models are created with the
SRILM toolkit [3] and are standard 4-gram LMs with in-
terpolated modified Kneser-Ney smoothing. We evaluate in
case-insensitive fashion, using the BLEU [4] and TER [5]
measures.

2.1. Phrase-based Systems

As phrase-based SMT systems, in this work we used both an
in-house implementation of the state-of-the-art MT decoder
(PBT) described in [6] and the implementation of the decoder
based on [7] (SCSS) which is part of RWTH’s open-source
SMT toolkit Jane 2.1 1. We use the standard set of models
with phrase translation probabilities and lexical smoothing
in both directions, word and phrase penalty, distance-based
reordering model, an n-gram target language model and three
binary count features. The parameter weights are optimized
with MERT [8], PRO [9] (SCSS) or the downhill simplex
algorithm [10] (PBT).

Additional state-of-the-art models that are applied suc-
cessfully in the IWSLT 2013 evaluation are a hierarchi-

1http://www-i6.informatik.rwth-aachen.de/jane/

http://www-i6.informatik.rwth-aachen.de/jane/


cal reordering model (HRM) [11], a high-order word class
language model (wcLM) [12], word class based translation
and reordering models (wcTM) [12], a discriminative phrase
training scheme (cf. Section 2.3) and rescoring with a neural
network language model (cf. Section 2.4).

2.2. Hierarchical Phrase-based System

For our hierarchical setups, we employed the open source
translation toolkit Jane [13], which has been developed at
RWTH and is freely available for non-commercial use. In
hierarchical phrase-based translation [14], a weighted syn-
chronous context-free grammar is induced from parallel
text. In addition to contiguous lexical phrases, hierarchi-
cal phrases with up to two gaps are extracted. The search
is carried out with a parsing-based procedure. The standard
models integrated into our Jane systems are: phrase transla-
tion probabilities and lexical smoothing probabilities in both
translation directions, word and phrase penalty, binary fea-
tures marking hierarchical phrases, glue rule, and rules with
non-terminals at the boundaries, four binary count features,
phrase length ratios and an n-gram language model. We uti-
lize the cube pruning algorithm [15] for decoding and opti-
mize the model weights with standard MERT [8] on 100-best
lists.

2.3. Discriminative Phrase Training

The state of the art for creating the phrase tables of standard
SMT systems is still a heuristic extraction from word align-
ments and probability estimation as relative frequencies. In
several systems for the IWSLT 2013 shared task, we applied
a more sophisticated discriminative phrase training method.
Similar to [16], a gradient-based method is used to optimize
a maximum expected BLEU objective, for which we define
BLEU on the sentence level with smoothed 3-gram and 4-
gram precisions. In the experiments reported in this paper,
we perform discriminative training on the TED portion of the
training data in all cases. To that end, we decode the train-
ing data to generate 100-best lists. A leave-one-out heuristic
[17] is applied to make better use of the training data. Us-
ing these n-best lists, we iteratively perform updates on the
phrasal translation scores of the phrase table. After each it-
eration, we perform MERT, evaluate on the development set
and finally select the iteration which performs best.

2.4. Neural Network Language Model

We train neural networks as language models using the
theano numerical computation library[18]. The neural net-
work structure is largely similar to the continuous space lan-
guage model (CSLM) [19]. Our input layer includes a short
list of the most common word and word factors like the word
beginning or ending. To reduce the computation cost of the
network we employ a clustered output layer [20, 21]. The
Neural Network Language Model is used as a final step in
our translation pipeline, by rescoring on 200-best lists for the

Table 1: Results for the English→French MT task.

system dev2010 tst2010
BLEU TER BLEU TER

SCSS allData 28.3 55.7 31.9 49.8
+HRM 28.7 55.3 32.5 49.2
+2TM 29.2 54.7 32.7 48.9
+GW 29.5 54.6 32.9 48.9
+DWL 29.8 54.3 33.2 48.5
+wcLM 29.7 54.2 33.5 48.3
+CSLM 30.0 53.8 33.7 48.0

English→French and English→German tasks.

3. Experimental Evaluation
3.1. English→French

For the English→French task, the word alignment was
trained with GIZA++ and we applied the phrase-based de-
coder implemented in Jane. We used all available parallel
data for training the translation model. The baseline French
LM is trained on the target side of all available bilingual data
plus 1

2 of the Shuffled News corpus. The monolingual data
selection is based on cross-entropy difference as described
in [22]. The experimental results are given in Table 1. Dif-
ferent from last year [23], we did not employ system com-
bination in this task, achieving similar results with a single
decoder. The baseline system is improved by the hierarchi-
cal reordering model (HRM, +0.6% BLEU), adding a second
translation model to the decoder (2TM, +0.2% BLEU), which
was trained on the TED portion of the data, using 1

4 of the
French Gigaword Second Edition corpus as additional lan-
guage model training data (GW, +0.2% BLEU), and smooth-
ing the translation model with a discriminative word lexicon
[24] trained on the in-domain data (+0.3% BLEU). For the fi-
nal submission, we applied two additional language models:
the 7-gram word class language model (wcLM, 0.3% BLEU)
and the neural language model (CSLM, 0.2% BLEU).

3.2. German↔English

Similar to English→French, for the German↔English tasks,
we used GIZA++ for the word alignments and applied the
phrase-based decoder from the Jane toolkit.

For the German→English translation direction, in a pre-
processing step the German source is decompounded [25]
and part-of-speech-based long-range verb reordering rules
[26] are applied. The English LM is trained the target side
of all available bilingual data plus a selection [22] of 1

2 from
the Shuffled News corpus and 1

4 from the English Gigaword
v3 corpus, resuling in a total of 1.7 billion running words.
The experimental results for the German→English task are
given in Table 2. In opposition to our findings from last



Table 2: Results for the German→English MT task.

system dev2010 tst2010
BLEU TER BLEU TER

SCSS TED 31.5 47.6 30.0 49.2
SCSS allData 32.8 46.4 30.3 48.9

+HRM 33.0 46.1 30.4 48.9
+wcLM 33.5 45.8 30.9 48.4
+discr. 33.9 45.0 31.4 47.5
+2TM 34.2 45.2 32.3 47.4

Table 3: Results for the English→German MT task.

system dev2010 tst2010
BLEU TER BLEU TER

SCSS TED 22.0 56.7 21.9 57.3
SCSS allData 22.7 56.1 22.3 57.2

+HRM 23.3 55.5 22.6 57.7
+wcLM 24.2 54.5 23.6 55.9
+discr. 24.6 54.1 24.3 55.4
+CSLM 24.7 53.7 24.9 54.7

year [23], using all available data now performs better than
solely training on the in-domain TED portion. This can be at-
tributed to the large, newly available Common Crawl corpus.
The baseline system is improved by the hierarchical reorder-
ing model (HRM, +0.1% BLEU), the 7-gram word class lan-
guage model (wcLM, 0.5% BLEU) and discriminative phrase
training (discr., +0.5% BLEU). Finally, we applied domain
adaptation by adding a second translation model to the de-
coder (2TM), which was trained on the TED portion of the
data. This second translation model was also trained with
discriminative phrase training and gave an additional im-
provement of 0.9% BLEU.

The English→German system is very similar to the one
for the opposite translation direction. The language model
was trained on the target side of all bilingual data plus 1

2
of the Shuffled News corpus selected with [22]. The LM
training data contains a total of 564 million running words.
The results in Table 3 show that using all available train-
ing data outperforms only training on the in-domain TED
portion. The system is augmented with the hierarchical re-
ordering model (HRM, +0.3% BLEU), a word class language
model (wcLM, 1.0% BLEU) and disriminative phrase train-
ing (discr., +0.5% BLEU). Especially the wcLM has a strong
impact on translation performance. Different from the op-
posite direction, adding a second translation model did not
improve results. However, we were able to reach a final im-
provement of 0.6% BLEU by rescoring a 200-best list with a
neural language model (CSLM).

3.3. Arabic→English

The Arabic→English system uses a language model based
on the full in-domain TED and out-of-domain UN and News
Commentary v8 data. We also filtered and included the En-
glish Gigaword, giga-fren.en, Europarl v7, Common Crawl
and Shuffled News corpora using the cross-entropy criterion.
A 4-gram LM is trained for each of the sets using modified
Kneser-Ney discounting with interpolation. The final LM is
the weighted mixture of all individual LMs, with the weights
tuned to achieve the lowest perplexity on dev2010. We also
trained another mixture of LMs keeping singleton n-grams,
which we will refer to as sngLM.

A single system employing MADA v3.1 D3 resulted in
only 0.3% worse BLEU and TER on the tst2011 dataset of
IWSLT2012, compared to a system combination where sin-
gle systems of various segmentation techniques were com-
bined, as described in [23]. Therefore, we stuck to a sin-
gle system using MADA v3.1 D3 for segmentation. The
translation model is trained using the TED and UN bilin-
gual corpora, and the standard features were used in addi-
tion to HRM. Two phrase tables were built, one based on
the TED dataset and the other on the TED+UN data. We
interpolated the two linearly with the weights 0.9 and 0.1 re-
spectively given to the TED and the full phrase tables. Table
4 shows the results. The HRM features bring an improve-
ment of 1.1% BLEU and 0.2% TER to a TED-only transla-
tion model. Adding the UN data hurts performance by 1.1%
BLEU and 0.7% TER. On the other hand, interpolation leads
to an improvement of 0.8% in TER and 0.1% BLEU. When
replacing the LM with sngLM an improvement is only ob-
served on the development set, but not the test set, which
could not be remedied by relaxing the pruning parameters.
All sngLM experiments used a 200-best list, compared to a
100-best list used with the smaller LM.

We also experimented with bilingual filtering of the UN
data used to train the phrase table, where scoring was per-
formed using bilingual LM cross-entropy scores (x-entropy)
[27]. Another experiment used the combination of cross-
entropy and IBM-1 scores (x-entropy+IBM-1) [28]. We used
the best 400k UN sentences together with the TED data to
train a phrase table, which is then interpolated with a TED-
only phrase table as described above. x-entropy+IBM-1 is
better by 0.8% TER than mere cross-entropy filtering, and it
performs similar to the non-filtered system, despite the fact
that we select only 1

16 of the UN data.

3.4. Chinese→English

For the Chinese-English task, RWTH utilized system combi-
nation as described in [29]. We used both the phrase-based
decoder and the hierarchical phrase-based decoder to per-
form a bi-directional translation, which means the system
performs standard direction decoding (left-to-right) and re-
verse direction decoding (right-to-left). To build the reverse
direction system, we used exactly the same data as the stan-



Table 4: Results for the Arabic→English MT task.

system dev2010 tst2010
BLEU TER BLEU TER

SCSS TED 27.4 52.0 25.7 55.1
+HRM 27.9 51.9 26.8 54.9
+UN 28.4 51.9 25.7 55.6
+UN interpolated 28.3 51.1 26.9 54.1
+sngLM 28.8 50.7 26.8 54.1
+x-entropy 28.6 51.8 26.7 55.0
+x-entropy+IBM-1 28.8 51.0 27.0 54.2

Table 5: Chinese-English results on the dev test set for dif-
ferent segmentations. The primary submission is a system
combination of all the listed systems.

system dev2010 tst2010
BLEU TER BLEU TER

PBT-2012-standard 11.5 80.7 13.0 76.4
PBT-2012-reverse 11.7 80.9 13.6 75.5
HPBT-2012-standard 12.3 79.8 14.2 74.6
HPBT-2012-reverse 12.8 79.4 14.6 74.1
HPBT-2013-standard 12.4 79.5 14.5 74.1
HPBT-2013-reverse 12.6 79.4 14.4 74.3
system combination 13.5 78.5 15.1 73.6

dard direction system and simply reversed the word order of
the bilingual corpora. For the system combination we se-
lected four systems we had trained for last year’s IWSLT
evaluation and set up two additional hierarchical systems
with slightly different preprocessing. Note that all translation
model are trained on the in-domain data only. By perform-
ing system combination we gain an improvement of +0.5%
BLEU over the best single system. Results are given in Table
5.

3.5. Slovenian↔English

The bilingual training data available for the
Slovenian↔English tasks is limited to 14K sentence
pairs from the TED lecture domain. Further, only one
development set was provided. In order to be able to do
blind evaluation, we split it into two parts. The first 644
lines are defined as dev1 and are used for MERT/PRO. The
remaining 500 lines are used as blind test set and will be
referred to as dev2. For the Slovenian↔English tasks, we
apply our phrase-based decoder and experimented with two
different word alignments for training, one generated with
GIZA++, based on the IBM model 4, and one created with
fast align, which uses a reparameterization of IBM model 2.
Interestingly, the simpler and more efficient fast align tool
outperforms GIZA++ in both cases.

Table 6: Results for the Slovenian→English MT task.
All systems are augmented with the hierarchical reordering
model.

system dev1 dev2
BLEU TER BLEU TER

SCSS GIZA++ 17.6 65.7 15.9 67.6
SCSS fast align 18.0 64.8 16.3 66.1

+wcLM 18.2 62.9 16.5 64.6
+wcTM +PRO 18.6 63.0 16.5 64.3
+discr. 18.8 62.6 16.9 63.9

Table 7: Results for the English→Slovenian MT task.
All systems are augmented with the hierarchical reordering
model.

system dev1 dev2
BLEU TER BLEU TER

SCSS GIZA++ 11.3 70.5 9.6 71.4
SCSS fast align 11.4 70.3 10.5 69.6

+wcLM 12.0 69.8 10.1 69.9
+wcTM 11.9 70.3 10.4 69.9
+discr. 11.9 70.2 10.7 69.7

The Slovenian→English MT system uses the same
language model as described in Section 3.2 for the
German→English task. Results are shown in Table 6. The
baseline, which already contains the hierarchical reordering
model, is augmented with a word class LM (wcLM, +0.2%
BLEU) and the word class translation and reordering model
(wcTM). When we add the latter, we switch from MERT to
PRO, which we found to lead to more stable results in this
case. Finally, we employ discriminative phrase training (dis-
crim., +0.4% BLEU) to build the submission system.

To train the Slovenian language model only the target
side of the bilingual data was provided. We found that se-
lecting a submission system on this task was very difficult,
as when comparing two setups, their behaviour was often re-
versed between dev1 and dev2. We decided to apply the
same extensions to the baseline as for the opposite translation
direction. The baseline, which already contains the hierarchi-
cal reordering model, is augmented with the word class LM
and the word class based translation and reordering models.
Here, we continue using MERT. For the final submission,
we also applied discriminative phrase training. Results are
shown in Table 7.

3.6. Spoken Language Translation (SLT)

RWTH participated in the English→French and
English→German SLT task. In both tracks, we rein-
troduced punctuation and case information following [30],



Table 8: Results for the English→French SLT task.

system dev2010 tst2010
BLEU TER BLEU TER

23.0 62.7 26.0 56.0
re-optimized 23.4 62.5 26.3 56.2

which we denote as enriched. Further, we added a phrase
feature, that fires if a phrase introduces a punctuation mark
on the target side. The SMT system, that is employed in the
enrichment process by translating from pure ASR output
to the enriched version, we use a hierarchical phrase-based
system with a maximum of one nonterminal symbol per
rule The model weights are tuned with standard MERT on
100-best lists. As optimization criterion we use WER.

For English→French, we re-optimized on the enriched
ASR development dev using SCSS allData +HRM +GW
+2TM. Results are reported in Table 8.

For English→German, the enriched evaluation set was
translated using the SCSS allData +HRM +wcLM +discr.
system. Here, the translation system was kept completely
unchanged from the MT task, including the log-linear feature
weights.

4. Conclusion
RWTH participated in seven MT tracks and two SLT tracks
of the IWSLT 2013 evaluation campaign. The baseline sys-
tems utilize our state-of-the-art translation decoders and we
were able to improve them by applying novel models or tech-
niques. The most notable improvements are achieved by a hi-
erarchical reordering model (+1.1 BLEU on Ar-En), a word
class language model (+1.0 BLEU on En-De), discriminative
phrase training (+0.7 BLEU on En-De), a continuous space
language model (+0.6 BLEU on En-De) and system combi-
nation of standard and reverse order models (+0.5 BLEU on
Zh-En). For the SLT track, the ASR output was enriched with
punctuation and casing information by a hierarchical transla-
tion system.
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pp. 11–19.

[20] J. Goodman, “Classes for fast maximum entropy training,”
CoRR, vol. cs.CL/0108006, 2001.

[21] F. Morin and Y. Bengio, “Hierarchical probabilistic neural
network language model,” in Proceedings of the Tenth
International Workshop on Artificial Intelligence and Statis-
tics, R. G. Cowell and Z. Ghahramani, Eds. Society for
Artificial Intelligence and Statistics, 2005, pp. 246–252. [On-
line]. Available: http://www.iro.umontreal.ca/∼lisa/pointeurs/
hierarchical-nnlm-aistats05.pdf

[22] R. Moore and W. Lewis, “Intelligent Selection of Language
Model Training Data,” in ACL (Short Papers), Uppsala, Swe-
den, July 2010, pp. 220–224.

[23] S. Peitz, S. Mansour, M. Freitag, M. Feng, M. Huck,
J. Wuebker, M. Nuhn, M. Nußbaum-Thom, and H. Ney,
“The rwth aachen speech recognition and machine translation
system for iwslt 2012,” in International Workshop on Spoken
Language Translation, Hong Kong, Dec. 2012, pp. 69–76.
[Online]. Available: http://hltc.cs.ust.hk/iwslt/proceedings/
paper 45.pdf

[24] A. Mauser, S. Hasan, and H. Ney, “Extending statistical ma-
chine translation with discriminative and trigger-based lexi-
con models,” in Conference on Empirical Methods in Natural
Language Processing, Singapore, Aug. 2009, pp. 210–217.

[25] P. Koehn and K. Knight, “Empirical Methods for Compound
Splitting,” in Proceedings of European Chapter of the ACL
(EACL 2009), 2003, pp. 187–194.
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Abstract
In this paper we describe the ASR system for German built
at the University of Edinburgh (UEDIN) for the 2013 IWSLT
evaluation campaign. For ASR, the major challenge to over-
come, was to find suitable acoustic training data. Due to the
lack of expertly transcribed acoustic speech data for Ger-
man, acoustic model training had to be performed on pub-
licly available data crawled from the internet. For evalua-
tion, lack of a manual segmentation into utterances was han-
dled in two different ways: by generating an automatic seg-
mentation, and by treating entire input files as a single seg-
ment. Demonstrating the latter method is superior in the cur-
rent task, we obtained a WER of 28.16% on the dev set and
36.21% on the test set.
Index Terms: Light supervision, Segmentation, Acoustic
Model Training

1. Introduction
In ASR, good acoustic models are an important prerequisite
for high recognition accuracies. The quality of these mod-
els is determined by both the quality and the quantity of
the data on which they were trained. Such data consists of
speech as well as accurate orthographic transcriptions. Since
the latter must be manually created by human transcribers,
which is a slow and expensive process, it can be difficult to
obtain training data in sufficiently large quantities. In lan-
guages or domains where resources are scarce, i.e., where no
large amounts of dedicated transcribed training is available,
acoustic models can still be obtained from untranscribed or
poorly transcribed data, using unsupervised or lightly super-
vised training methods [1, 2, 3, 4, 5]. Since German ASR
has historically received little attention at UEDIN, there are
very few resources available for it on site. Therefore, even
though German is by no means an under-resourced language,
we have been compelled to treat it as such, collecting large
amounts of publicly available data and processing it with the
lightly supervised training methods mentioned above. Al-
though this methodology is not strictly necessary for Ger-
man, it can in theory be applied to unlock other, truly under-
resourced languages, for which no alternative training meth-
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Seventh Framework Programme, under grant agreement no. 287658 (EU-
BRIDGE), and by EPSRC Programme Grant grant EP/I031022/1, Natural
Speech Technology.

ods exist. The available resources used for acoustic model
training are discussed below in section 2. The lightly su-
pervised training is explained fully in section 4. Acoustic
model training is finalised by training a Deep Neural Net-
work (DNN) in a hybryd setup with a traditional context-
dependent tri-phone based Hidden Markov Model (HMM),
as explained below, in section 6.

Aside from acoustic modelling, the proposed system has
state-of-the-art language modelling. In a first phase, text
corpora are collected, containing in total almost 109 words.
Based on the cross-entropy with the evaluation domain, as
proposed in [6], the top 30 percentile of this data is selected
and 4-gram language models, as well as Recurrent Neural
Network Language Models (RNNLM) are trained on it [7].
Details of this setup can be found below, in section 5.

Since no manual segmentation for the evaluation set is
provided, it is necessary to produce a segmentation auto-
matically. Alternatively, ASR can be performed on entire
talks, treating them as a single segment. There is an inherent
trade-off between these approaches, since each has its own
advantages and disadvantages. A segmentation that is gen-
erated automatically may contain erroneous segment bound-
aries, which can easily lead to recognition errors. When seg-
mentation is avoided, on the other hand, recognition could
be performed on non-speech segments, generating unpre-
dictable erroneous outputs. In section 6, evaluation is per-
formed comparing both approaches.

2. Available Resources for Acoustic Modelling

The data on which an ASR system is trained determines to
a large extent its eventual performance. Several properties
of the training data are important. Firstly, its domain must
be matched as closely as possible to the domain of the eval-
uation set. Even when using techniques like fMLLR [8] to
adapt acoustic models to the test domain, any mismatch will
significantly reduce recognition accuracies. Also accurate or-
thographic transcriptions of the training data are necessary.
Even small amounts of transcription errors can significantly
reduce recognition performance, e.g. [9]. Lastly, the size of
the training set plays an important role. Although there is no
such thing as a direct linear relation between training set size
and recognition performance, having more training data does
usually lead to better results. Several tens of hours is believed
to be a minimum for acoustic model training, depending on



the size and complexity of the models being trained.

2.1. Globalphone

One of the suitable speech corpora accessible to us is
GlobalPhone [10]. It is a multi-lingual corpus, covering a se-
lection of the world’s most widely spoken languages, one of
which is German. For each language, it contains speech from
about 100 adult native speakers, reading a number of articles
taken from a local newspaper. For German, this adds up to
about 18 hours of speech. Only 14 hours of this can be used
as training data, since the rest is divided over a dev set and a
test set. In the context of this paper, the GlobalPhone corpus
is less suitable for acoustic model training, due to its small
size and its large domain mismatch with the IWSLT evalua-
tion data. However, the German lexicon that is included in
the corpus is invaluable to us, since it is the only lexicon we
have at our disposal. It contains 36994 unique words, with
39520 pronunciations, indicating that a relatively large num-
ber of words is listed with more than a single pronunciation
variant. Furthermore, a 3-gram language model for this data
is available to us. It is the same language model that was used
in [11], and is specifically tuned to the domain of news arti-
cles. Using this LM is not our only option though, since we
have the option to train our own, more tuned to the domain
of TED-talks, see section 5.

2.2. Europarl

The second set of data was obtained by crawling the website
of the European Parliament [12], which has committed it-
self to making its plenary sessions publicly available online,
along with their transcripts. These sessions contain speech in
a wide variety of languages, German among them. Although,
generally speaking, the transcriptions do not match the spo-
ken content of the speech perfectly, techniques for lightly
supervised acoustic model training may be employed to cir-
cumvent this. We will elaborate on this below in section 4.
In this work, we downloaded all parliamentary sessions of
the years 2008, 2009, and 2010. This is about 990 hours
of audio data. This data contains 23 audio streams in paral-
lel: one stream with the raw unaltered recordings, and one
additional stream for each of the 22 languages of the Eu-
ropean Union. In these audio streams, speech in any other
language than the target language is replaced with its on-
the-fly translation, done in real-time by professional inter-
preters. For each parliamentary speech, there is only a single
start and end time given, shared over all 22 parallel versions
of that speech. Since translations may take longer than the
original speech, or may be shifted in time, the audio seg-
ments delineated by these boundaries are usually 10–20 sec-
onds longer than the speech they contain, and tend to overlap
each other. Adding the lengths of all these segments together
therefore leads to an overestimate of the available data, but
can nonetheless be a useful indication. The total amount of
speech data we counted like this, is 733 hours. One must

be cautious in using all this data directly, however, since
it contains directly recorded speech from German-speaking
MEP’s, as well as interpreters’ speech. There are very dis-
tinct differences between these types of speech: e.g. whereas
MEP’s speak more spontaneously, often with an accent, in-
terpreters tend to speak clearly, with long pauses, and very
few corrections and repetitions. Since these types of speech
may not be equally well matched to the target domain, we
have treated them separately. We identified the speeches that
were originally spoken in German, by comparing the Ger-
man audio stream with the raw unaltered audio. Based on
the same rough count as before, this adds up to about 95
hours of speech. Since there is no lexicon available with this
data, we reuse the GlobalPhone lexicon, to which the out-
of-vocabulary words are added using Sequitor Grapheme-to-
Phoneme conversion [13].

3. Text Tokenisation
Although the GlobalPhone lexicon does contain 373 num-
bers, this list is far from exhaustive. Numbers in the eval-
uation data are therefore very likely to be OOV. To prevent
this from happening, we defined rewrite rules to convert any
number that is OOV into its constituent parts, most of which
do occur in the lexicon, or are easily added to it. For instance,
if “1,234” is encountered, it is rewritten as “1,000 2 100 4 und
30”. This way, with no more than 33 lexical entries, we are
able to handle any number between 1 and 9, 999 · 106. Spe-
cial exception rules are provided to deal with such things as
times, dates, years, and IP-addresses. Measures of distance,
length, and volume are fully expanded, as well as currencies,
e.g. ‘km’ is written as ‘kilometer’, ‘$’ is written as ‘dol-
lar’, etc. Because of time constraints, handling of abbrevia-
tions in our system is rudimentary. Basically, any word that
either consists of two or more capitalized letters, or of let-
ters separated by full stops is recognized as an abbreviation.
They are then written in a consistent form, namely as un-
capitalized letters separated by full stops, and then added to
the lexicon using grapheme-to-phoneme conversion. There
are several ways in which this methodology is suboptimal.
For one, it disregards the possibility of abbreviations being
pronounced as words, rather than sequences of separate let-
ters, e.g. the pronunciation of “NATO” as /nato/ rather than
/EnAteo/. More importantly, the GlobalPhone lexicon, on
which we trained the grapheme-to-phoneme conversion, con-
tains far too few examples to enable accurate pronunciation
predictions. As a result, abbreviations in training and eval-
uation data are expected to reduce the performance of our
system.

4. Lightly Supervised Acoustic Model
Training

To perform acoustic model training and evaluation, the
acoustic data is preprocessed as follows. First, it is con-
verted towards mono-channel 16kHz WAVE-files. MFCC-



coefficients are determined within 25 ms frames which are
shifted in increments of 10 ms. Cepstral Mean Normalisa-
tion is then applied to the resulting 13-dimensional feature
vectors. For each frame, the features within a context win-
dow of 9 frames, 4 to the left, 4 to the right, are stacked and
projected down to 39 dimensions using LDA-MLLT.

4.1. Training an Initial Model on GlobalPhone

We train an initial GMM-HMM acoustic model from scratch
on the GlobalPhone corpus. This model contains 3000
context-dependent states and 48000 Gaussians. It was evalu-
ated on three different evaluation sets: the GlobalPhone dev
set, where it resulted in a WER of 12.68%, the GlobalPhone
eval set, on which it gave a WER of 19.92%, and the IWSLT
dev set, on which it yielded a WER of 56.18%. The lan-
guage model used in each of these evaluations was the
GlobalPhone-specific one, introduced in section 2.1.

4.2. Further Training on Europarl

Acoustic model training on Europarl data cannot be done
straightforwardly, since the transcriptions we have of it do
not match the acoustics perfectly. There is a variety of light
supervision techniques, however, with which this problem
may be circumvented, e.g. [14, 1]. Here, we used the
greedy matching approach described in [5]. We first bias the
GlobalPhone LM towards the Europarl domain by interpolat-
ing it with a small LM trained on the imperfect transcriptions.
This LM, in combination with the acoustic model trained
above in section 4.1, is then used to make a recognition of the
Europarl training data. By comparing the recognition result
with the imperfect transcription, and greedily collecting the
longest sequences that occur in both, a new in-domain train-
ing set is constructed. From this, a new acoustic model with
the same number of states and Gaussians is trained and the
whole process is repeated. This iterative process is illustrated
in figures 1 and 2. With each iteration, the accuracy of the
ASR transcription is expected to rise, and hence more train-
ing data is collected for the iteration after that. Also, with
each iteration, the models are expected to get more tuned to-
wards the Europarl domain. In this work, we first apply this
technique for 10 iterations on the subset with 95 hours of
direct MEP recordings, discussed in section 2.2, and evalu-
ated on the IWSLT dev set in each iteration. The result is
shown in the leftmost columns of table 1. The initial WER
of 46.36% is obtained with the GlobalPhone acoustic model.
The reason why this result is different from the 56.18% re-
ported in section 4.1 is that another LM was used in these
evaluations, namely the one that is biased towards Europarl
data. Looking at the WER’s, we can see that the quality of
the acoustic models doesn’t improve with each new iteration.
If anything, the opposite is true, although the statistical sig-
nificance of these differences may be questionable. This lack
of improvement is probably caused by a slight domain mis-
match between Europarl and the TED talks in the IWSLT

MEP All
iter hours WER(%) hours WER(%)
init NA 46.36 46.98 41.12
1 45.91 41.13 67.15 40.22
2 46.64 41.20 70.28 40.09
3 46.69 41.36 70.80 39.95
4 46.80 41.25 70.83 40.01
5 46.89 41.10 70.92 40.27
6 47.00 41.36 70.93 40.28
7 47.07 41.55 70.99 40.26
8 47.01 41.49 70.95 40.12
9 47.00 41.28 70.89 40.50
10 46.98 41.12 70.94 40.35

Table 1: The data set sizes and WER rates obtained on the
IWSLT dev set in each iteration of lightly supervised training.

Figure 1: The longest word sequences occurring both in the
approximate transcription and in the ASR output are identi-
fied.

dev set. An interesting experiment would be to evaluate the
models in each iteration on an evaluation set in the Europarl
domain. Unfortunately, no such evaluation set is available
to us. When doing the same experiment on the entire Eu-
roparl corpus, MEP speech and interpreters’ speech put to-
gether, the results become as shown in the rightmost columns
of table 1. The acoustic model obtained in iteration 10 of
the previous experiment is used here as the initial acoustic
model. Although the WER drops about 1% absolute with
the inclusion of the interpreters’ speech, the results are oth-
erwise comparable to those of the previous experiment. The
drop in WER is very likely due to the increase of the training
set from 46.98 hours to 67.18 hours. The best performance,
a WER of 39.95%, is achieved in the third iteration. There-
fore, the training set obtained in that iteration is used for all
acoustic model training in further experiments, see section 6.



Figure 2: Illustration of the iterative process, in which train-
ing data is collected to obtain acoustic models, which are in
turn used to collect a better set of training data.

name # words (·106)
europarl_v7 47.37
europarl_crawl 2.86
news_crawl_2007 31.47
news_crawl_2008 107.86
news_crawl_2009 101.56
news_crawl_2010 45.89
news_crawl_2011 252.85
news_crawl_2012 319.73
news_comment 4.45
total 914.05

Table 2: The text resources used for LM training.

5. Language Modelling

For language model training, we used the resources listed
in table 2. All of these were obtained through links on the
IWSLT website, except ‘europarl_crawl’, which consists of
the imperfect transcriptions of the Europarl data from sec-
tion 2.2. All text was first depunctuated and tokenised as
described in section 3. From each of these texts, 30% is se-
lected that best matches the domain of the IWSLT dev set,
according to the cross-entropy criterion proposed in [6]. Lan-
guage models are trained on this subset only, disregarding the
remaining 70%.

5.1. N-gram Language Models

After winnowing them down to 30%, each of the text corpora
is used to train a 3-gram LM, using the MITLM language
modelling toolkit [15]. In this training, modified Kneser-
Ney smoothing [16] is used with parameters optimised on
the IWSLT dev set. These language models are then lin-
early interpolated with interpolation weights optimised in the
same way. The 1-grams in the resulting interpolated model
are then written out in decreasing order, according to their
smoothed 1-gram probability. Choosing the top-N words
from this list allows us to optimally define a dictionary of
size N for further LM training. We then repeated the previ-
ous procedure, training 3-gram LM’s on the whittled down
text corpora, with a limited vocabulary of N words, and lin-
early interpolating them. Finally the same was done with

N OOV rate(%) 3-gram ppl. 4-gram ppl.
100000 4.18 252.63 246.36
150000 3.32 278.24 263.37
200000 2.78 283.25 275.97
250000 2.52 289.73 282.43
300000 2.37 294.24 286.86
350000 2.29 297.03 289.74
400000 2.17 300.30 292.97

Table 3: The perplexities and OOV rates of the 3-gram and
4-gram LM’s on the IWSLT dev set

4-grams. The OOV rate and perplexity on the dev set for a
range of values for N is shown in table 3. As expected, the
4-gram models achieve lower perplexities than 3-gram mod-
els. Based on these results, we choose the 4-gram LM with
vocabulary size 300000 for the evaluations in section 6, since
this yields a good trade-off between word coverage and per-
plexity. Any of these 300000 words that do not occur either
in GlobalPhone or in the crawled Europarl data is added to
the lexicon. Using a LM of such size for LVCSR (Large Vo-
cabulary Continuous Speech Recognition) is very demanding
in terms of memory and processing power. Therefore, we
make a reduced version of this LM, pruning it with a proba-
bility threshold of 10−7. The pruned LM is much smaller in
size than the original, but this comes at the price of a higher
perplexity, which rises from 286.86 to 413.62. Due to its
smaller size, it can easily be used to generate word lattices on
the evaluation data, which are rescored afterwards using the
full unpruned LM. To demonstrate the extent to which they
may affect the WER in practice, we perform an ASR evalua-
tion on the IWSLT dev set using the pruned LM, before and
after rescoring with the unpruned LM. The acoustic model
in this experiment is the optimal model as established in sec-
tion 4.2. The pruned LM yields in this evaluation a WER
of 37.02%, a slight improvement over 39.95%, obtained in
section 4.2, with a different LM. Rescoring with the full LM
brings the WER further down to 33.69%.

5.2. Recurrent Neural Net Language Models

From a concatenation of all the whittled down text corpora
of section 5.1, we train a Recurrent Neural Net Language
Model, using the RNNLM toolkit [7]. Due to computational
limitations, the vocabulary size for this model is reduced to
50000. The number of nodes in the hidden layer is set to
30. From the final rescored word lattices in section 5.1, N-
best lists are generated, with N=100. For each of these 100
recognition hypotheses, the RNNLM is used to calculate a
LM score SRNNLM , which is interpolated with the original
4-gram LM score, resulting in the modified score S′.

S′ = (1− α) · Sngram + α · SRNNLM (1)

This modified score is used to re-rank the N-best list, often
changing which hypothesis is considered as the ‘best’. The



interpolation factor α was optimised on the dev set, yield-
ing a value of 0.25. Applying this RNNLM rescoring on the
word lattices of section 5.1, yields an improvement in WER
from 33.69% to 33.17%.

6. ASR System Setup
At this point, we have all the resources to build a finalised
system: a large set of transcribed speech for acoustic model
training, determined in section 2.2, and a large LM, opti-
mised as described in section 5. The lay-out of our system
is depicted in figure 3. All experiments performed with this

Figure 3: A schematic overview of the adopted system.

system, including the evaluations above and those that fol-
low, have been performed using the KALDI Speech Recog-
nition Toolkit [17]. For acoustic modelling, we first train
up a GMM-HMM with 3000 context dependent states and
48000 Gaussians, using Speaker Adaptive Training (SAT),
where fMLLR is used as the adaptation technique. In prin-
ciple, it would be possible to assign multiple speeches to
a single speaker, since the speaker’s identity is given on
the Europarl website. This only applies, however, to di-
rectly recorded speeches, i.e. untranslated ones. When the
speaker is an interpreter, there is no trivial way to ascer-
tain his/her identity. Therefore, we have made the simpli-
fying assumption that each speech in the training data comes
from a unique speaker. A feed-forward deep neural network
is then trained in a DNN-HMM hybryd configuration, simi-
lar to the one used in [18]. This DNN has 6 hidden layers,
each containing 2048 nodes. The softmax output layer of
this network produces posterior probabilities over the 3000
context-dependent states of the HMM. The input at each time
t consists of a stacking of the features in the context window
[t− 5, t− 4, . . . t, . . . t+ 4, t+ 5]. Except for the addition of
speaker adaptation, the features in each frame are produced
as explained in section 4. Since the IWSLT test set is pro-
vided without segmentation into utterances, one can either
generate a segmentation automatically, or perform recogni-
tion on entire TED-talks without segmentation. For the auto-
matic segmentation, we use a voice activity detection system
trained on 70 hours of English conversational speech from
the AMI Meetings Corpus [19]. Speech and silence frames
are modelled with diagonal covariance GMMs. A minimum
duration constraint of 50ms is applied to each segment. For
the segmentationless recognition, we use the same technique

dev2012 tst2013 tst2013\E06
manual segment 27.02 35.27 29.18
auto segment 7 39.28 33.58
no segment 28.16 36.21 30.24

Table 4: The resulting WER’s in % for several different eval-
uation sets, both when they are manually segmented, auto-
matically segmented, or recognised in full (not segmented).

as in [5], where we split an entire talk into overlapping seg-
ments, perform ASR on them, and dynamically merge the
results into a single long recognition. In this case, segments
are 40 seconds long and have an overlap of 20 seconds with
each other. The results are listed in table 4. For the de-
velopment set, no automatic segmentation was performed,
since the manual segmentation was available for the official
evaluation. There is one talk in the IWSLT test set, namely
“E06_Nach-und-doch-so-Fern-Thomas-Mo”, that is of very
low quality. It has been recorded with a far-range micro-
phone across a reverberant room, and contains quite a bit of
non-speaker noise, e.g. coughing, rustling of paper and cloth-
ing, etc. Our system has not been designed to deal with such
conditions, nor has it been tuned to them in any way, since
the development set does not contain similar recordings. We
therefore argue that this file unfairly skews the average test
results. In tabel 4, the column “tst2013\E06” lists the results
when this file is excluded from the evaluation. These error
rates are more in line with those obtained on the dev set. The
results in this table suggest that for TED talks, in the absence
of a manual segmentation, a recognition performed on the
whole talk is preferrable to using an automatically generated
segmentation. We suspect, however, that this conclusion is
fairly domain-specific. An automatic segmentation is essen-
tial for files with more music, jingles, applause, laughter, and
other non-speaker noise.

7. Conclusion

We have presented the various components in the German
ASR system, how they were set up, trained, and combined,
to obtain accurate recognitions on the various data sets of
the IWSLT evaluation task. Worthy of note is the acous-
tic model training, which was done almost entirely on pub-
licly available data, without expert human transcriptions, us-
ing a lightly supervised training technique. Final evaluation
on the unsegmented test set was performed in two different
ways. Once with an automatically generated segmentation,
and once without segmentation at all. It was found that, even
though an oracle segmentation leads to optimal recognition
results, avoiding segmentation altogether is preferrable to us-
ing an automatically generated one, when an oracle segmen-
tation is not available.
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Abstract

This paper presents NTT-NAIST SMT systems for English-
German and German-English MT tasks of the IWSLT 2013
evaluation campaign. The systems are based on general-
ized minimum Bayes risk system combination of three SMT
systems: forest-to-string, hierarchical phrase-based, phrase-
based with pre-ordering. Individual SMT systems include
data selection for domain adaptation, rescoring using recur-
rent neural net language models, interpolated language mod-
els, and compound word splitting (only for German-English).

1. Introduction

Spoken language is a very important and also challenging
target for machine translation. MT tasks in the IWSLT
evaluation campaign [1] focus on translating subtitles of
speech from TED Talks. These subtitles are clean transcrip-
tions without disfluencies that sometimes appeared in origi-
nal talks. These talks can be expected to be similar to writ-
ten texts that have been tackled in recent machine transla-
tion studies, as the talks are logically and syntactically well-
organized compared to conversational speeches.

In our system this year, we focused on applying syntax-
oriented translation technologies for statistical machine
translation (SMT) such as forest-to-string translation and
syntax-based pre-ordering. We also made several improve-
ments to the base SMT models: domain adaptation by train-
ing data selection among different data sources; rescoring us-
ing recurrent neural network language models (RNNLMs);
n-gram language model interpolation; compound word split-
ting for German compounds; and system combination of dif-
ferent types of SMT systems based on generalized minimum
Bayes risk (GMBR) framework. This paper presents details
of our systems and reports the results in German-English and
English-German MT tasks in the evaluation campaign.

2. Translation Methods

The main feature of our system for this evaluation is that we
perform translation using three different translation models
and combine the results through system combination. Each
of the three methods is described briefly below.

2.1. Phrase-based Machine Translation

Phrase-based machine translation (PBMT; [2]) models the
translation process by splitting the source sentence into
phrases, translating the phrases into target phrases, and re-
ordering the phrases into the target language order. PBMT is
currently the most widely used method in SMT as it is robust,
does not require the availability of linguistic analysis tools,
and achieves high accuracy, particularly for languages with
similar syntactic structure.

2.2. Hierarchical Phrase-based Machine Translation

Hierarchical phrase-based machine translation (Hiero; [3])
expands the class of translation rules that can be used in
phrase-based machine translation by further allowing rules
with gaps that can be filled in a hierarchical fashion. Hiero
is generally considered to be more accurate than PBMT on
language pairs that are less monotonic, but also requires a
significantly larger amount of memory and decoding time.
As the German-English pair has a significant amount of re-
ordering, particularly with movement of verbs, we can ex-
pect that Hiero will be able to handle these reorderings more
appropriately in some cases.

2.3. Forest-to-string Machine Translation

Tree-to-string machine translation (T2S; [4]) performs trans-
lation by first syntactically parsing the source sentence, then
translating from sub-structures of the parse to a string in
the target language. Forest-to-string machine translation
(F2S; [5]) generalizes this framework, making it possible to
not only translate the single one-best syntactic parse, but a
packed forest that encodes many possible parses, helping to
pass along some of the ambiguity of parsing to be resolved
during translation. While there are a number of proposed
methods for incorporating source-side syntax into the trans-
lation process, here we use a method based on tree-to-string
transducers [6].

Syntax-driven methods such as T2S and F2S are particu-
larly useful for language pairs with extremely large amounts
of reordering, as the syntactic parse can help guide the ac-
curate re-ordering of entire phrases or clauses. On the other
hand, these methods are highly dependent on parsing accu-
racy, and also have limits on the rules that can be extracted,



and are somewhat less robust than the previous two methods.

3. SMT Technologies
3.1. Training data selection

The target TED domain is different in both style and vocabu-
lary from many of the other bitexts, e.g. Europarl, Common-
Crawl (which we collectively call “general-domain” data1).
To address this domain adaption problem, we performed
adaptation training data selection using the method of [7].2

The intuition is to select general-domain sentences that are
similar to in-domain text, while being dis-similar to the aver-
age general-domain text.

To do so, one defines the score of an general-domain sen-
tence pair (e, f) as [8]:

[INE(e)−GENE(e)] + [INF (f)−GENF (f)] (1)

where INE(e) is the length-normalized cross-entropy of e
on the English in-domain LM. GENE(e) is the length-
normalized cross-entropy of e on the English general-domain
LM, which is built from a sub-sample of the general-domain
text. By taking a sub-sample (same size as the target-domain
data), we reduce training time and avoid training and testing
language models on the same general-domain data. Simi-
larly, INF (f) and GENF (f) are the cross-entropies of f
on Foreign-side LM. Finally, sentence pairs are ranked ac-
cording to Eq. 1 and those with scores lower than some
empirically-chosen threshold e.g. we choose this threshold
by comparing BLEU on the dev set) are added together with
the in-domain bitext for translation model training. Here,
the LMs are Recurrent Neural Network Language Models
(RNNLMs), which have been shown to outperform n-gram
LMs in this problem [7].

3.2. Syntactic Rule-based Pre-ordering

Preordering is a method that attempts to first re-order the
source sentence into a word order that is closer to the target.
As German and English have significantly different word or-
der, we can imagine that this will help our accuracy for this
language pair.

3.2.1. German-to-English

We applied the clause restructuring method of Collins et al.
[9] for German pre-ordering. The method is mainly based
on moving German verbs in the end of clause structures to-
wards the beginning of the clause. We re-implemented the
method for German parse trees created using the Berkeley
parser trained on TIGER corpus. We ignored some additional
syntactic information such as subject markers and heads im-
plemented in the original method of [9], because we used a

1To give a sense of the domain difference, a 4-gram LM trained with
Kneser-Ney smoothing on TED data gives a perplexity of 355 on the general
domain data, compared to a perplexity of 99 on held-out TED data.

2Code/scripts available at http://cl.naist.jp/∼kevinduh/a/acl2013

different syntactic parser that did not provide this informa-
tion.

3.2.2. English-to-German

We also tried to apply pre-ordering to English-to-German.
We essentially did this by reversing the Collins German-to-
English rules by moving some words towards the end of their
siblings based on their part-of-speech tags as follows:

• in main clauses, VB words were moved,
• in subordinate clauses, MD, VBP, VBD, VBZ words

were moved.

3.3. RNNLM Rescoring

Continuous-space language models using neural networks
have attracted recent attention as a method to improve the
fluency of output of MT or speech recognition. In our sys-
tem, we used the recurrent neural network language model
(RNNLM) of [10].3 This model uses a continuous space rep-
resentation over the language model state that is remembered
throughout the entire sentence, and thus has the potential to
ensure the global coherence of the sentence to the greater ex-
tent than simpler n-gram language models.

We incorporate the RNNLM probabilities through
rescoring. For each system, we first output a 10,000-best list,
then calculate the RNNLM log probabilities and add them
as an additional feature to each translation hypothesis. We
then re-run a single MERT optimization to find ideal weights
for this new feature, and then extract the 1-best result from
the 10,000-best list for the test set according to these new
weights. The parameters for RNNLM training are tuned on
the dev set to maximize perplexity, resulting in 300 hidden
layers, 300 classes, and 4 steps of back-propogation through
time.

3.4. German compound word splitting

German compound words present sparsity challenges for ma-
chine translation. To address this, we split German words
following the general approach of [11]. The idea is to split
a word if the geometric average of its subword frequen-
cies is larger than whole word frequency. In our imple-
mentation, for each word, we searched for all possible de-
compositions into two sub-words, considering the possibil-
ity of deleting common German fillers “e”, “es”, and “s” (as
in ”Arbeit+s+tier”). For simplicity, we did not experiment
with splitting into three or more sub-words as done in the
compound-splitter.perl script distributed with the
Moses package. The unigram frequencies for the subwords
and whole word is computed from the German part of the bi-
text. This simple algorithm is especially useful for handling
out-of-vocabulary and rare compound words that have high
frequency sub-words in the training data. For the F2S sys-

3http://www.fit.vutbr.cz/~imikolov/rnnlm/



tem, sub-words are given the same POS tag as the original
whole word.

In the evaluation campaign, we performed compound
splitting only in the German-to-English task. We do not at-
tempt to split German words for the English-to-German task,
since it is non-trivial to handle recombination of German split
words after reordering and translation.

3.5. GMBR system combination

We used a system combination method based on Generalized
Minimum Bayes Risk optimization [12], which has been suc-
cessfully applied to different types of SMT systems for patent
translation [13]. Note that our system combination only
picks one hypothesis from an N-best list and does not gen-
erate a new hypothesis by mixing partial hypotheses among
the N-best.

3.5.1. Theory

Minimum Bayes Risk (MBR) is a decision rule to choose
hypotheses that minimize the expected loss. In the task of
SMT from a French sentence (f ) to an English sentence (e),
the MBR decision rule on δ(f)→ e′ with the loss function L
over the possible space of sentence pairs (p(e, f)) is denoted
as:

argmin
δ(f)

∑
e

L(δ(f)|e)p(e|f) (2)

In practice, we approximate this using N-best list N(f) for
the input f .

argmin
e′∈N(f)

∑
e∈N(f)

L(e′|e)p(e|f) (3)

Although MBR works effectively for re-ranking single
system hypotheses, it is challenging for system combination
because the estimated p(e|f) from different systems cannot
be reliably compared. One practical solution is to use uni-
form p(e|f) but this does not achieve Bayes Risk. GMBR
corrects by parameterizing the loss function as a linear com-
bination of sub-components using parameter θ:

L(e′|e;θ) =
K∑

k=1

θkLk(e
′|e) (4)

For example, suppose the desired loss function is
“1.0−BLEU”. Then the sub-components could be
“1.0−precision(n-gram) (1 ≤ n ≤ 4)” and “brevity
penalty”.

Assuming uniform p(e|f), the MBR decision rule can be
denoted as:

argmin
e′∈N(f)

∑
e∈N(f)

L(e′|e;θ) 1

|N(f)|

= argmin
e′∈N(f)

∑
e∈N(f)

K∑
k=1

θkLk(e
′|e) (5)

To ensure that the uniform hypotheses space gives the
same decision as the original loss in the true space p(e|f),
we use a small development set to tune the parameter θ as
follows. For any two hypotheses e1, e2, and a reference
translation er (possibly not in N(f)) we first compute the
true loss: L(e1|er) and L(e2|er). If L(e1|er) < L(e2|er),
then we would want θ such that:∑

e∈N(f)

K∑
k=1

θkLk(e1|e) <
∑

e∈N(f)

K∑
k=1

θkLk(e2|e) (6)

so that GMBR would select the hypothesis achieving lower
loss. Conversely if e2 is a better hypothesis, then we want
opposite relation:

∑
e∈N(f)

K∑
k=1

θkLk(e1|e) >
∑

e∈N(f)

K∑
k=1

θkLk(e2|e) (7)

Thus, we directly compute the true loss using a development
set and ensure that our GMBR decision rule minimizes this
loss.

3.5.2. Implementation

We implement GMBR for SMT system combination as fol-
lows.

First we run SMT decoders to obtain N-best lists for all
sentences in the development set, and extract all pairs of hy-
potheses where a difference exists in the true loss. Then
we optimize θ in a formulation similar to a Ranking SVM
[14]. The pair-wise nature of Eqs. 6 and 7 makes the prob-
lem amendable to solutions in “learning to rank” literature
[15]. We used BLEU as the objective function and the sub-
components of BLEU as features (system identity feature
was not used). There is one regularization hyperparameter
for the Ranking SVM, which we set by cross-validation over
the development set (dev2010).

3.6. What Didn’t Work Immediately

We also tried several other methods that did not have a clear
positive effect and were thus omitted from the final system.
For example, we attempted to improve alignment accuracy
using the discriminative alignment method proposed by [16]
training on the 300 hand-aligned sentences.4 However, while
this provided small gains in alignment accuracy on a held-out
set, the gains were likely not enough, and MT results were in-
conclusive. We also attempted to use the reordering method
of [17] as implemented in lader,5 again trained on the same
300 hand-aligned sentences, but increases in reordering ac-
curacy on a held-out set were minimal. We believe that both
of these techniques are promising, but require a larger set of
hand-aligned data to provide gains large enough to appear in
MT results.

4http://user.phil-fak.uni-duesseldorf.de/˜tosch/
downloads.html

5http://phontron.com/lader



4. Experiments
4.1. Setup

4.1.1. System overview

We used three individual SMT systems for each language
pairs: forest-to-string (F2S), hierarchical phrase-based (Hi-
ero), and phrase-based with pre-ordering (Preorder). In some
of our comparisons we also use simple phrase-based trans-
lation without preordering (PBMT). F2S was implemented
with Travatar [18] and Preorder, PBMT, and Hiero were im-
plemented using Moses [19].

For the Moses models, we generally used the default set-
tings, but with Good-Turing phrase table smoothing. For F2S
translation we used Egret6 as a parser, and created forests
using dynamic pruning including all edges that occurred in
the 100-best hypotheses. We trained the parsing model us-
ing the Berkeley parser over the Wall Street Journal section
of the Penn Treebank7 for English, and TIGER corpus [20]
for German. For model training, the default settings for Tra-
vatar were used, with the exception of changing the num-
ber of composed rules to 6 and using Kneser-Ney rule table
smoothing.

All systems were evaluated using the standard BLEU
score [21] and also RIBES [22], a metric designed specifi-
cally to show whether reordering is being performed prop-
erly. All systems were optimized towards BLEU score. We
measure statistical significance between results with boot-
strap resampling with p > 0.05. Bold numbers in each table
indicate the best system, and all systems that do not show a
statistically significant difference from the best system [23].

All words were lowercased prior to translation, and fi-
nally recased by a SMT-based recaser as implemented in
Moses.

4.1.2. Translation models

We trained the translation models using WIT3 training data
(138,499 sentences) and 1,000,000 sentences selected over
other bitexts (Europarl, News Commentary, and Common
Crawl) by the method described in 3.1.

4.1.3. Language models

We used two types of word n-gram language models of Ger-
man and English: interpolated 6-gram and Google 5-gram.

The interpolated 6-gram LMs were from linear interpola-
tion of several 6-gram LMs on different data sources (WIT3,
Europarl, News Commentary, Common Crawl, Common
News, and MultiUN). The interpolation weights were opti-
mized for test set perplexities on the development set, us-
ing interpolate-lm.perl in Moses. Individual 6-
gram LMs were trained by SRILM with modified Kneser-
Ney smoothing.

6https://github.com/neubig/egret/
7http://www.cis.upenn.edu/˜treebank/

System tst2011 tst2012 tst2013
Combination 26.04 22.86 24.60
F2S 26.27 22.59 24.34
Hiero 24.55 20.66 22.80
Preorder 25.30 21.84 24.08

Table 1: Official BLEU results for English-to-German (case-
sensitive).

The Google 5-gram LMs were from Google Web 1T N-
grams. We limited vocabulary words to those with 8,192 or
more in unigram counts and all words were mapped to lower-
case. Then we trained 5-gram LMs with Witten-Bell smooth-
ing.

4.1.4. Recaser models

The Moses-based recaser model for both English and Ger-
man were trained by train-recaser.perl using mono-
lingual resources (WIT3, Europarl, News Commentary,
Common Crawl, Common News, and MultiUN).

4.2. Full System Results

Our full system was the combination of F2S, Hiero, and Pre-
order. Tables 1 and 2 show the evaluation results for the of-
ficial test sets in German-to-English and English-to-German,
respectively. In German-to-English, each individual system
showed similar performance in BLEU and the system combi-
nation achieved much higher BLEU score, 2.8 points higher
than Preorder. In English-to-German, F2S showed the best
performance among the three individual systems and the
system combination was not so effective as in German-to-
English.

The contributions of individual systems can be measured
by the number of each system’s output chosen by the system
combination, as shown in Table 3. These results suggest:

• When one system is much better than the others, our
system combination highly relies on the best system
and has a little room for improvement. (English-to-
German)

• When the individual systems are different each other,
the voting-like effect of our system combination im-
proves the overall performance even if individual per-
formances are similar. (German-to-English)

These findings are similar to our system combination results
in English-Japanese translation [24].

With respect to recasing, slight BLEU drops were found
between case-sensitive and case-insensitive evaluation as
shown in Table 4. There was a larger drop in English-German
than German-English, due to the large number of required re-
casing for German nouns.



System tst2013
Combination 25.83
F2S 23.03
Hiero 22.76
Preorder 23.04

Table 2: Official BLEU results for German-to-English (case-
sensitive, without disfluency).

Task F2S Hiero Preorder ALL
English-German 868 0 125 993
German-English 304 142 916 1,362

Table 3: Number of each system’s outputs chosen by system
combination for tst2013.

En-De De-En
case-sensitive 24.60 25.83
case-insensitive 25.79 26.45

Table 4: Official BLEU results by Combination systems on
tst2013 set with case-sensitive and case-insensitive evalua-
tion (without disfluency).

4.3. Effect of Data Selection

Experimental results on adaptation training data selection
is shown in Table 5. By adding 1 million (1M) general-
domain sentences, we improve a baseline de-en PBMT sys-
tem (which is only trained from in-domain TED data) from
27.26 to 28.09 BLEU. We improve from 21.53 to 22.11
BLEU in the en-de PBMT system. This 1M general-
domain data is combined with the in-domain TED bitext
in subsequent system building, which required sufficiently
fewer computational resources than using the entire general-
domain data (especially for the F2S system).

Interestingly, we have found the improvements in Table
5 are not as large as that reported in [7] despite the simi-
lar task setup. The results are not directly comparable due
to different dev/test splits and random initializations. Nev-
ertheless, it has come to our attention that the random sam-
pling of general-domain data for GENE(e) and GENF (f)
in Eq. 1 appears to cause large differences in the subsequent
RNNLMs. This is because the RNNLMs are highly opti-
mized on perplexity. We suspect that using only INE(e) and
INF (f) as the sentence selection criteria (or using the sim-
pler n-grams for GENE(e) and GENF (f) values) may give
more stable results, though we have not tried comprehensive
experiments to validate this.

4.4. Translation Method Comparison

In this section, we provide a brief comparison of the three
translation methods mentioned in Section 2 on tst2010 data.
For all systems we used the TED data and 1M selected sen-
tences for training, and used the language model described

Number of Selected General-domain Sentences
0 100k 500k 1M 2M all

de-en 27.26 27.51 27.55 28.09 27.43 27.44
en-de 21.53 21.58 21.73 22.11 21.92 22.09

Table 5: BLEU results for adaptation training data selection.
These are tst2010 results using a preliminary PBMT system,
so they are not directly comparable to other results in this
paper.

en-de de-en
BLEU RIBES BLEU RIBES

PBMT 23.11 80.56 30.51 84.68
Hiero 23.33 81.17 30.54 84.51
F2S 24.30 81.09 30.37 83.44

Table 6: A comparison between different translation methods
with exactly matched training conditions.

Baseline +Splitting
PBMT 30.36 30.51
Hiero 30.22 30.54
F2S 29.82 30.36

Table 7: BLEU results for compound splitting.

in the previous section. None of the results include RNNLM,
and are somewhat preliminary, so they do not match our final
submission exactly.

The results are shown in Table 6. From these results,
we can see that given exactly the same data, alignments,
and language model, F2S achieved the highest accuracy on
English-German, and PBMT and Hiero achieved higher ac-
curacy on German-English. For English-German, we noticed
that the F2S system did a significantly better job of accu-
rately generating verbs at the end of the German sentence,
demonstrating its superior capability for reordering. For
German-English, on the other hand, F2S achieved a some-
what counter-intuitive low score on the reordering-based
measure RIBES. Upon an analysis of the results, we found
that the F2S system was largely getting the reordering right,
but occasionally making big changes in reordering large
clauses that were not reflected in the German reference. It
is likely that if we optimized towards RIBES, or a combina-
tion of BLEU and RIBES [25] we might get better results.

4.5. Effect of Compound Splitting

Next, we examine the effect of compound splitting for
German-English translation. From the results in Table 7, we
can see that compound splitting provides a gain for all sys-
tems, and particularly so for F2S translation.



en-de de-en
n-gram +RNNLM n-gram +RNNLM

PBMT 23.11 23.81 30.51 31.03
Hiero 23.33 24.31 30.54 31.80
F2S 24.30 25.02 30.48 30.85

Table 8: BLEU results for RNNLM rescoring.

4.6. Effect of RNNLM

Next, we examine the effect of adding RNNLM to the trans-
lation accuracy. From the results in Table 8, we can see that
the RNNLM provided significant gains in all cases, ranging
from 0.4-1.3 BLEU points. Examining the results manually,
we it was difficult to identify one clear reason for the im-
provements in the scores, but we did see some subjective im-
provements in agreement between prepositions in coordinate
structures, and less collapse of syntactic structure around un-
known words.

5. Conclusion
We used various SMT technologies for this year’s evalua-
tion campaign. Most of them had positive effects on the final
translation performance. The forest-to-string SMT had the
largest contribution in English-to-German, and the GMBR
system combination largely increased the performance in
German-to-English.
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S. Khudanpur, “Recurrent neural network based lan-
guage model.” in Proc. 11th InterSpeech, 2010, pp.
1045–1048.

[11] P. Koehn and K. Knight, “Empirical methods for com-
pound splitting,” in Proc. EACL, 2003.

[12] K. Duh, K. Sudoh, X. Wu, H. Tsukada, and M. Na-
gata, “Generalized minimum bayes risk system combi-
nation,” in Proc. IJCNLP, 2011, pp. 1356–1360.

[13] K. Sudoh, K. Duh, H. Tsukada, M. Nagata, X. Wu,
T. Matsuzaki, and J. Tsujii, “NTT-UT statistical ma-
chine translation in NTCIR-9 PatentMT,” in Proc. NT-
CIR, 2011.

[14] T. Joachims, “Training linear svms in linear time,” in
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2006, pp. 217–226.

[15] C. He, C. Wang, Y.-X. Zhong, and R.-F. Li, “A sur-
vey on learning to rank,” in Machine Learning and Cy-
bernetics, 2008 International Conference on, vol. 3.
IEEE, 2008, pp. 1734–1739.

[16] J. Riesa and D. Marcu, “Hierarchical search for word
alignment,” in Proc. ACL, 2010, pp. 157–166.

[17] G. Neubig, T. Watanabe, and S. Mori, “Inducing a dis-
criminative parser to optimize machine translation re-
ordering,” in Proc. EMNLP, Korea, July 2012, pp. 843–
853.

[18] G. Neubig, “Travatar: A forest-to-string machine trans-
lation engine based on tree transducers,” in Proc. ACL
Demo Track, Sofia, Bulgaria, August 2013.

[19] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst, “Moses: Open source toolkit for statisti-
cal machine translation,” in Proc. ACL, Prague, Czech
Republic, 2007, pp. 177–180.

[20] S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra,
E. König, W. Lezius, C. Rohrer, G. Smith, and
H. Uszkoreit, “Tiger: Linguistic interpretation of a ger-
man corpus,” Research on Language and Computation,
vol. 2, no. 4, pp. 597–620, 2004.

[21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: a method for automatic evaluation of machine
translation,” in Proc. ACL, Philadelphia, USA, 2002,
pp. 311–318.



[22] H. Isozaki, T. Hirao, K. Duh, K. Sudoh, and
H. Tsukada, “Automatic evaluation of translation qual-
ity for distant language pairs,” in Proc. EMNLP, 2010,
pp. 944–952.

[23] P. Koehn, “Statistical significance tests for machine
translation evaluation,” in Proc. EMNLP, 2004.

[24] K. Sudoh, H. Tsukada, M. Nagata, S. Hoshino, and
Y. Miyao, “NTT-NII statistical machine translation in
NTCIR-10 PatentMT,” in Proc. NTCIR, 2013.

[25] K. Duh, K. Sudoh, X. Wu, H. Tsukada, and M. Na-
gata, “Learning to translate with multiple objectives,”
in Proc. ACL, 2012.



The 2013 KIT IWSLT Speech-to-Text Systems for German and English

Kevin Kilgour, Christian Mohr, Michael Heck, Quoc Bao Nguyen, Van Huy Nguyen, Evgeniy Shin,
Igor Tseyzer, Jonas Gehring, Markus Müller, Matthias Sperber, Sebastian Stüker and Alex Waibel
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Abstract

This paper describes our English Speech-to-Text (STT)
systems for the 2013 IWSLT TED ASR track. The systems
consist of multiple subsystems that are combinations of dif-
ferent front-ends, e.g. MVDR-MFCC based and lMel based
ones, GMM and NN acoustic models and different phone
sets. The outputs of the subsystems are combined via confu-
sion network combination. Decoding is done in two stages,
where the systems of the second stage are adapted in an unsu-
pervised manner on the combination of the first stage outputs
using VTLN, MLLR, and cMLLR.
Index Terms: speech recognition, IWSLT, TED talks, eval-
uation system, system development

1. Introduction
[1] The International Workshop on Spoken Language Trans-
lation (IWSLT) offers a comprehensive evaluation cam-
paign on spoken language translation. One part of
the campaign focuses on the translation of TED Talks
(http://www.ted.com/talks), short 5-25min presentations by
people from various fields related in some way to Technol-
ogy, Entertainment, and Design (TED) [2]. In order to eval-
uate different aspects of this task IWSLT organizes several
evaluation tracks on this data covering the aspects of auto-
matic speech recognition (ASR), machine translation (MT),
and the full-fledged combination of the two of them into
speech translation systems.

The goal of the TED ASR track is the automatic tran-
scription of TED lectures on a given segmentation, in order
to interface with the machine translation components in the
speech-translation track. The quality of the resulting tran-
scriptions are measured in word error rate (WER).

In this paper we describe our English ASR systems with
which we participated in the TED ASR track of the 2013
IWSLT evaluation campaign. This year, our system is a fur-
ther development of our last year’s evaluation system [3] and
makes use of system combination and cross-adaptation, by
utilising both GMM and Neural Network acoustic models
which are trained with different acoustic front-ends and em-

ploy different phoneme sets. We also included TED talks
available via TED’s website by training on them in a slightly
supervised manner.

We submitted primary systems for both the German and
English evaluations.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by section 3 which provides a description of
the two acoustic front-ends used in our system and section
4 which describes our segmentation setup. An overview of
the techniques used to build our acoustic models is given in
section 5. We describe the language model used for this eval-
uation in section 6 and our decoding strategy and results are
presented in sections 7 and 8.

2. Data Resources
2.1. Training Data

For acoustic model training we used the following English
data sources:

• 200 hours of Quaero training data from 2010 to 2012.

• 18 hours of various noise data, such as snippets of ap-
plause and music.

• 158 hours of data downloaded from the TED talks
website that was released before the cut-off date of 31
December 2010, including the corresponding subtitles
provided by the TED conferences archive.

and the following German data sources:

• 179 hours of Quaero training data from 2010 to 2012.

• 24 hours of broadcast news data

These training set or subsets hereof are also used for the
training of the automatic segmenters, that are applied to the
evaluation data before decoding.

For English language model training and vocabulary se-
lection, we used the subtitles of TED talks and text data from



Text corpus # Words
TED 3M
News + News commentary 2,114M
GIGA parallel 523M
Gigaword 4 1,800M
UN + Europarl 376M
Google Books Ngrams (subset) (1000M ngrams)

Table 1: English language modeling data after cleaning and
data selection. The total number of words was 4.8 billion,
not counting Google Books.

Text corpus # Words
TED (translated) 2,259k
Callhome 150k
Europarl 47,306k
HUB5 19k
MultiUN 5,849k
News+News Commentary 284,415k
ECI 12,652k
Euro Language Newspaper 86,785k
German Political Speeches 5,514k
Common Crawl 47,046k
Google Web Ngrams 1.3T

Table 2: German language modeling data after cleaning and
data selection. In total, we used 492 million words, not
counting Google Ngrams.

various sources (see Table 1) and for the German language
model training and vocabulary selection, we used translated
subtitles of TED talks and text data from various sources (see
Table 2).

2.2. Test Data

Table 3 describes three test sets (“tst2011”, “tst2012” and
“tst2013”) used for this year’s English evaluation campaign,
as well as our development set for system development and
parameter optimization (“dev2012”). “tst2011” is comprised
of TED talks newer than December 2010 and serves as
progress test set to measure the improvement in systems from
2011 onwards. “tst2012” is last year’s evaluation set, and
“tst2013” is a collection of some of the most recent record-
ings made available by TED. All test sets were used with the
original pre-segmentation provided by the IWSLT organiz-
ers, except for this year’s evaluation set (“tst2013”) which
has been segmented automatically before decoding. For the
German system on a single test set “dev2013” was available.

3. Feature Extraction
Our systems are built using several different front ends that
use various inputs for computing deep bottle neck features.

Set #talks #utt dur dur/utt
dev2012 10 1144 1.7h 5.4s
tst2011 8 818 1.1h 4.9s
tst2012 11 1124 1.7h 5.6s
tst2013 28 1438 4.2h 10.5s

Table 3: Statistics of the development set (“dev2012”) and
the test sets (“tst2011”, “tst2012” and “tst2013”), including
the total number of talks (#talks), the total number of utter-
ances (#utt), the overall speech duration (dur), and average
speech duration per utterance (dur/utt). “tst2013” has been
segmented automatically.

The two main input variants, each using a frame shift of 10ms
and a frame size of 32ms, are the MFCC+MVDR (M2) fea-
tures that have been shown to be very effective when used in
BNFs [4] and standard lMEL features which generally out-
perform MFCCs as DBNF inputs. These standard features
are often augmented by tonal features. In [?] we demon-
strate, that the addition of tonal (T) features not only greatly
reduces the WER on tonal languages like Vietnamese and
Cantonese but also results in small gains on non-tonal lan-
guages like English.

13 frames (+-6 frames ) are stacked as the DBNF input
which consists of 4-5 hidden layers each containing 1200-
1600 units followed by a 42 unit bottleneck, a further 1200-
1600 unit hidden layer and an output layer of 6000 context
dependent phone states for the German systems and 8000
for the English systems. The first 4-5 hidden layers are pre-
trained layer-wise as denoising autoencoders after which the
network the finetuned as a whole [5]. As can be seen in fig-
ure 1 the layers after the bottlenet are discareded and 13 (+-6
) bottleneck frames are stacked and reduced back down to a
42 dimensional input feature using LDA.

4. Automatic Segmentation

For this year’s ASR track, the evaluation set was provided
without manual sentence segmentation, thus automatic seg-
mentation of the target data was mandatory. We evaluated
the effectiveness of three different approaches to automatic
segmentation of audio data, which are:

a) Decoder based segmentation on hypotheses. A fast
decoding pass with one of our development systems was
done to determine speech and non-speech regions as in [6].
Segmentation is performed by consecutively splitting seg-
ments at the longest non-speech region with a minimal du-
ration of at least 0.3 seconds. b) GMM based segmentation
using speech, non-speech and silence models. This method
uses a Viterbi decoder and GMM models for the three afore-
mentioned categories of sounds. The general framework is
based on the one in [7], which was likewise derived from [8].
In contrast to the previous work, we made use of additional
features such as a zero crossing rate. c) SVM based segmen-
tation using speech and non-speech models, using the frame-
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Figure 1: Overview of our standard DBNF setup.

work introduced in [7]. The pre-processing makes use of an
LDA transformation on feature vectors after frame stacking
to effectively incorporate temporal information. The SVM
classifier is trained with the help of LIBSVM [9]. A 2-phased
post-processing is applied for final segmentation generation.

Table 4 shows the decoding performance of a confusion
network combination of hypotheses generated by five devel-
opment systems after a first pass decoding on the “dev2012”
set, for each preliminary application of the various tech-
niques for segmentation.

Segmentation WER #utt dur dur/utt
Manual 13.2% 1144 1.71h 5.4s
Decoder based 13.8% 594 1.83h 11.1s
SVM based 13.9% 431 1.78h 14.9s
GMM based 14.3% 695 1.77h 9.2s

Table 4: Decoding performance on and statistics of the de-
velopment set (“dev2012”) after automatic segmentation, in-
cluding the word error rate (WER), the total number of utter-
ances (#utt), the overall speech duration (dur), and average
speech duration per utterance (dur/utt).

On the English development set the decoder based ap-
proach resulted in the best performance in terms of WER, so
we decided in favor of the latter for application on the eval-
uation set. For the German system we used the SVM based

segmenters since it performed best on the German develop-
ment set.

5. Acoustic Modeling
We trained several different acoustic models for each lan-
guage.

5.1. Data Preprocessing

For the TED data only subtitles were available so the data
had to be segmented prior to training. In order to split the
data into sentence-like chunks, it was decoded to discrim-
inate speech and non-speech and a forced alignment given
the subtitles was done where only the relevant speech parts
detected by the decoding were used. The procedure is the
same that has been applied in [10].

5.2. AM training Setup

The models of all systems are context-dependent quinphones
with three states per phoneme, using a left-to-right HMM
topology without skip states. All English acoustic models
initially use 8,000 distributions and codebooks derived from
decision-tree based clustering of the states of all possible
quinphones. The German acoustic models use 6000 distri-
butions and codebooks.

The GMM models were trained by using incremental



splitting of Gaussians training (MAS) [11], followed by op-
timal feature space training (OFS) which is a variant of
semi-tied covariance (STC) [12] training using one global
transformation matrix, and finally refined by one iteration of
Viterbi training. All models further use vocal tract length
normalization (VTLN).

We trained multiple different GMM acoustic models by
combining different front-ends and different phoneme sets.
Section 7 elaborates the details of our system combination.

5.3. Hybrid Acoustic Model

We experimented with using neural network acoustic mod-
els. Using the same techniques described in the deep bot-
tleneck layer section we trained neural networks on various
input features and with different topologies. Our best setups
used deep bottleneck features stacked over a window of 13
frames, with 4-5 1600-2000 unit hidden layers and an output
layer containing 6016 context dependent phonestates. The
deep bottleneck features were extracted using an MLP with
5 1600 unit hidden layers prior to the 42 unit bottleneck layer.
Its input was 40 lMel (or MVDR+MFCC) and 14 tone fea-
tures stacked over a 13 frame window. Both neural networks
were pretrained as denoising autoencoders. On the eval2010
test set this system had a WER of 14.61%, which is 0.5%
better than this best non hybrid single pass system.

5.4. Pronunciation Dictionary

We used two different phoneme sets. The first one is based
on the CMU dictionary1 and is the same phoneme set as the
one used in last years system. It consists of 45 phonemes
and allophones. The second phoneme set is derived from
the BEEP dictionary2 and contains 44 phonemes and allo-
phones. Both sets use 7 noise tags and one silence tag each.
For the CMU phoneme set we generated missing pronunci-
ations with the help of FESTIVAL [13], while for the BEEP
dictionary we used Sequitur [14] instead. Both grapheme to
phoneme converters were trained on subsets of the respective
dictionaries.

5.5. Grapheme System

We built grapheme-based recognizer for both English and
German. In order to built the Englsih grapheme-based dic-
tionary, we used a data-driven approach to cluster the most
common combinations of letters in order to better reflect the
specifics of the English language. These clusters contain for
instance combinations such as sch, sh or th. We added these
in addition to all the letters of the English alphabet to the set
of phones.

Using this dictionary, be trained a system using flatstart
training on the training data of the 2011 training set. After
doing the context-independent flatstart training, we built a
context-dependent system on top of that.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz

As our best result, we archived to get a WER of 31.8%
using a clustertree with 6000 states. Since this WER is quite
high compared to the WER of our other systems, we decided
not to include this system either in our system-combination
or the submission.

The German grapheme system on the other hand per-
formed only slighty worse than our phoneme based system
and resulted in overall gains when included in the final sys-
tem combination.

5.6. BMMIE training

In order to improve the performance of acoustic model, the
Boosted Maximum Mutual Information Estimation training
(BMMIE) [15] is applied, it is a modified form of the Max-
imum Mutual Information (MMI) [16]. We wrote lattices
for discriminative training using a small unigram language
model as in [17]. After lattices generating, the BMMIE train-
ing is applied for three iterations with boosting factor b=0.5.
This approach resulted in about 0.6% WER improvement for
1st-pass sytems and about 0.4% WER for 2nd-pass systems.

6. Lanuage Models and Search Vocabulary

Language modeling was performed by building separate lan-
guage models for all (sub-)corpora using the SRILM toolkit
[18] with modified Kneser-Ney smoothing. These were then
linearly interpolated, with interpolation weights tuned using
held-out data from the TED corpus.

6.1. Subword Language Model for German

In order to select a sub-word vocabulary we first perform
compound splitting on all the text corpora and tag the split
compounds. Linking morphemes are attached to the proceed-
ing word. Wirtschaftsdelegationsmitglieder is, for example,
split into Wirtschafts+ Delegations+ Mitglieder (eng: mem-
bers of the economic delegation).

Our compound splitting algorithm requires a set of valid
sub-words and selects the best split from all possible splits
by maximizing the sum of the squares of all sub-word lengths
[19]. For the word Konsumentenumfrage this heuristic would
correctly choose Konsumenten Umfrag over Konsum Enten
Umfrage.

As a set of valid sub-words we selected the top k words
from a ranked word-list generated in the same mannar as our
English vocabulary. After applying coumpound splitting to
all our text corpora the same maximum likelihood vocabu-
lary selection method is used again to select the best vocab-
ulary from this split corpora resulting in a ranked vocabulary
containing both full words and sub-words tagged with a “+”.

Pronunciations missing from the initial dictionary are
created with both Festival and Mary [20]. The sub-word lan-
guage model is trained on the split corpora and tuning text
analogous to the English language model.



System Dev2012 Eval2011 Eval2012
M2+T-CMU 15.9 11.6 11.7
lMEL+T-CMU 16.1 11.4 11.4
M2+T-DLabel-CMU 15.8 11.2 11.5
M2+T-BEEP 16.2 12.0 12.6
lMEL+T-BEEP 16.1 12.2 12.6
M2+T-hyb-CMU 16.5 11.9 11.6
M2+T-hyb-BEEP 16.9 12.4 12.4
CNC-BEEP-01 13.7 9.8 9.5
M2+T-CMU 14.7 10.3 10.3
lMEL+T-CMU 15.0 10.2 10.1
M2+T-DLabel-CMU 14.5 10.3 10.1
M2+T-BEEP 14.7 10.8 10.5
lMEL+T-BEEP 14.4 10.6 10.6
CNC-BEEP-02 13.3 9.3 9.2
ROVER 13.3 9.2 9.0

Table 5: Results for English language on development data
and evaluation data.

7. Decoding Setup
The decoding was performed with the Janus Recognition
Tool-kit (JRTk) developed at Karlsruhe Institute of Tech-
nology and Carnegie Mellon University [21]. Our decod-
ing strategy is based on the principle of system combination
and cross-system adaptation. System combination works on
the principle that different systems commit different errors
that cancel each other out. Cross-system adaptation profits
from the fact that the unsupervised acoustic model adapta-
tion works better when performed on output that was created
with a different system that works approximately equally
well [22]. The final step in our system decoding set-up is
the ROVER combination of several outputs [23].

8. Results
We evaluated our systems on the IWSLT test sets 2011
(tst2011), 2012 (tst2012) and the 2012 dev set. We used the
dev2012 set as development set and for parameter optimiza-
tion and the eval 2012 set to compare our system with last
years evaluation results (see table 5). Last year our best sys-
tem had a WER of 12% on the eval 2012 set which we were
able to reduce to 9% with this year’s evaluation system.

9. Conclusions
In this paper we presented our English and German LVCSR
systems, with which we participated in the 2013 IWSLT eval-
uation.
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Abstract 
This research explores the effects of various training settings 
from Polish to English Statistical Machine Translation system 
for spoken language. Various elements of the TED parallel 
text corpora for the IWSLT 2013 evaluation campaign were 
used as the basis for training of language models, and for 
development, tuning and testing of the translation system. The 
BLEU, NIST, METEOR and TER metrics were used to 
evaluate the effects of data preparations on translation results. 
Our experiments included systems, which use stems and 
morphological information on Polish words. We also 
conducted a deep analysis of provided Polish data as 
preparatory work for the automatic data correction and 
cleaning phase.  

1. Introduction 
Polish is one of the most complex West-Slavic languages, 
which represents a serious challenge to any SMT system. The 
grammar of the Polish language, with its complicated rules 
and elements, together with a big vocabulary (due to complex 
declension) are the main reasons for its complexity. 
Furthermore, Polish has 7 cases and 15 gender forms for nouns 
and adjectives, with additional dimensions for other word 
classes. 

This greatly affects the data and data structure required 
for statistical models of translation. The lack of available and 
appropriate resources required for data input to SMT systems 
presents another problem. SMT systems should work best in 
specified, not too wide text domains and will not perform well 
for general use. Good quality parallel data, especially in a 
required domain has low availability. In general, Polish and 
English differ also in syntax.  English is a positional language, 
which means that the syntactic order (the order of words in a 
sentence) plays a very important role, particularly due to 
limited inflection of words (e.g. lack of declension endings). 
Sometimes, the position of a word in a sentence is the only 
indicator of the sentence meaning. In the English sentence, 
the subject group comes before the predicate, so the sentence 
is ordered according to the Subject-Verb-Object (SVO) 
schema. In Polish, however, there is no specific word order 
imposed and the word order has no decisive influence on the 
understanding of the sentence. One can express the same 
thought in several ways, which is not possible in English. For 
example, the sentence „I bought myself a new car.” can be 
written in Polish as „Kupiłem sobie nowy samochód”, or 
”Nowy samochód sobie kupiłem.”, or ”Sobie kupiłem nowy 
samochód.”, or „Samochód nowy sobie kupiłem.” Differences 
in potential sentence orders make the translation process more 
complex, especially when working on a phrase-model with no 
additional lexical information.  

As a result the progress in the development of SMT systems 
for Polish is substantially slower as compared to other 
languages. The aim of this work is to create an SMT system 
for translation from Polish to (and the other way round, i.e. 
from English to Polish) to address the IWSLT 2013 [2] 
evaluation campaign requirements. This paper is structured as 
follows: Section 2 explains the Polish data preparation. 
Section 3 presents the English language issues. Section 4 
describes the translation evaluation methods. Section 5 
discusses the results. Sections 6 and 7 summarize potential 
implications and future work. 

2. Preparation of the Polish data 
The Polish data in the TED talks (about 15 MB) include 
almost 2 million words that are not tokenized. The transcripts 
themselves are provided as pure text encoded with UTF-8 and 
the transcripts are prepared by the IWSLT team [3]. In 
addition, they are separated into sentences (one per line) and 
aligned in language pairs. 

It should be emphasized that both automatic and manual 
preprocessing of this training information was required. The 
extraction of the transcription data from the provided XML 
files ensured an equal number of lines for English and Polish. 
However, some of the discrepancies in the text parallelism 
could not be avoided. These discrepancies are mainly 
repetitions of the Polish text not included in the English text. 

Another problem is that TED 2013 data is full of errors. 
Let us first take spelling errors that artificially increase the 
dictionary size and make the statistics worse. We took a very 
large Polish dictionary [23] that consists of 2,532,904 
different words. Then, we created a dictionary from TED 
2013 data and it consisted of 92,135 unique words. 
Intersection of those 2 dictionaries resulted in a new 
dictionary containing 58,393 words. It means that in TED 
2013 we found 33742 words that do not exist in Polish 
(spelling errors or named entities). This is as much as 36.6% 
of the whole TED Polish vocabulary. 

To verify that, we conducted a manual analysis on a 
sample of the first 300 lines from the TED corpora. We found 
that there were 4268 words containing a total of 35 kinds of 
spelling errors that occurred many times. But what we found 
to be more problematic was that there were sentences with 
odd nesting, such as: 

Part A, Part A, Part B, Part B. 
e.g. 

“Ale będę starał się udowodnić, że mimo złożoności, Ale będę 
starał się udowodnić, że mimo złożoności, istnieją pewne 
rzeczy pomagające w zrozumieniu. istnieją pewne rzeczy 
pomagające w zrozumieniu.” 



We can see that some parts (words or full phrases or even 
whole sentences) were duplicated. Furthermore, there are 
segments containing repeated whole sentences inside one 
segment. For instance:  

Sentence A. Sentence A. 
e.g. 

“Zakumulują się u tych najbardziej pijanych i skąpych. 
Zakumulują się u tych najbardziej pijanych i skąpych.” 

or: 

Part A, Part B, Part B, Part C 
e.g. 

” Matka może się ponownie rozmnażać, ale jak wysoką cenę 
płaci, przez akumulację toksyn w swoim organizmie - przez 
akumulację toksyn w swoim organizmie - śmierć pierwszego 
młodego.” 

We identified 51 out of 300 segments that were mistaken in 
such way. Overall, in the sample test set we found that we got 
about 10% of spelling errors and about 17% of insertion 
errors. However, it must be noted that we simply took the first 
300 lines, but in the whole text there are places where more 
problems occur. So, to some extent, this confirms that there 
are problems related to the dictionary.  

Additionally, there are a number of English names, words 
and phrases (nor translated) present in the Polish text.  There 
are also some sentences originating from different languages 
(e.g., German and French). Additionaly some translations are 
just incorrect or too indirect with not enough precision in 
translation, e.g. “And I remember there sitting at my desk 
thinking, Well, I know this. This is a great scientific 
discovery. ”  was translated into “ Pamiętam, jak 
pomyślałem: To wyjątkowe, naukowe odkrycie.” And the 
correct translation would be “Pamiętam jak siedząc przy 
biurku pomyślałem, dobrze, wiem to. To jest wielkie 
naukowe odkrycie”. 

The size of the vocabulary is 92,135 Polish unique words 
and 41,684 English unique words. The disproportionate 
vocabulary sizes are also a challenge especially in translation 
from English to Polish. 

Another serious problem (especially for Statistical 
Machine Translation) that we found was that English 
sentences were translated in an improper manner. 

There were four main problems: 

1. Repetitions – when part of the text is repeated 
several times after translation, i.e. 

a. EN: Sentence A. Sentence B. 
b. PL: Translated Sentence A. Translated 

Sentence B. Translated Sentence B. 
Translated Sentence B. 

2. Wrong usage of words – when one or more words 
used for the Polish translation change slightly the 
meaning of the original English sentence, i.e. 

a. EN: We had these data a few years ago. 
b. PL (the proper meaning of the polish 

sentence): We’ve been delivered these 
data a few years ago. 

3. Indirect translations, usage of metaphors – when the 
Polish translation uses different wording in order to 
preserve the meaning of the original sentence, 
especially when the exact translation would result in 
a sentence with no sense. Many metaphors are 
translated this way. 

4. Translations that are not precise enough – when the 
translated fragment does not contain all the details of 
the original sentence, but only its overall meaning is 
the same. 

Looking at the style of the translated text, it can be concluded 
that the text was translated by several people who translated it 
independently of one another. The text was divided between 
them and then the fragments of it were merged into one, thus: 

• In some places, the text looks as if it was not translated 
by a human, but by an automatic system instead. 

• Some paragraphs contain a lot of metaphors, which 
will certainly interfere with the subsequent translation. 
The translations are not direct. 

• We also found some problems with encoding of Polish 
characters and with usage some strange symbols in the 
text ex. Ԅ, Ѱ, ∑, Ѡ, ת, �, etc. 

Another problem is that the TED Talks do not have any 
specific domain. Statistical Machine Translation by definition 
works best when very specific domain data is used. The data 
we have is a mix of various, unrelated topics. This is most 
likely the reason why we cannot expect big improvements 
with this data. 

There is not much focus on Polish in the campaign, so 
there is almost no data in Polish in comparison to a huge 
amount of data in, for example, French or German. What is 
more, provided Polish samples are not only small, but also in 
a different domain, which does not enrich a required language 
model well enough. At first we used perplexity measurement 
metrics to determine the data we got. Some of it we were able 
to obtain from the project page, some from another project 
and the rest was collected manually using web crawlers. We 
created those corpora and used them according to the 
permission from organizers [22]. What we created was: 

• A Polish – English dictionary (bilingual parallel) 

• Additional (newer) TED Talks data sets not included in 
the original train data (we crawled bilingual data and 
created a corpora from it) (bilingual parallel) 

• E-books (monolingual PL + monolingual EN) 

• Euro News Data (bilingual parallel) 

• Proceedings of UK Lords (monolingual EN) 

• Subtitles for movies and TV series (monolingual PL) 

• Parliament and senate proceedings (monolingual PL) 

“Other” in the table below stands for many very small models 
merged together. We show here the perplexity values and the 
perplexity values with no smoothing (PPL in Table I) of those 
language models smoothed with the Kneser-Ney algorithm 
(PPL+KN in Table I). We used the MITLM toolkit for that 



evaluation. As an evaluation set we used dev2010 data, which 
was used for tuning. Its dictionary covers 2861 different 
words. 

Table 1: Data Perplexities for dev2010 data set 

Data set Dictionary PPL PPL + KN  
Baseline train.en 44,052 221 223 

EMEA 30,204 1738 1848 
KDE4 34,442 890 919 
ECB 17,121 837 889 

OpenSubtitles 343,468 388 415 
EBOOKS 528,712 405 417 
EUNEWS 34,813 430 435 

NEWS COMM 62,937 418 465 
EUBOOKSHOP 167,811 921 950 

UN TEXTS 175,007 681 714 
UK LORDS 215,106 621 644 
NEWS 2010 279,039 356 377 
GIGAWORD 287,096 582 610 

DICTIONARY 39,214 8629 8824 
OTHER 13,576 492 499 
TEDDL 47,015 277 277 

 

EMEA are texts from the European Medicines Agency, KDE4 
is a localization file of that user GUI, ECB stands for 
European Central Bank corpus, OpenSubtitles are movies and 
TV series subtitles, EUNEWS is a web crawl of the 
euronews.com web page and EUBOOKSHOP comes from 
bookshop.europa.eu. Lastly bilingual TEDDL is additional 
TED data. As can be seen from the table above, all additional 
data is much worse than the files provided in the baseline 
system, so no major improvements based only on data could 
be anticipated. 

Before the use of a training translation model, 
preprocessing that included removal of long sentences (set to 
80 words) had to be performed. The Moses toolkit scripts[6] 
were used for this purpose. Moses is an open-source toolkit 
for statistical machine translation which supports 
linguistically motivated factors, confusion network decoding, 
and efficient data formats for translation models and language 
models. In addition to the SMT decoder, the toolkit also 
includes a wide variety of tools for training, tuning and 
applying the system to many translation tasks. In addition, the 
text in the TED data set had to be repaired in a number of 
ways to correct spelling errors and grammar errors, ensure 
that there was only one sentence on each line, remove 
language translations that were not of interest, remove HTML 
and XML tags within text, remove of strange symbols not 
existing in a specific language and repetitions of words and 
sentences. 

The final processing included 134,678 lines from the 
Polish to English corpus. However, the disproportionate 
vocabulary sizes remained, with 41,163 English words and 
92,135 Polish words. One of the solutions to this problem 
(according to work of Bojar [7]) was to use stems instead of 
surface forms that reduced the Polish vocabulary size to 
40,346. Such a solution also requires a creation of an SMT 
system from Polish stems to plain Polish. Subsequently, 
morphosyntactic tagging, using the Wroclaw Natural 
Language Processing (NLP) tools (nlp.pwr.wroc.pl), was 
included as an additional information source for the SMT 
system preparation. It can be also used as a first step for 

implementing a factored SMT system that, unlike a phrase-
based system, includes morphological analysis, translation of 
lemmas and features as well as generation of surface forms. 
Incorporating additional linguistic information should 
effectively improve translation performance [8]. 

2.1. Polish stem extraction 

As previously mentioned, stems extracted from Polish 
words are used instead of surface forms to overcome the 
problem of the huge difference in vocabulary sizes. Keeping 
in mind that in half of the experiments the target language 
was English in the form of normal sentences, it was not 
necessary to introduce models for converting the stems to the 
appropriate grammatical forms; however it will be part of our 
future work in translation into Polish. For Polish stem 
extraction, a set of natural language processing tools available 
at http://nlp.pwr.wroc.pl was used [9]. These tools can be 
used for:  

• Tokenization 

• Morphosyntactic analysis 

• Shallow parsing as chunking 

• Text transformation into the featured vectors 

The following two components are also used:  

• MACA –a universal framework used to connect the 
different morphological data 

• WCRFT – this framework combines conditional random 
fields and tiered tagging 

These tools used in sequence provide an XML output. It 
includes a surface form of the tokens, stems and 
morphosyntatic tags. An example of such data is given in 
section 2.2.  

2.2. Morphosyntactic element tagging with standard tools 

Wroclaw’s tools were used to tag morphosyntactic elements. 
More precise tagging can be achieved with these settings. In 
addition, every tag in this tagset consists of specific 
grammatical classes with specific values for particular 
attributes. Furthermore, these grammatical classes include 
attributes with values that require additional specification. For 
example, nouns require numbers while adverbs require an 
appropriate degree of an attribute. This causes segmentation 
of the input data, including tokenization of words in a 
different way as compared to the Moses tools. On the other 
hand, this causes problems with building parallel corpora.  
This can be solved by placing markers at the end of input 
lines.  

In the following example, where pl.gen. “men” is derived 
from sin.nom.”człowiek” (man) or pl.nom. “ludzie” (people), 
it can be demonstrated how one tag is used where, in the most 
difficult cases, more possible tags are provided. 

<tok> 
<orth>ludzi</orth> 
<lex disamb=”1”><base>człowiek</base> 
<ctag>subst:pl:gen:m1</ctag></lex> 
<lex disamb="1"> <base>ludzie</base> 
<ctag>subst:pl:gen:m1</ctag></lex> 
</tok> 



In this example, only one form (the first stem) is used for 
further processing. 

We developed an XML extractor tool to generate three 
different corpora for the Polish language data: 

• Words in the infinitive form 

• Subject-Verb-Object (SVO) word order 

• both the infinitive form and the SVO word order 

This allows experiments with those preprocessing 
techniques. 

Moreover, some of the NLP tools use the Windows-1250 
Eastern Europe Character Encoding, which requires a 
conversion of information to and from the UTF-8 encoding 
that is commonly used in other, standard tools. 

3. English Data Preparation 
The preparation of the English data was definitively less 
complicated than for Polish. We developed a tool to clean the 
English data by removing foreign words, strange symbols, 
etc. Compare to polish english data contained significantly 
less errors. Nonetheless some problems needed to be 
removed, most problematic were translations into languages 
other than english, strange UTF-8 symbols. We also found 
few duplications and insertions inside single segment. 

4. Evaluation Methods 
Metrics are necessary to measure the quality of translations 
produced by the SMT systems.  For this, various automated 
metrics are available to compare SMT translations to high 
quality human translations. Since each human translator 
produces a translation with different word choices and orders, 
the best metrics measure SMT output against multiple 
reference human translations. Among the commonly used 
SMT metrics are: Bilingual Evaluation Understudy (BLEU), 
the U.S. National Institute of Standards & Technology 
(NIST) metric, the Metric for Evaluation of Translation with 
Explicit Ordering (METEOR), and Translation Error Rate 
(TER).  These metrics will now be briefly discussed. [10] 

BLEU was one of the first metrics to demonstrate high 
correlation with reference human translations.  The general 
approach for BLEU, as described in [9], is to attempt to match 
variable length phrases to reference translations.  Weighted 
averages of the matches are then used to calculate the metric.  
The use of different weighting schemes leads to a family of 
BLEU metrics, such as the standard BLEU, Multi-BLEU, and 
BLEU-C.  [11] 

As discussed in [11], the basic BLEU metric is:  
 

𝐵𝐿𝐸𝑈 = 𝑃! exp 𝑤!

!

!!!  

log 𝑝!  

 
where 𝑝!is an n-gram precision using n-grams up to length N 
and positive weights 𝑤! that sum to one.  The brevity penalty 
𝑃! is calculated as: 
 

𝑃! =
1, 𝑐 > 𝑟

𝑒 !!! ! , 𝑐 ≤ 𝑟
 

 

where c is the length of a candidate translation, and r is the 
effective reference corpus length. [9] 

The standard BLEU metric calculates the matches 
between n-grams of the SMT and human translations, without 
considering position of the words or phrases within the texts.  
In addition, the total count of each candidate SMT word is 
limited by the corresponding word count in each human 
reference translation.  This avoids bias that would enable 
SMT systems to overuse high confidence words in order to 
boost their score. BLEU applies this approach to texts 
sentence by sentence, and then computes a score for the 
overall SMT output text.  In doing this, the geometric mean of 
the individual scores is used, along with a penalty for 
excessive brevity in translation.  [9] 

The NIST metric seeks to improve the BLEU metric by 
valuing information content in several ways.  It takes the 
arithmetic versus geometric mean of the n-gram matches to 
reward good translation of rare words.  The NIST metric also 
gives heavier weights to rarer words.  Lastly, it reduces the 
brevity penalty when there is a smaller variation in translation 
length.  This metric has demonstrated that these changes 
improve the baseline BLEU metric.  [12] 

The METEOR metric, developed by the Language 
Technologies Institute of Carnegie Mellon University, is also 
intended to improve the BLEU metric.  METEOR rewards 
recall by modifying the BLEU brevity penalty, takes into 
account higher order n-grams to reward matches in word 
order, and uses arithmetic vice geometric averaging.  For 
multiple reference translations, METEOR reports the best 
score for word-to-word matches.  Banerjee and Lavie [13] 
describe this metric in detail. 

As found in [13], this metric is calculated as follows: 
 

𝑀𝐸𝑇𝐸𝑂𝑅 =   
10  𝑃  𝑅
𝑅 + 9  𝑃

1 −   𝑃!  

 
where P is the unigram precision and R is the unigram recall.  
The METEOR brevity penalty PM is: 
 

𝑃! = 0.5  
𝐶
𝑀!

 

 
where C is the minimum number of chunks such that all 
unigrams in the machine translation are mapped to unigrams 
in the reference translation.  MU is the number of unigrams 
that matched. 

The METEOR metric incorporates a sophisticated word 
alignment technique that works incrementally.  Each 
alignment stage attempts to map previously unmapped words 
in the SMT and reference translations.  In the first phase of 
each stage, METEOR attempts three different types of word-
to-word mappings, in the following order: exact matches, 
matches using stemming, and matches of synonyms.  The 
second stage uses the resulting word mappings to evaluate 
word order similarity.  [13] 

Once a final alignment of the texts is achieved, METEOR 
calculates precision similar to the way the NIST metric 
calculates it.  METEOR also calculates word-level recall 
between the SMT translation and the references, and 
combines this with precision by computing a harmonic mean 
that weights recall higher than precision.  Lastly, METEOR 
penalizes shorter n-gram matches and rewards longer 
matches.  [13] 



TER is one of the most recent and intuitive SMT metrics 
developed.  This metric determines the minimum number of 
human edits required for an SMT translation to match a 
reference translation in meaning and fluency.  Required 
human edits might include inserting words, deleting words, 
substituting words, and changing the order or words or 
phrases.  [14] 

5. Experimental Results 
A number of experiments were performed to evaluate various 
versions for our SMT systems. The experiments involved a 
number of steps.  Processing of the corpora was 
accomplished, including tokenization, cleaning, factorization, 
conversion to lower case, splitting, and a final cleaning after 
splitting.  Training data was processed, and the language 
model was developed. Tuning was performed for each 
experiment.  Lastly, the experiments were conducted. 

The baseline system testing was done using the Moses 
open source SMT toolkit with its Experiment Management 
System (EMS) [15].  The SRI Language Modeling Toolkit 
(SRILM) [16] with an interpolated version of the Kneser-Key 
discounting (interpolate –unk –kndiscount) was used for 5-
gram language model training. We used the MGIZA++ tool 
for word and phrase alignment. KenLM [19] was used to 
binarize the language model, with a lexical reordering set to 
use the msd-bidirectional-fe model. Reordering probabilities 
of phrases are conditioned on lexical values of a phrase. It 
considers three different orientation types on source ant target 
phrases like monotone(M), swap(S) and discontinuous(D). 
The bidirectional reordering model adds probabilities of 
possible mutual positions of source counterparts to current 
and following phrases. Probability distribution to a foreign 
phrase is determined by “f” and to the English phrase by “e” 
[20,21]. MGIZA++ is a multi-threaded version of the well-
known GIZA++ tool [17]. The symmetrization method was 
set to grow-diag-final-and for word alignment processing. 
First two-way direction alignments obtained from GIZA++ 
were intersected, so only the alignment points that occured in 
both alignments remained. In the second phase, additional 
alignment points existing in their union were added. The 
growing step adds potential alignment points of unaligned 
words and neighbors. Neighborhood can be set directly to left, 
right, top or bottom, as well as to diagonal (grow-diag). In the 
final step, alignment points between words from which at 
least one is unaligned are added (grow-diag-final). If the 
grow-diag-final-and method is used, an alignment point 
between two unaligned words appears. [18] 

We conducted about three hundred of experiments to 
determine the best possible translation from Polish to English 
and the reverse. For experiments we used Moses SMT with 
Experiment Management System (EMS) [24]. Starting from 
baseline (BLEU: 16,02) system tests, we raised our score 
through extending the language model with more data and by 
interpolating it linearly. Firstly we used OpenSubtitles 
bilingual corpora for training and raised the BLEU score to 
17,71. In the next step, we interpolated OpenSubtitles 
language model with original one instead of merging them. 
We determined that the linear interpolation gives better results 
than the log-linear one, when using our data. In the next steps, 
we interpolated some data and also added a Polish-English 
dictionary. This produces BLEU score equal to 20,41. In the 
PL->EN experiment number 170th we managed to determine 
better settings for the language model. We set the order from 5 

to 6 and changed the discounting method from Kneser-Ney to 
Witten-Bell. In the training part, we changed the reordering 
method from msd-bidirectional-fe to msd-fe. For now, it 
produces the best score we were able to obtain (20,88).  

As previously described, we also tried to work with stems, 
but the results weren’t satisfying enough. Scores in fact were 
a bit lower – most likely because there were errors in texts. 
The Wroclaw NLP tools, when given a text with errors, 
produces even more errors and we lose some parts of the data 
and good alignment, which we assume is the reason for the 
worse score. Nevertheless, it is worth to give it a look in 
future research. 

Because of a much bigger dictionary, the translation from 
EN to PL is significantly more complicated. We also lacked 
the data. Our baseline system score was 8,49 in BLEU. First, 
we tried working with stems by changing data to infinitives 
and reordering parts of sentences into SVO form. We then 
interpolated a language model containing e-books (it was 
prepared by us) and raised the score a little higher (9,42). 
Preparation of other language models and adding a bit more 
data resulted in achieving better scores. We also increased the 
n-gram order to 6, which produced BLEU score of 10,27. 
Next, we started to add train data (dictionary raised score to 
10,40 and OpenSubtitles to 10,49) changing the alignment 
symmetrization method from msd-bidirectional-fe to tgttosrc 
(target to source) and obtained a slightly higher score. Lastly, 
we raised the max sentence length from 80 to 90 and achieved 
the highest score so far, which was 10,68 in BLEU. It must be 
noted that in order for the Wroclaw NLP tools to work 
correctly all data sets had to be previously cleaned by our tool 
in order to retain good alignment.  

The experiments, conducted with the use of the test data 
from years 2010-2013, are defined in Table 1 and Table 2, 
respectively, for the Polish-to-English and English-to-Polish 
translations. They are measured by the BLEU, NIST, TER 
and METEOR metrics.  Note that a lower value of the TER 
metric is better, while the other metrics are better when their 
values are higher. BASE stands for baseline system with no 
improvements, COR is a system with corrected spelling in 
Polish data, INF is a system using infinitive forms in Polish, 
SVO is a system with the subject – verb – object word order 
in a sentence and BEST stands for the best result we achieved. 

Table 2: Polish-to-English translation 

System Year BLEU NIST TER METEOR 
BASE 2010 16.02 5.28 66.49 49.19 
COR 2010 16.09 5.22 67.32 49.09 
BEST 2010 20.88 5.70 64.39 52.74 
INF 2010 13.22 4.74 70.26 46.30 
SVO 2010 9,29 4,37 76,59 43,33 

BASE 2011 18.86 5.75 62.70 52.72 
COR 2011 19.18 5.72 63.14 52.88 
BEST 2011 23.70 6.20 59.36 56.52 
BASE 2012 15.83 5.26 66.48 48.60 
COR 2012 15.86 5.32 66.22 49.00 
BEST 2012 20.24 5.76 63.79 52.37 
BASE 2013 16.55 5.37 65.54 49.99 
COR 2013 16.98 5.44 65.40 50.39 
BEST 2013 23.00 6.07 61.12 55.16 
INF 2013 12.40 4.75 70.38 46.36 

 

 



Table 3: English-to-Polish translation 

System Year BLEU NIST TER METEOR 
BASE 2010 8.49 3.70 76.39 31.73 
COR 2010 9.39 3.96 74.31 33.06 
BEST 2010 10.72 4.18 72.93 34.69 
INF 2010 9.11 4.46 74.28 37.31 
SVO 2010 4,27 4,27 76,75 33,53 

BASE 2011 10.77 4.14 71.72 35.17 
COR 2011 10.74 4.14 71.70 35.19 
BEST 2011 15.62 4.81 67.16 39.85 
BASE 2012 8.71 3.70 78.46 32.50 
COR 2012 8.72 3.70 78.57 32.48 
BEST 2012 13.52 4.35 73.36 36.98 
BASE 2013 9.35 3.69 78.13 32.52 
COR 2013 9.35 3.70 78.10 32.54 
BEST 2013 14.37 4.42 72.06 37.87 
INF 2013 13.30 4.83 70.50 35.83 

Official results were obtained late for this paper 
publication so we decided only to put our best translation 
system results. In translation from Polish to English, case-
sensitive BLEU score was 22,60 and TER 62,56 while in 
case-insensitive BLEU score was equal to 23,54 and TER 
61,12. In translation from English to Polish we obtained case-
sensitive BLEU 14,29 and TER 73,53 while case-insensitive 
scores were 15,04 for BLEU and 72,05 for TER. 

6. Discussion 
Several conclusions can be drawn from the experimental 
results presented here.  Automatic and manual cleaning of the 
training files has some impact, among the variations 
examined, on improving translation performance, together 
with spelling correction of the data in Polish – although it 
resulted in better BLEU and METEOR scores, not always in 
higher NIST or TER metrics. In particular, automatic 
cleaning and conversion of verbs to their infinitive forms 
improved translation performance when it comes to the 
English-to-Polish translation, quite the contrary to the Polish-
to-English translation. This is likely due to a reduction of the 
Polish vocabulary size. Changing the word order to SVO is 
quite interesting. It didn’t help at all in some cases, although 
one would expect it to. When it comes to experiments from 
PL to EN, the score was always worse, which was not 
anticipated. On the other hand, in the EN to PL experiments 
in some cases improvement could be seen. Although the 
BLEU score dramatically decreased and TER became slightly 
worse, NIST and METEOR showed better results than the 
baseline system. Most likely it is because of each metric has 
different evaluation method. The BLEU and TER scored 
decreased probably because phrases were mixed in the SVO 
conversion process. It is worth investigating (especially the 
PL to EN system). Maybe there was some kind of 
implementation error in our parser or cleaner. 

In summary converting Polish verbs to infinitives reduces 
the Polish vocabulary, which should improve the English-to-
Polish translation performance. The Polish to English 
translation typically outscores the English to Polish 
translation, even on the same data.  This requires further 
evaluation. 

7. Conclusion and future work 

Several potential opportunities for future work are of interest.  
Additional experiments using extended language models are 

warranted to determine if this improves SMT scores. We are 
also interested in developing some more web crawlers in 
order to obtain additional data that would most likely prove 
useful. 

Currently, neural network based language models are 
amongst the most successful techniques for statistical 
language modeling. They can be easily applied in a wide 
range of tasks, including automatic speech recognition and 
machine translation and they also provide significant 
improvements over classic backoff n-gram models. The 
'rnnlm' toolkit can be used in order to train, evaluate and use 
such models. With the RNNLM toolkit we were able to 
reduce perplexity (Table 4) a little. We intend to explore it 
more in future work. 

Table 4: RNNLM Results 

TOOLKIT PPL 
RNNLM 193.31 
SRILM 216.79 
Combination of RNNLM and SRILM 169.55 

 
The test was conducted on a default language model and a test 
set provided in TED 2013 data, and it looks promising. The 
language model vocabulary was 44052 words and the test file 
was 3575 words. 

Polish is a language that has a complex grammar, which is 
why it is very hard to translate from and into languages of 
lower complexity such as English. Creating a factored model 
for SMT would most probably improve its performance. We 
are planning on implementing an SMT factored system based 
on POS tags. 

An ideal SMT system should be fully automatic. To use 
infinitives, we will have to make this conversion automatic 
with usage of Wroclaw NLP tools. Lastly, it is our objective 
to create two SMT systems, one converting Polish words to 
Polish stems (and vice versa), and another converting Polish 
infinitives to English in order to make translations fully 
automatic. 

The observed lower quality of the translation system 
based on conversion into an SVO sentence form requires 
further investigation. 
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Abstract
In this paper, German and English large vocabulary contin-
uous speech recognition (LVCSR) systems developed by the
RWTH Aachen University for the IWSLT-2013 evaluation
campaign are presented. Good improvements are obtained
with state-of-the-art monolingual and multilingual bottle-
neck features. In addition, an open vocabulary approach us-
ing morphemic sub-lexical units is investigated along with
the language model adaptation for the German LVCSR. For
both the languages, competitive WERs are achieved using
system combination.

1. Introduction
This paper describes in detail the German and English
RWTH large vocabulary continuous speech recognition
recognition systems developed for the IWSLT-2013 eval-
uation campaign. Automatic speech recognition track in
IWSLT-2013 evaluation campaign focuses on transcribing
lecture data. One of the major challenge in the IWSLT-2013
evaluation is that no acoustic modeling training data is pro-
vided for the aforementioned languages, but the development
data. The data includes speech types like lectures, talks and
conversations. Recognition on the data is challenging be-
cause of a huge variability in the acoustic conditions and a
large portion includes spontaneous speech.

In the development of ASR systems transcribed speech
data is still a significant cost factor. Therefore, methods
which are able to reuse out-of-domain or multilingual re-
sources to ease the model training, have growing interest, and
this demand exists not only for under-resourced languages.
The neural networks (NN) have become a major component
in the state-of-the-art ASR system, and are used to extract
features (probabilistic [1] or bottleneck (BN) TANDEM ap-
proach [2]) and/or to model the emission probability in the
HMM framework directly (hybrid approach) [3]. In [4, 5] it
was observed that Multi Layer Perceptron (MLP) based NN
posterior features possess language independent properties to
a certain degree: the cross-lingual porting of NNs could lead
to significant improvement in a different language. In order
to exploit resources of multiple languages in acoustic model
training, there is usually a need to unify similar sounds across

different languages e.g. by IPA or SAMPA. However, as was
shown by [6] the training of NNs on multiple languages is
possible without such a mapping if language dependent out-
put layers are used and only the hidden layer parameters are
shared between the languages. Combining the multilingual
learning with the bottleneck approach [7, 8] demonstrated
that the multilingual BN features could benefit from the addi-
tional non-target language data and outperformed the unilin-
gual BN. Through better generalization the multilingual BN
features can offer improved portability on an new language,
and acoustical mismatch between the training and testing can
be reduced in the target language by exploiting matched data
from other languages [9]. Since transcribed lecture data were
not provided for the evaluation, in our systems the BN fea-
tures are trained on large amount of broadcast news and con-
versations data of multiple languages. Covering wide vari-
ety of acoustic conditions through the multilingual resources,
we aimed at improving the robustness of the acoustic model
to recognize acoustically less matched lecture data. On the
other hand, German is a morphologically rich language hav-
ing a high degree of word inflections, derivations and com-
pounding. For a morphologically rich language like German,
high out-of-vocabulary (OOV) rates and poor LM probabili-
ties are generally observed. Thus, sub-lexical language mod-
eling is used to decrease the OOV rate and reduce the data
sparsity [10, 11, 12]. In this work, we also investigate the use
of the state-of-the-art LMs like Maximum Entropy (MaxEnt)
LMs, which provide modular structure to incorporate various
knowledge sources as features in the sub-lexical LMs. Fur-
thermore, we experiment the use of Maximum a-posteriori
(MAP) adaptation over the MaxEnt LMs. Thus, the benefits
of both the MaxEnt LMs and the traditional N -gram backoff
LMs are effectively combined using interpolation, followed
by confusion network based system combination.

The rest of the paper is organized as follows: In Section 2
speaker independent and dependent acoustic models are de-
scribed along with the investigated features. In Section 3,
the use of various full-word and sub-lexical language models
are investigated. In Section 3.7, the generation of the lexi-
con is described. In Section 4, various recognition setups are
described. Results are discussed in Section 5, followed by
conclusions.



2. Acoustic Model (AM)
In this work, the data from the Quaero project is used for
acoustic modeling. The training data for the IWSLT-2013
evaluation campaign consist of data from three domains.
While the majority of the data is from the web (WEB), data
from broadcast news (BN) and European parliament plenary
sessions (EPPS) is also covered.

2.1. Resources
2.1.1. German
Table 1 lists the amount of audio data used from different
domains [13] for German LVCSR . Overall, 140 hours of
across-domain acoustic training data is used. The data in-
cludes the audio from BN, EPPS and the web domains.

Table 1: Acoustic Training data (dur.: duration (hours),
seg.:segments)

Corpus #Dur. #Segs # Running words
EPPS08 5 1109 45,796
WEB08 14 3452 127,086
Quaero
2010+2011+2012 123 25061 1,391,468

2.1.2. English
Similarly, Table 2 lists the amount of audio data, which
is collected from different domains. Overall, 142 hours of
acoustic training data is used [13]. The HUB4 and the TDT4
corpora contain only American English Broadcast News,
whereas the TC-STAR corpus consists of European Planery
Parliamentary Speech data.

Table 2: Acoustic Training data (dur.: duration (hours),
seg.:segments )

Corpus # Dur. #Segs # Running words
Quaero 268 57,629 1,666,733
HUB4 206 119.658 1,617,099
TDT4 186 110.266 1,715,445
EPPS 102 66,670 761,234
TED 200 21,614 1,857,660

Table 2 lists the amount of audio data used for acoustic
model training. The largest database is the English Quaero
corpus1, which consists of 268 hours transcribes web pod-
casts. HUB4 and TDT4 are American English broadcast
news corpora. EPPS consists of 102 hours of English Eu-
ropean Parliament speeches.

All this data has in common that it is out-of-domain for a
lectures recognition system. Therefore, we downloaded 200
hours videos from the TED website2. All videos have been
uploaded to the TED website before the IWSLT cut-off date
December31 2010. We used the video subtitles as transcrip-
tions. We used a low pruning threshold for aligning the data

1http://www.quaero.org/
2www.ted.com

and discarded the segments which could not be aligned. In
total, we used 962 hours audio training data with a mix of
British and American English and from various domains.

2.2. Feature Extraction
2.2.1. Cepstral features
From the audio files 16 Mel-cepstral coefficients (MFCC)
were extracted every 10 ms. The 20 logarithmic critical band
energies (CRBE) were computed over a Hanning window of
25 ms. For the piecewise linear vocal tract length normal-
ization (VTLN) text-independent Gaussian mixture classi-
fier was trained to estimate the warping factor (fast-VTLN).
After the segment-wise mean and variance normalization, 9
consecutive frames of MFCC were mapped by linear dis-
criminant analysis (LDA) to a 45-dimensional subspace.

2.2.2. Multilingual bottleneck MRASTA features
For both evaluation systems the same multilingual MRASTA
features are applied. The original RASTA filters were in-
troduced to extract features which are less sensitive to lin-
ear distortion [14]. According to [15], the temporal trajecto-
ries of the CRBEs were smoothed by two-dimensional band-
pass filters to cover the relevant modulation frequency range
(MRASTA). One second trajectory of each critical band is
filtered by first and second derivatives of the Gaussian func-
tion, where the standard deviation varies between 8 and 60
ms resulting in 12 temporal filters per band. Our final BN
features are extracted from hierarchical, MLP based process-
ing of the modulation spectrum [16, 17]. The input of the first
MLP contains the fast modulation part of the MRASTA fil-
tering, whereas the second MLP is trained on the slow mod-
ulation components and the PCA transformed BN output of
the first MLP. The modulation features fed to the MLPs were
always augmented by the CRBE.

Furthermore, in order to extract robust MLP features
a multilingual training method proposed by [6] is applied.
The MLP training data covered four languages — English,
French, German, and Polish —, and the final multilingual BN
features are trained on ∼ 800 hours of speech data collected
within the Quaero project as shown in Table 3. The mul-
tilingual corpus incorporates the complete German and part
of the English resources described in Subsection 2.1.1 and
2.1.2. The feature vectors extracted from the joint corpus of
the four languages were randomized and fed to the MLPs.
Using language specific softmax outputs, back propagation
is initiated only from the language specific subset of the out-
put depending on the language-ID of the feature vector. The
MLPs are trained according to cross-entropy criterion, and
approximate 1500 tied-triphone state posterior probabilities
per each language [18]. To prevent over-fitting and for ad-
justing the learning rate parameter, 10% of the training cor-
pus is used for cross-validation.

The BN features of the evaluation systems were based on
deep MLP. The size of the 6 non-BN hidden layers was set
to 2000, the bottleneck layers consisted of 60 nodes and was
always placed before the last hidden layer.



Table 3: Multilingual broadcast news and conversation re-
sources used for BN feature training.

language German English French Polish
Amount of 142 232 317 110speech [h]

In addition, four additional experiments were carried out
to select the best MLP features for German LVCSR : In
the classical (shallow) 5-layer uni- and multilingual BN net-
works the hidden layers had 7000 nodes. In deep BN, making
the last hidden layer language dependent (4x2000) increased
the number of trainable parameters and did not increase the
MLP training time. On the contrary, testing a single large
hidden layer (8000 nodes) after the BN increased the num-
ber of parameters even further, and resulted in longer training
time. The final submissions are based on this later BN struc-
ture, one level of the hierarchy is also shown in Fig. 1.

input 
features

multilingual
bottleneck
features

}

... ...

French
triphone
target

English
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target

German
triphone
target
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Figure 1: The joint training of deep context-dependent bot-
tleneck MLP features on multiple languages (FR, EN, DE,
PL). The different colors indicate different languages, and
language dependent back-propagation from the output layer.
The other parts of the network including the bottleneck layer
are shared between the languages.

2.3. AM Training with Speaker Adaptation
The English acoustic models have been trained on the com-
plete data as described in Subsection 2.1.2, whereas the Ger-
man acoustic models are built using mostly Quaero data as
described in Subsection 2.1.1.

All our systems are based on a bottleneck tandem ap-
proach, i.e., the outputs of a neural network are used as input
features for a Gaussian mixture model (GMM). The final 83-
dimensional feature vectors were obtained by concatenating
the spectral features with the multi-layer-perceptron (MLP)

features described in 2.2.1. The acoustic models AM train-
ing followed similar recipes, the GMMs have been trained
according to the maximum likelihood (ML) criterion with
the expectation maximization algorithm (EM) with Viterbi
approximation and a splitting procedure. The GMMs have
a globally pooled, diagonal covariance matrix. 4, 500 gener-
alized triphones determined by a decision-tree-based cluster-
ing (CART) are modeled in both languages.

Speaker adaptation is of crucial importance for the per-
formance of a lecture recognition system. If significant
amount of audio data is available along with the speaker
related information, this helps to capture the speaker vari-
abilities and helps in reduction of the WER. Several speaker
adaptation techniques are used in our system. First, mean
and variance normalization has been applied to the spectral
features. Furthermore, we applied a vocal tract length nor-
malization (VTLN) to the MFCC features. The VTLN warp-
ing factors were obtained by performing a grid search on the
audio training data. A Gaussian classifier has been trained on
the results and applied to the training and recognition data to
obtain the VTLN-transformed features. In addition, speaker
adaptation using constrained maximum likelihood linear re-
gression (CMLLR) [19] with the simple target model ap-
proach [20] is applied. The CMLLR transformation is ap-
plied to the training data and a new GMM is trained (speaker
adaptive training). In recognition, the CMLLR transforms
are estimated from a first recognition pass and then, a sec-
ond recognition pass with the GMM from speaker adaptive
training (SAT) is performed. The speaker labels required for
for CMLLR adaptation were obtained by clustering speech
segments optimizing the Bayesian information criterion [21].
Both the speaker independent and adaptive GMM models
ended up over 1M densities. This is referred as common sys-
tem for both English (system-1) and German LVCSRs.

In addition to the system described above, for English a
second system (system-2) is trained which uses the MLP fea-
tures of our IWSLT-12 submission [22]. These MLPs were
only trained on the English Quaero data and have less layers.
In order to improve system variability, we also performed
an additional recognition pass with maximum likelihood lin-
ear regression (MLLR) [19]. In our experience, MLLR does
not improve performance of Tandem systems, but it may be
advantageous to have an MLLR system in the system combi-
nation.

3. Language Model
3.1. Resources
The distribution of words in any spoken language is cap-
tured by the LM text. The LM text is collected from vari-
ous domains. Relatively as more amount of acoustic training
data is available for BN than for EPPS and since the BN do-
main could be closer to the web domain than parliamentary
speeches, we decide to build an American English BN AM
and a British English EPPS AM in order to get better domain
dependent modeling. For the training of the LM we apply a



similar approach, as domain dependent LM data is used. The
text is normalized using language dependent predefined set
of rules and semi-automatic methods. For example, Dates
and Roman numerals are converted into text format. Punc-
tuation’s are discarded. In this paper, LM text is used for
both the German and English LVCSR task as recommended
by the IWSLT evaluation committee3, as shown in Table 4

Table 4: Text Resources for German and English LVCSR

Lang Corpus # Running words
DE Podcast 46k

IWSLT LM data 2.5M
Lecture Talks 2.5M
CALL HOME - speech 5.9M
Multilingual Parallel data 104M
Web 384M
News + acoustic trans. 971M

EN IWSLT LM data 3M
WMT 2012 news-commentary 5M
Acoustic transcriptions 8M
WMT 2012 news-crawl 2.8B
Gigaword corpus 3B

3.2. Backoff LM
As described in Table 4, the LM text is collected from mul-
tiple sources. The top N most frequent words are selected
as a vocabulary from the full-word text. For English, 150k
most frequent words are used to generate modified Kneser-
Ney smoothed 4-gram and 5-gram full-word LMs . Simi-
larly for German, 150k and 200k full-word vocabularies are
selected to generate 5-gram LMs.

3.3. Sub-lexical LMs
For an open vocabulary speech recognition, sub-lexical units
are used in the language modeling for German LVCSR [11].
In general, a LM comprising sub-lexical units with or with-
out a fraction of full-words is called a sub-lexical LM. In
general, morphemes could be extracted using linguistic or
data-driven morphological decomposition. When sub-lexical
LMs are used, the data sparsity problem is relatively re-
duced compared to the full-word LMs, leading to lower OOV
rates and higher lexical coverage. Furthermore, as the count
based statistics are improved, the LM probability estimates
are relatively better estimated compared to a full-word LM
[10, 11, 12].

In this work, words are decomposed using a Morfessor
[23]. Word decomposition model is trained using unique
words that occur more than 5 times in the LM text. Low
frequency words are excluded to avoid noise that are harmful
during training. This model is also used to decompose new
words. The decomposed words are processed so as to pro-
duce a cleaner set of sub-lexical units and to avoid very short
units which are usually difficult to recognize. This is found

3http://www.iwslt2013.org/59.php

to be helpful to improve the final WER. To generate sub-
lexical LMs, 200k hybrid vocabulary is selected, where top-
most 5k full-word forms are preserved. Standard N -gram
backoff models are created using SRILM toolkit [24].

3.4. Maximum Entropy LMs
Alternatively, for German LVCSR, state-of-the-art MaxEnt
LM is generated to capture the long range dependencies
[25]. In principle, MaxEnt LM uses the information obtained
from multiple knowledge sources as feature constraints. The
knowledge sources could be different types of features hav-
ing different constraints (i.e., probability distribution func-
tions). MaxEnt LM estimates a unified model in a feature
space by selecting the distribution function of the highest en-
tropy satisfying all the constraints from an intersection of all
the imposed feature constraints. If w is a word/morpheme
taken from a vocabulary W , f(.) is the feature function, λ
is an optimal weight, h is the context, Z(h) is the normal-
ization factor for all the seen contexts, MaxEnt model can be
computed using Eq. 1.

pme(w|h) =
e
∑

i λifi(w,h)

Z(h)
(1)

Where, Z(h) =
∑
wiεW

e
∑

j λjfj(wi,h)

3.5. Adaptation
In general, adapted LMs are known to perform better than
non-adapted LMs in cases of domain mis-match or if the
LM corpus is diverse. In this paper, the LM data is obtained
from multiple domains for LVCSR. It is often unrealistic to
significantly reduce the WER without adapting the LM to
in-domain data [26]. For this reason, we apply LM adapta-
tion over MaxEnt LMs. Here, Maximum a-posteriori (MAP)
adaptation is performed, using Gaussian priors over the gen-
erated MaxEnt models (cf. Section 3.4). The MaxEnt model
is trained on background data including the N -gram features
of the in-domain data. The prior parameters computed from
the background data are used to learn the parameters from the
in-domain data. During MaxEnt training, the prior has zero
mean during Gaussian prior smoothing. But during adapta-
tion, the prior distribution is centered at the background data
parameters. The regularized log-likelihood of the adaptation
training data is maximized during adaptation.

As an in-domain data, two different types of adaptation,
namely supervised and unsupervised are investigated [25]. In
supervised adaptation, the development data is used as an in-
domain data. Whereas, for an unsupervised adaptation, the
automatic transcriptions are used from the first pass recogni-
tion. Here, the adaptation is performed over both morpheme
and feature based MaxEnt models. The 5-gram MaxEnt and
adapted models are created using SRILM-extension [27].

In general, N -gram backoff LMs are known to perform
better in capturing the short range context dependencies.



When the data is sufficiently available, the likelihood esti-
mates of the frequently occurringN -grams are generally bet-
ter estimated and reliable. In this work, morphemic MaxEnt
LMs are linearly interpolated with N -gram LMs [28].

3.6. Perplexity

Perplexity is a entropy related metric which measures the av-
erage branching factor for the LM, during search. On the
other hand, perplexities across various systems can only be
compared when the (same) finite vocabulary is used. The
word level standard equation of the perplexity (PPw) in log
domain is :

PPw(w
k
1 ) = log

[∏K
l=1 p(wl|wh)

]− 1
K

(2)

Thus, Eq. 2 is renormalized using at character level as:

PPc(w
k
1 ) = log

[∏K
l=1 p(wl|wh)

]− 1
K

K
Kc (3)

Where,K is the total number of words observed in the recog-
nition corpus. Kc represents the actual number of characters
including word boundaries and a representative character per
sentence-end token. Thus, using Eq. 3, full-word LM and the
sub-lexical LM could be easily compared.

3.7. Lexical Modeling

The full-word lexicon consists of 150k words for English
LVCSR. Similarly, lexicons consisting of 150k and 200k
full-words are generated for German LVCSR. For most of
the full-words as the pronunciations are not available, statis-
tical grapheme-to-phoneme (G2P) conversion toolkit is used
for both the languages [29]. The full-word pronunciations
are aligned to its corresponding sequence of morphemic sub-
lexical units using the expectation-maximization (EM) algo-
rithm as described in [12]. Thereby, lexicon is generated us-
ing the sub-lexical entries of size 200k.

3.8. Word Reconstruction

For sub-lexical experiments, full-words are needed to be re-
constructed from the morphemes. An identifier ‘+’ is marked
at the end of each non-boundary morpheme. After recogni-
tion, the recognized morphemes are combined using the pre-
defined marker to regenerate the full-words. For example:
wasch+ masch+ ine → waschmaschine (washing machine
in English). Alternatively, the effective OOV rate of any cor-
pus is computed in such a way that a word is considered an
OOV if and only if it is not found in the vocabulary and it
is not possible to compose it using in-vocabulary sub-lexical
units.

4. Recognition Setup
The evaluation systems have a multi-pass recognition setup.
In an initial non-adapted pass, a first transcription is obtained,
which is used for the CMLLR-adapted recognition pass. The
development and evaluation corpus statistics for both the lan-
guages are shown in Table 5.

Table 5: Details of the IWSLT-13 Recognition Corpus

Language Corpus #Duration (hrs.)

English dev2012 2.0
tst2011 1.3
tst2012 2.2
tst2013 4.8

German dev2012 3.3
tst2013 3.2

For the English LVCSR system, CMU segmentation is
used [30]. A 4-gram domain adapted backoff LM is cre-
ated to construct the search space and 5-gram LM is used
for rescoring word lattices. For our alternative system (sys-
tem 2), an non-adapted and a CMLLR-pass are performed
as in system-1. In addition, a third recognition pass with
MLLR adaptation is performed. Finally, the word lattices
are rescored. Confusion network based system combination
is used to combine the results of both systems.

For the German LVCSR system, two different systems
are experimented with LIUM [31] and RWTH audio segmen-
tation [32]. 5-gram domain adapted backoff LM is created
to construct the search space. This recognition setup is simi-
lar to the system-1 of the English LVCSR. After the speaker
adaptation,N -best (N=5000) lists are generated from the lat-
tices for LM rescoring. The N -best lists are rescored using
the interpolated LMs as described in Section 3.5. Similarly,
the advantages of both the full-word and the sub-lexical sys-
tems are combined using confusion network decoding.

5. Results
In this Section, detailed results for the various systems are
described in terms of the WER and the OOV rates. For
both the languages, WERs for the development corpus are
generated using the unofficial scoring script, where as the
WERs for the evaluation corpus are obtained using official
scoring script. For English LVCSR system, the recognition
results are shown in Table 6. The WER of system-1 is better
than system-2. Significant improvements are obtained using
speaker adapted acoustic models over the speaker indepen-
dent models. Further improvements are obtained using con-
fusion network decoding. In addition, noticeable WERs are
reported on the tst2011 and tst2012 corpora for IWSLT-2013
evaluation, compared to our previous IWSLT-2012 WERs for
English LVCSR as shown in Table 7. Test transcriptions are
not released by the IWSLT-13 evaluation committee, yet.

For the German LVCSR system, the first set of experi-
ments are shown in Table 8. The BN features used in the
evaluation system were optimized using the 200k sub-lexical
LM, as it is better than the 150k or 200k full-word system in-
terms of the WER. Thus, the recognition results using 150k
vocabulary are not shown in this paper. The experiments
were carried out with RWTH segmentation and sub-lexical
language models containing 200k sub-lexical units. As can



Table 6: WERs[%] of the English LVCSR system (OOV
Rate:0.7, dev2012 PPL:129, Vocabulary size:150k ).

Corpus Pass System-1 System-2
dev2012 VTLN 17.6 21.9

CMLLR 15.2 18.5
MLLR - 18.8
LM-rescoring 14.8 17.9
CN decoding 14.4

tst2011 10.2
tst2012 11.3
tst2013 16.0

Table 7: Progressive WER [%] improvements : IWSLT-12
Vs. IWSLT-13 English LVCSR Systems

Corpus IWSLT 2012 IWSLT 2013 Rel. gain
tst2011 13.4 10.2 23.9
tst2012 13.6 11.3 20.3
tst2013 - 16.0 -

be seen in Table 8, the deep unilingual BN features trained
on out-of-domain BN/BC data did not result in better WER
compared to the shallow ones (1st and 3rd rows). Including
multiple languages in the BN training improved the results
significantly, and the performance gap increased further after
the speaker adaptation step (3rd and 4th rows), similar to our
observation in [8]. Furthermore, the results also show that the
deep structure is more beneficial for multilingual training and
outperforms the shallow multilingual BN (2nd, 4th rows).
Different types of last hidden layers described in Subsection
2.2.1 were also investigated. Applying language dependent
hidden layers between the bottleneck and output layer did not
resulted in lower error rate (5th row). On the contrary, if the
number of parameters were increased by larger language in-
dependent hidden layer further reduction in WER (6th row)
is observed.

Table 8: WER[%] comparison of speaker independent (SI)
and speaker adapted (SA) uni- and multilingual BN features
with different structures - German LVCSR with no word com-
pounding (Seg: audio segmentation, SI: speaker indepen-
dent models, SA: speaker adapted models)

Seg Dev2012 Eval2013
AM SI SA SI SA

B
N

fe
at

ur
es

Shallow RWTH 22.3 20.1 30.0 27.5
+multilingual 21.7 19.1 29.4 26.1

Deep 22.1 20.5 30.1 28.1
+multilingual 20.9 19.0 28.0 25.8

+lang.dep.hidden 20.8 19.1 27.9 26.1
+large hidden 20.6 18.8 27.7 25.7

LIUM 20.8 19.0 27.9 25.9

Table 9: Recognition results for 200k German LVCSR with
no word compounding (FW: full-word system, Crp: corpus,
MW: sub-lexical system, PPw: word-level perplexity, PPc:
character level perplexity, unsp: unsupervised adapted LM
, CN: confusion network decoding, CER: character error
rate, Effective OOV rate :- Dev:0, eval:0.9)

Expt. Crp LM Adap PPw/PPc WER CER
[%] [%]

FW dev backoff no 314/2.1 19.6 7.6
eval 226/2.2 26.0 15.6

MW dev backoff no 284/2.2 18.8 7.5
+ME 282/2.2 18.8 7.5

eval backoff no 240/2.3 25.4 15.4
+ME+unsp yes 239/2.3 25.4 15.4

CN dec.
MW+FW dev backoff no – 18.4 7.5

eval – 25.2 15.4

Alternatively, as shown in Table 9, non-adapted and
adapted MaxEnt models are applied on the morpheme sys-
tems interpolated with the backoff LM. Character-level per-
plexities are shown for fair comparison between full-word
and morpheme based systems. Applying LM adaptation did
not affect either the perplexity or the WER for both devel-
opment and evaluation corpus. To capture the advantages of
both the sub-lexical and full-word systems, system combina-
tion is used. Using confusion network decoding based sys-
tem combination, further improvements are achieved com-
pared to the stand-alone sub-lexical based system.

6. Conclusions

In this paper, the descriptions of the German and English
LVCSR systems developed by the RWTH Aachen for the
IWSLT 2013 evaluation are presented. Here, state-of-the-art
acoustic level multilingual features, domain dependent lan-
guage modeling, supervised and unsupervised adaptation and
system combination of subsystems are experimented. No-
ticeable contribution of the improvements were achieved be-
cause of the use of multilingual features. Language model
adaptation did not affect the WER. Although sub-lexical sys-
tems performed significantly better than the full-word sys-
tems, system combination outperformed all other systems.
The RWTH produced competitive results for German and
English LVCSRs in the IWSLT 2013 evaluation campaign.

7. Acknowledgements
This work was partly funded by the European Community’s
7th Framework Programme under the project EU-Bridge
(FP7-287658) and partly realized under the Quaero Pro-
gramme, funded by OSEO, French State agency for innova-
tion. Hermann Ney was partially supported by a senior chair
award from DIGITEO, a French research cluster in Ile-de-
France.



8. References
[1] H. Hermansky, D. P. Ellis, and S. Sharma, “Tan-

dem connectionist feature extraction for conventional
HMM systems,” in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, Istanbul, Turkey, June
2000, pp. 1635 – 1638.
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E. Egorova, “The language-independent bottleneck fea-
tures,” in IEEE Workshop on Spoken Language Tech-
nology, Miami, Florida, USA, Dec. 2012, pp. 336–341.
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Abstract
EU-BRIDGE1 is a European research project which is aimed
at developing innovative speech translation technology. This
paper describes one of the collaborative efforts within EU-
BRIDGE to further advance the state of the art in ma-
chine translation between two European language pairs,
English→French and German→English. Four research insti-
tutions involved in the EU-BRIDGE project combined their
individual machine translation systems and participated with
a joint setup in the machine translation track of the evalua-
tion campaign at the 2013 International Workshop on Spoken
Language Translation (IWSLT).

We present the methods and techniques to achieve high
translation quality for text translation of talks which are ap-
plied at RWTH Aachen University, the University of Edin-
burgh, Karlsruhe Institute of Technology, and Fondazione
Bruno Kessler. We then show how we have been able to
considerably boost translation performance (as measured in
terms of the metrics BLEU and TER) by means of system
combination. The joint setups yield empirical gains of up to
1.4 points in BLEU and 2.8 points in TER on the IWSLT test
sets compared to the best single systems.

1. Introduction
The International Workshop on Spoken Language Transla-
tion [1] hosts a yearly open evaluation campaign on the trans-
lation of TED talks [2]. The TED talks task is challeng-
ing from the perspective of automatic speech recognition
(ASR) and machine translation (MT) as it involves spon-
taneous speech and heterogeneous topics and styles. The

1http://www.eu-bridge.eu

task is open domain, with a wide range of heavily dissimi-
lar subjects and jargons across talks. IWSLT subdivides the
task and separately evaluates automatic transcription of talks
from audio to text, speech translation of talks from audio, and
text translation of talks as three different tracks [3, 4]. The
training data is constrained to the corpora specified by the
organizers. The supplied list of corpora comprises a large
amount of publicly available monolingual and parallel train-
ing data, though, including WIT3 [5], Europarl [6], Multi-
UN [7], the English and French Gigaword corpora as pro-
vided by the Linguistic Data Consortium [8], and the News
Crawl, 109 and News Commentary corpora from the WMT
shared task training data [9]. For the two “official” language
pairs [1] for translation at IWSLT 2013, English→French
and German→English, these resources allow for building of
systems with state-of-the-art performance by participants.

The EU-BRIDGE project is funded by the European
Union under the Seventh Framework Programme (FP7) [10]
and brings together several project partners who have each
previously been very successful in contributing to advance-
ments in automatic speech recognition and statistical ma-
chine translation. A number of languages and language pairs
(both well-covered and under-resourced ones) are tackled
with ASR and MT technology with different use cases in
mind. Four of the EU-BRIDGE project partners are partic-
ularly experienced in machine translation for European lan-
guage pairs: RWTH Aachen University (RWTH), the Uni-
versity of Edinburgh (UEDIN), Karlsruhe Institute of Tech-
nology (KIT), and Fondazione Bruno Kessler (FBK) have
all regularly participated in large-scale evaluation campaigns
like IWSLT and WMT in recent years, thereby demonstrat-
ing their ability to continuously enhance their systems and
promoting progress in machine translation. Machine trans-



lation research within EU-BRIDGE has a strong focus on
translation of spoken language. The IWSLT TED talks task
constitutes an interesting framework for empirical testing of
some of the systems for spoken language translation which
are developed as part of the project.

The work described here is an attempt to attain transla-
tion quality beyond strong single system performance via
system combination [11]. Similar cooperative approaches
based on system combination have proven to be valuable for
machine translation in other projects, e.g. in the Quaero pro-
gramme [12, 13]. Within EU-BRIDGE, we built combined
system setups for text translation of talks from English to
French as well as from German to English. We found that
the combined translation engines of RWTH, UEDIN, KIT,
and FBK systems are very effective. In the rest of the pa-
per we will give some insight into the technology behind the
combined engines which have been used to produce the joint
EU-BRIDGE submission to the IWSLT 2013 MT track.

The remainder of the paper is structured as fol-
lows: We first describe the individual English→French and
German→English systems by RWTH Aachen University
(Section 2), the University of Edinburgh (Section 3), Karls-
ruhe Institute of Technology (Section 4), and Fondazione
Bruno Kessler (Section 5), respectively. We then present
the techniques for machine translation system combination
which have been employed to obtain consensus translations
from the outputs of the individual systems of the project part-
ners (Section 6). Experimental results in BLEU [14] and
TER [15] are given in Section 7. A brief error analysis on se-
lected examples from the test data has been conducted which
we discuss in Section 8. We finally conclude the paper with
Section 9.

2. RWTH Aachen University
RWTH applied both the phrase-based (RWTH scss) and the
hierarchical (RWTH hiero) decoder implemented in RWTH’s
publicly available translation toolkit Jane [16, 17, 18, 19].
The model weights of all systems were tuned with standard
Minimum Error Rate Training [20] on the provided dev2010
set. RWTH used BLEU as optimization objective. Lan-
guage models were created with the SRILM toolkit [21]. All
RWTH systems include the standard set of models provided
by Jane.

For English→French, the final setups for RWTH scss and
RWTH hiero differ in the amount of training data and in the
choice of models.

For the English→French hierarchical setup the bilingual
data was limited to the in-domain WIT3 data, News Com-
mentary, Europarl, and Common Crawl corpora. The word
alignment was created with fast align [22]. A language
model was trained on the target side of all available bilin-
gual data plus 1

2 of the Shuffled News corpus and 1
4 of the

French Gigaword Second Edition corpus. The monolingual
data selection for using only parts of the corpora is based
on cross-entropy difference as described in [23]. The hierar-

chical system was extended with a second translation model.
The additional translation model was trained on the WIT3

portion of the training data only.
For the English→French phrase-based setup, RWTH uti-

lized all available parallel data and trained a word align-
ment with GIZA++ [24]. The same language model as in
the hierarchical setup was used. RWTH applied the follow-
ing supplementary features for the phrase-based system: a
lexicalized reordering model [25], a discriminative word lex-
icon [26], a 7-gram word class language model [27], a con-
tinuous space language model [28], and a second translation
model from the WIT3 portion of the training data only.

For German→English, RWTH decompounded the Ger-
man source in a preprocessing step [29] and applied part-
of-speech-based long-range verb reordering rules [30]. Both
systems RWTH scss and RWTH hiero rest upon all available
bilingual data and word alignment obtained with GIZA++. A
language model was trained on the target side of all avail-
able bilingual data plus 1

2 of the Shuffled News corpus and
1
4 of the English Gigaword v3 corpus, resulting in a total of
1.7 billion running words.

In both German→English systems, RWTH applied a
more sophisticated discriminative phrase training method.
Similar to [31], a gradient-based method is used to optimize
a maximum expected BLEU objective, for which we define
BLEU on the sentence level with smoothed 3-gram and 4-
gram precisions. RWTH performed discriminative training
on the WIT3 portion of the training data.

The German→English phrase-based system was further-
more improved by a lexicalized reordering model and 7-gram
word class language model. RWTH finally applied domain
adaptation by adding a second translation model to the de-
coder which was trained on the WIT3 portion of the data
only. This second translation model was likewise improved
with discriminative phrase training.

3. University of Edinburgh
UEDIN’s systems were trained using the Moses system [32],
replicating the settings described in [33] developed for the
2013 Workshop on Statistical Machine Translation. The
characteristics of the system include: a maximum sen-
tence length of 80, grow-diag-final-and symmetrization of
GIZA++ alignments, an interpolated Kneser-Ney smoothed
5-gram language model with KenLM [34] used at runtime, a
lexically-driven 5-gram operation sequence model [35] with
four additional supportive features (two gap-based penalties,
one distance-based feature and one deletion penalty), msd-
bidirectional-fe lexicalized reordering, sparse lexical and do-
main features [36], a distortion limit of 6, 100-best transla-
tion options, minimum Bayes risk decoding [37], cube prun-
ing [38] with a stack size of 1000 during tuning and 5000 dur-
ing testing and the no-reordering-over-punctuation heuris-
tic. UEDIN used the compact phrase table representation
by [39]. For English→German, UEDIN used a sequence
model over morphological tags.



The UEDIN systems were tuned on the dev2010 set made
available for the IWSLT 2013 workshop. Tuning was per-
formed using the k-best batch MIRA algorithm [40] with a
maximum number of iterations of 25. BLEU was used as the
metric to evaluate results.

While UEDIN’s main submission also includes sequence
models and operation sequence models over Brown word
clusters, these setups were not finished in time for the contri-
bution to the EU-BRIDGE system combination.

4. Karlsruhe Institute of Technology
The KIT translations have been generated by an in-house
phrase-based translations system [41]. The models were
trained on the Europarl, News Commentary, WIT3, Com-
mon Crawl corpora for both directions and WMT 109 for
English→French and the additional monolingual training
data. The big noisy 109 and Crawl corpora were filtered us-
ing an SVM classifier [42]. In addition to the standard pre-
processing, KIT used compound splitting [29] for the Ger-
man text.

In both translation directions, KIT performed reordering
using two models. KIT encoded different reorderings of the
source sentences in a word lattice. For the English→French
system, only short-range rules [43] were used to generate
these lattices. For German→English, long-range rules [44]
and tree-based reordering rules [45] were used as well. The
part-of-speech (POS) tags needed for these rules were gener-
ated by the TreeTagger [46] and the parse trees by the Stan-
ford Parser [47]. In addition, KIT scored the different re-
orderings of both language pairs using a lexicalized reorder-
ing model [48].

The phrase tables of the systems were trained using
GIZA++ alignment for the English→French task and using
a discriminative alignment [49] for the German→English
task. KIT adapted the phrase table to the TED domain us-
ing the back off approach and by also adapting the candi-
date selection [50]. In addition to the phrase table proba-
bilities, KIT modeled the translation process by a bilingual
language model [51] and a discriminative word lexicon [52].
For the German→English task, a discriminative word lex-
icon with source and target context features was applied,
while only the source context features were employed for the
English→French task.

During decoding, KIT used several language models
to adapt the system to the task and to better model the
sentence structure by means of class-based n-grams. For
the German→English task, KIT used one language model
trained on all data, an in-domain language model trained
only on the WIT3 corpus and one language model trained on
5 M sentences selected using cross-entropy difference [23].
Furthermore, KIT used an RBM-based language model [53]
trained on the WIT3 corpus. Finally, KIT also used a class-
based language model, trained on the WIT3 corpus using
the MKCLS [54] algorithm to cluster the words. For the
English→French translation task, KIT linearly combined the

language models trained on WIT3, Europarl, News Com-
mentary, 109, and Common Crawl by minimizing the per-
plexity on the development data. For the class-based lan-
guage model, KIT utilized in-domain WIT3 data with 4-
grams and 50 clusters. In addition, a 9-gram POS-based lan-
guage model derived from LIA POS tags [55] on all mono-
lingual data was applied.

KIT optimized the log-linear combination of all these
models on the provided development data using Minimum
Error Rate Training [20].

5. Fondazione Bruno Kessler

The FBK component of the system combination corresponds
to the “contrastive 1” system of the official FBK submis-
sion. The FBK system was built upon a standard phrase-
based system using the Moses toolkit [32], and exploited the
huge amount of parallel English→French and monolingual
French training data, provided by the organizers. It featured a
statistical log-linear model including a filled-up phrase trans-
lation model [56] and lexicalized reordering models (RMs),
two French language models (LMs), as well as distortion,
word, and phrase penalties. In order to focus it on TED spe-
cific domain and genre, and to reduce the size of the system,
data selection by means of IRSTLM toolkit [57] was per-
formed on the whole parallel English→French corpus, using
the WIT3 training data as in-domain data. Different amount
of data are selected from each available corpora but the WIT3

data, for a total of 66 M English running words. Two TMs
and two RMs were trained on WIT3 and selected data, sep-
arately, and combined using the fill-up (for TM) and back-
off (for RM) techniques, using WIT3 as primary component.
The French side of WIT3 and selected data were employed
to estimate a mixture language model [58]. A second huge
French LM was estimated on the monolingual French avail-
able data of about 2.4 G running words. Both LMs have
order five and were smoothed by means of the interpolated
Improved Kneser-Ney method [59]; the second LM was also
pruned-out of singleton n-gram (n> 2). Tuning of the system
was performed on dev2010 by optimizing BLEU using Min-
imum Error Rate Training [20]. It is worth noticing that the
dev2010 and test2010 data were added to the training data in
order to build the system actually employed in the translation
of test2011, test2012, test2013.

6. System Combination

System combination is used to produce consensus transla-
tions from multiple hypotheses which are outputs of different
translation engines. The consensus translations can be bet-
ter in terms of translation quality than any of the individual
hypotheses. To combine the engines of the project partners
for the EU-BRIDGE joint setups, we applied a system com-
bination implementation that has been developed at RWTH
Aachen University.



The basic concept of RWTH’s approach to machine
translation system combination has been described by Ma-
tusov et al. [60]. This approach includes an enhanced align-
ment and reordering framework. Alignments between the
system outputs are learned using METEOR [61]. A con-
fusion network is then built using one of the hypotheses as
“primary” hypothesis. We do not make a hard decision on
which of the hypotheses to use for that, but instead combine
all possible confusion networks into a single lattice. Majority
voting on the generated lattice is performed using the prior
probabilities for each system as well as other statistical mod-
els, e.g. a special n-gram language model which is learned on
the input hypotheses. Scaling factors of the models are op-
timized using the Minimum Error Rate Training algorithm.
The translation with the best total score within the lattice is
selected as consensus translation.

7. Results
In this section, we present our experimental results
on the two translation tasks, German→English and
English→French.

7.1. German→English

RWTH Aachen University, the University of Edinburgh,
and Karlsruhe Institute of Technology participated in the
German→English translation task. The individual results as
well as the system combination results are given in Table 1.
RWTH’s phrase-based translation (scss) is the best of the
four single systems on test2010. The pairwise difference of
the single system performance is up to 1.5 points in BLEU. In
the end each system was needed to reach the performance of
our final system combination submission. We optimized our
system combination parameters on test2010. With the stan-
dard set of features, we got a gain of 1.5 BLEU on dev2010
and 1.2 BLEU on test2010 compared to the best single sys-
tem. We tried different setups; also one which includes the
large language model from RWTH’s single systems as ad-
ditional language model (+ bigLM). The translation quality
in terms of BLEU improves by 0.2 on test2010 but degrades
by 0.4 on dev2010. The TER scores were improved on both
test sets, though. We decided to submit the system combina-
tion including bigLM as primary submission and the system
combination without the large language model as secondary
submission.

7.2. English→French

RWTH Aachen University, the University of Edinburgh,
Karlsruhe Institute of Technology, and Fondazione Bruno
Kessler participated in the English→French translation task.
In Table 2 the results of the individual systems and our best
system combination results are listed. The best individual
system was provided by UEDIN. In this language pair the
pairwise difference of the single systems was up to 1.5 points
in BLEU. As in the German→English translation task, we

Table 1: Results for the German→English translation task.
Bold font indicates system combination results that are sig-
nificantly better than the best single system (p < 0.05).

system dev2010 test2010
BLEU TER BLEU TER

RWTH scss 33.3 47.0 31.4 49.3
KIT 33.6 46.5 31.1 49.5
RWTH hiero 33.0 46.8 30.7 49.5
UEDIN 32.1 47.3 29.9 49.6
sc 34.8 44.9 32.6 47.4
sc + bigLM 34.4 44.4 32.8 46.5

Table 2: Results for the English→French translation task.
Bold font indicates system combination results that are sig-
nificantly better than the best single system with p < 0.05.
Italic font indicates system combination results that are sig-
nificantly better than the best single system with p < 0.1.

system dev2010 test2010
BLEU TER BLEU TER

UEDIN 29.4 55.4 33.2 49.8
RWTH scss 28.8 55.4 32.8 49.2
KIT 28.8 55.7 32.6 49.3
FBK 27.5 57.0 32.1 50.0
RWTH hiero 28.0 56.3 31.7 49.9
sc opt dev10 30.8 53.8 34.0 48.1
sc opt test10 29.7 55.2 35.3 48.2

tried to optimize our parameters on test2010. We got a large
improvement on test2010 of 2.1 points in BLEU, but got
only a slight improvement of 0.3 BLEU on dev2010. After
changing the optimization set to dev2010, we got compa-
rable improvements on both test sets. On dev2010 we got
an improvement of 1.4 points in BLEU and on test2010 an
improvement of 0.8 points in BLEU. On both test sets the
performance in TER was similar or even better compared to
the system combination optimized on test2010. We decided
to submit the system combination optimized on dev2010 as
primary submission.

8. Error Analysis
We carried out a restricted manual error analysis to compare
the outputs of each single system to the final system com-
bination output for some example sentences. In Figure 1
and Figure 2 the TER scores of all translations of two se-
lected sentences from the German→English translation di-
rection are given. In both sentences system combination out-
performs each single system.



KIT (TER Score: 60.00 (9.0/ 15.0))
hyp except for your contribution , whatever it may be .
shifted hyp ——– – —- except for your —– contribution it , whatever —- may be .
edited hyp ——– – —- except for your —– contribution it , whatever —- may be .
ref continue to show up for your piece of it , whatever that might be .

RWTH hiero (TER Score: 66.67 (10.0/ 15.0))
hyp is still there for the post , whatever it may be .
shifted hyp ——– is still there for —- the post it , whatever —- may be .
edited hyp ——– is still there for —- the post it , whatever —- may be .
ref continue to show up for your piece of it , whatever that might be .

RWTH scss (TER Score: 66.67 (10.0/ 15.0))
hyp for your contribution is still there , whatever it may be .
shifted hyp ——– – —- – for your contribution is still there , whatever it may be .
edited hyp ——– – —- – for your contribution is still there , whatever it may be .
ref continue to show up for your ———— piece of it , whatever that might be .

UEDIN (TER Score: 66.67 (10.0/ 15.0))
hyp continue to be there for your contribution , which may be his time .
shifted hyp continue to —- there for your contribution which may , be his time be .
edited hyp continue to —- there for your contribution which may , be his time be .
ref continue to show up for your piece of it , whatever that might be .

system combination (TER Score: 46.67 (7.0/ 15.0))
hyp continue to be there for your contribution , whatever it may be .
shifted hyp continue to be there for your —– contribution it , whatever —- may be .
edited hyp continue to be there for your —– contribution it , whatever —- may be .
ref continue to show up for your piece of it , whatever that might be .

Figure 1: Error analysis for sentence 715 (dev2010) in the German→English translation task.

KIT (TER Score: 52.63 (10.0/ 19.0))
hyp they can only be in conjunction with a number of other chemicals taken the mao advised .
shifted hyp they can only be —– —— – taken in conjunction with a other number of chemicals the mao advised .
edited hyp they can only be —– —— – taken in conjunction with a other number of chemicals the mao advised .
ref they can only be taken orally if taken in conjunction with some other chemical that denatures the mao ——- .

RWTH hiero (TER Score: 47.37 (9.0/ 19.0))
hyp they can only be taken in combination with other chemicals , who turned the mao .
shifted hyp they can only be —– —— – taken in combination with chemicals other , who turned the mao .
edited hyp they can only be —– —— – taken in combination with chemicals other , who turned the mao .
ref they can only be taken orally if taken in conjunction with some other chemical that denatures the mao .

RWTH scss (TER Score: 47.37 (9.0/ 19.0))
hyp they can only be consumed in connection with some other chemicals , which turned the mao .
shifted hyp they can only be —– —— – consumed in connection with some other chemicals , which turned the mao .
edited hyp they can only be —– —— – consumed in connection with some other chemicals , which turned the mao .
ref they can only be taken orally if taken in conjunction with some other ——— chemical that denatures the mao .

UEDIN (TER Score: 36.84 (7.0/ 19.0))
hyp they can be used only in conjunction with other chemicals taken orally that denaturieren the mao .
shifted hyp they can only be taken orally – used in conjunction with —- other chemicals that denaturieren the mao .
edited hyp they can only be taken orally – used in conjunction with —- other chemicals that denaturieren the mao .
ref they can only be taken orally if taken in conjunction with some other chemical that denatures the mao .

system combination (TER Score: 26.32 (5.0/ 19.0))
hyp they can only be taken in conjunction with other chemicals taken orally that turned the mao .
shifted hyp they can only be taken orally – taken in conjunction with —- other chemicals that turned the mao .
edited hyp they can only be taken orally – taken in conjunction with —- other chemicals that turned the mao .
ref they can only be taken orally if taken in conjunction with some other chemical that denatures the mao .

Figure 2: Error analysis for sentence 90 (dev2010) in the German→English translation task.

Words marked with red are substitutions, blue are inser-
tions, green are deletions and yellow are shifts. In Figure 1
the final system combination translation is build out of the
beginning part of UEDIN and the end part of all other sin-
gle systems. Combined, this new translation improves over
all single systems in terms of TER. In Figure 2 the system
combination output is basically a fixed version of the UEDIN
translation. This results in a better TER score which needs
two less edits.

9. Conclusion
For our participation in the MT track of the IWSLT 2013
evaluation campaign, four partners from the EU-BRIDGE
project (RWTH Aachen University, University of Edin-
burgh, Karlsruhe Institute of Technology, Fondazione Bruno
Kessler) provided a joint submission. Our combined
EU-BRIDGE system setup for text translation of talks is part
of our efforts within the project to deliver high-quality ma-
chine translation of spoken language.



By joining the outputs of the partners’ different individ-
ual machine translation engines via a system combination
framework we have been able to achieve significantly bet-
ter translation performance (up to +1.4 BLEU and -2.8 TER).
While each of the individual engines provides performance
that is state-of-the-art for single systems, our results sug-
gest that system combination techniques are still a fertile ap-
proach to benefit from diversity in collaborative efforts and
thus progress towards even better quality.

In future research we intend to both improve single sys-
tems and to investigate novel methods and models in ma-
chine translation system combination for large-scale and
real-world settings.

10. Acknowledgements
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 287658.

11. References
[1] International Workshop on Spoken Language Transla-

tion 2013, http://www.iwslt2013.org.

[2] TED Talks, http://www.ted.com/talks.

[3] M. Federico, L. Bentivogli, M. Paul, and S. Stueker,
“Overview of the IWSLT 2011 Evaluation Campaign,”
in Proc. of the Int. Workshop on Spoken Language
Translation (IWSLT), San Francisco, CA, USA, Dec.
2011.

[4] M. Federico, M. Cettolo, L. Bentivogli, M. Paul, and
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Abstract

This paper describes the MIT-LL/AFRL statistical MT system
and the improvements that were developed during the IWSLT 2013
evaluation campaign [1]. As part of these efforts, we experimented
with a number of extensions to the standard phrase-based model that
improve performance on the Russian to English, Chinese to English,
Arabic to English, and English to French TED-talk translation task.
We also applied our existing ASR system to the TED-talk lecture
ASR task.

We discuss the architecture of the MIT-LL/AFRL MT system,
improvements over our 2012 system, and experiments we ran dur-
ing the IWSLT-2013 evaluation. Specifically, we focus on 1) cross-
entropy filtering of MT training data, and 2) improved optimization
techniques, 3) language modeling, and 4) approximation of out-of-
vocabulary words.

1. Introduction

During the evaluation campaign for the 2013 International Work-
shop on Spoken Language Translation (IWSLT-2013) [1] our exper-
imental efforts centered on 1) cross-entropy filtering of MT training
data, and 2) improved optimization techniques, 3) language model-
ing, and 4) approximation of out-of-vocabulary words.

In this paper we describe improvements over our 2012 baseline
systems and methods we used to combine outputs from multiple
systems. For a more in-depth description of the 2012 baseline sys-
tem, refer to [3].

The remainder of this paper is structured as follows. Section 2
presents our work on the MT task, and discusses language indepen-
dent algorithms. Section 3 discusses our MT algorithms for specific
language pairs. Section 4 describes final systems and results. Sec-
tion 5 presents our work on the automatic speech recognition (ASR)
task.

†This work is sponsored by the Air Force Research Laboratory under
Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

2. Machine Translation
2.1. IWSLT-2013 Data Usage

We submitted systems for the English-to-French, Russian-to-
English, Chinese-to-English, Arabic-to-English, and Farsi-to-
English MT tasks. We used data supplied by the evaluation for each
language pair [2] for training the baseline system, and approved out-
of-domain data for the remainder. Unless otherwise noted, we used
the optimization data set dev2010 supplied by IWSLT 2013.

2.2. Baseline MT System

Our baseline system implements a fairly standard SMT architec-
ture allowing for training of a variety of word alignment types and
rescoring models. It has been applied successfully to a number
of different translation tasks in prior work, including prior IWSLT
evaluations. The training/decoding procedure for our system is out-
lined in Table 1. Details of the training procedure are described
in [4].

Training Process
1. Segment training corpus
2. Compute GIZA++, Berkeley and Competitive Linking

Alignments (CLA) for segmented data [6] [11] [12]
3. Extract phrases for all variants of the training corpus
4. Split word-segmented phrases into characters
5. Combine phrase counts and normalize
6. Train language models from the training corpus
7. Train TrueCase models
8. Train source language repunctuation models

Decoding/Rescoring Process
1. Decode input sentences using base models
2. Add rescoring features (e.g. IBM model-1 score, etc.)
3. Merge n-best lists (if input is ASR n-best)
4. Rerank n-best list entries

Table 1: Training/decoding process

2.2.1. Phrase Table Training

When building our phrase table, we applied Kneser-Ney discount-
ing [5] to the forward and backward translation probabilities of the



phrases extracted during word alignment. In the past, we have com-
bined multiple word alignment strategies, as described in [6]. For
the experiments described here, we used only IBM model 4 or 5 for
word alignment (see [7] and [8]), to keep the statistics appropriate
for discounting.

2.2.2. Baseline Language Model Training

During the training process we built n-gram language models (LMs)
for use in decoding/rescoring. We performed TrueCasing and re-
punctuation using 2-gram language models and disambig from
the SRI toolkit. The MIT Language Modeling Toolkit [10] was
used to create interpolated Kneser-Ney LMs in all cases. Additional
class-based language models were also trained using mkcls [9] for
rescoring. Most systems made use of 7-gram language models for
rescoring trained on the target side of the parallel text.

2.2.3. Optimization, Decoding, and Rescoring

Our translation model assumes a log-linear combination of phrase
translation models, language models, etc.

logP (E|F) ∝
∑
∀r

λrhr(E,F)

To optimize system performance we train scaling factors, λr ,
for both decoding and rescoring features so as to minimize an ob-
jective error criterion. In our baseline systems, this is done us-
ing a standard Powell-like grid search performed on a development
set [13].

A full list of the independent model parameters that we used
in our baseline system is shown in Table 2. All systems generated
n-best lists that are then rescored and reranked using either a maxi-
mum likelihood (ML) or an minimum Bayes risk (MBR) criterion.

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P (E) – 6-gram language model

Rescoring Features
Prescore(E) – 7-gram LM

Pclass(E) – 7-gram class-based LM
PModel1(F|E) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

The moses decoder [14] was used for our baseline system.
This system serves as the starting point for our all experiments sub-
mitted during this year’s evaluation. As described in the follow-
ing sections, we implemented several techniques for generating im-
proved phrase tables and language models, and experimented with
using these techniques both individually and in combination.

2.3. Cross-Entropy Filtering

Based on the success of cross-entropy training data filtering [15]
in last year’s evaluation [16], we have continued experimenting
with the technique across different language pairs. We used a 3-
gram language model based filter, and experimented with LM cross-

Corpus Before Filtering After Filtering
TED 141,387 141,387
FrEn 109 24,116,560 824,698
UN 12,886,831 220,066
Europarl 2,007,723 76,554
News Commentary 137,097 1,735
TOTAL 39,289,598 1,264,441

Table 3: Cross-entropy data sizes, using the minimum-perplexity
method

entropy filtering on each of our systems across different language
pairs.

We train a language model on a random subset of the out-of-
domain corpus, of the same size as the TED training data. We
then sort all sentences in the corpus based on the difference between
their cross-entropy given the out-of-domain model and their cross-
entropy given the TED language model. The filtered data is taken to
be the highest scoringN sentences. We chose the sizeN in two dif-
ferent ways. First, we simply chose N to be some specific fraction
of the data (for example, 5%, 10%, 15%, and 20%). Alternatively,
we used an automated approach [17] that uses an information-
theoretic estimate of the data size. We train new language models
on the best 1/64, 1/32, 1/16, 1/8, 1/4, and 1/2 of the corpus. We
selected the filter size that produced the language model with the
minimum perplexity on the dev2010 dataset. To filter the parallel
data, we combined the perplexity thresholds that produced the best
source and target language models for the dev2010 dataset.

In general, we aggregated together all out-of-domain parallel
data, and performed filtering on the resulting set of sentences; how-
ever, we also ran an experiment where automatic filtering was per-
formed independently on each out-of-domain corpus.

In English-to-French, when running automatic filtering on each
corpus, this resulted in the selection of 3.2 percent of the overall
data for translation model, as shown in Table 3. We also tried man-
ual filtering settings. In all cases, the translation model was fully
generated from all of the filtered data.

Our manual filtering results were tested on tst2010. In
French, we tried 5%, 10%, and 15%. Starting from the system Con-
trast4 (See Sec 4), changing only the percentage of cross-entropy
filtered data, we obtained mean BLEU scores of 31.78, 32.21, and
31.73, respectively. In Russian, we tried 10%, 20%, 30%, and ob-
tained 16.74, 16.64, and 16.62, respectively, compared to a baseline
score of 17.13. In Chinese, the same percentages yielded scores
of 7.61, 7.37, and 6.57, which were all significantly lower than the
baseline average of 10.93. In Arabic, we obtained 24.23, 23.42, and
23.79, with a baseline of 23.90. We stopped increasing the filter
size when either performance significantly deteriorated, or our job
scheduler terminated Moses (typically when it used more than 200
GB of resident memory).

A list of the corpora can be found in Table 4. In the Chinese
and Arabic to English test sets, we used data from the Multi-UN
corpora that we sentence aligned using Champollion [18] to obtain
the results discussed above. Despite the reasonable sentence pairs
produced, we found no significant improvement in the scores.

2.4. Improvements to Optimization

We introduce a new optimization technique, “Derivative-free robust
error minimization”, or DREM. It is distinguished from MERT by
its (a) coordinate system, (b) objective function, and (c) other pro-
cedural features.



Corpus Lang. Num Sent
Europarl-v7 en-fr 1,495,313
UN ar-en 4,743,378
UN ru-en 8,344,467
UN zh-en 5,948,155
UN en-fr 9,018,500
109 en-fr 15,515,787
News Comm. en-fr 107,756
Common Crawl en-fr 2,563,465
Wiki Headlines ru-en 512,000

Table 4: A list of the parallel out-of-domain data used in Cross En-
tropy filtering. Number of sentences is after filtering out sentences
of length > 40.

Optimizer tst2010 tst2011
DREM 32.82 39.35
MERT 32.41 -
PRO 32.79 39.37
Rampion 32.88 39.10

Table 5: Performance of different optimization methods in English-
to-French, for the submission system configuration (system details
described in Section 4)

With regard to the coordinate system, the weights are tuned
on a variance-normalized multi-dimensional unit sphere, rather
than in the standard Euclidean space. This incorporates the scale-
invariance of the weights and reduces the dimension of the search
space by one. Second, it randomizes the coordinate system at ev-
ery step, which allows it to search in multiple random directions
without multiplying the time and effort required.

There are two main novel features of the objective function min-
imized by DREM. First, the estimated decoder score at a new point
considers how far away the new point is from the decode points. A
translation that was produced at the closest decode will get full trust,
and a translation produced at a more distant decode will be penal-
ized. Second, DREM is not an exhaustive search of the error along a
line. Instead, the error function is sampled around the current point
and modeled by a (quadratic or linear) function via least-squares
regression. This model is minimized around the point, subject to
not moving too far away (a “trust-region” constraint). This both
reduces metric computations and prevents a sharp valley or spike
in the objective function from dominating the behavior, making the
result more robust.

Finally, there are two main procedural features of DREM. First,
the search for optimal weights is restarted at a few of the most
promising of the past decode points, preventing a misstep at an
early iteration from having a lingering effect. Second, we have
control of the error function minimized. We can manipulate the
n-best list into the desired format and use our choice of metrics to
define the error function. For this competition, we transformed the
n-best list into human-readable text and chose the error function
1− 1

2
(Expected BLEU score + Expected Meteor score).

We compare our results from using DREM on our best systems
against MERT, and two other optimization techniques: (a) PRO
(Pairwise Ranking Optimization) due to Hopkins and May [19], and
(b) Rampion, a technique based on Structured Ramp Loss due to
Gimpel and Smith [20]. The results per language can be seen in
Tables 5,6,7,8.

Optimizer tst2010 tst2011 tst2012 tst2013
DREM 19.39 21.46 19.28 21.57
MERT 19.24 21.24 19.30 21.70
PRO 19.67 21.32 19.61 21.71
Rampion 18.88 20.57 18.55 20.44

Table 6: Performance of different optimization methods in Russian-
to-English.

Optimizer tst2010 tst2011 tst2012 tst2013
DREM 11.32 15.74 13.91 14.60
MERT 11.13 14.12 12.28 13.21
PRO 11.87 15.34 13.45 14.52
Rampion 11.10 14.19 12.32 13.22

Table 7: Performance of different optimization methods in Chinese-
to-English.

2.5. Language Modeling

For decoding, a number of different language models were used
in various experiments. In general, the procedure was to train a
single language model for each domain and subdomain. For exam-
ple, we would obtain one language model for each news source of
the English/French Gigaword corpora. We then either (a) interpo-
lated several language models together, using the MITLM toolkit,
or (b) let each language model have its own λi to be optimized
by MERT/DREM/PRO/Rampion, or (c) some combination thereof.
Specific submission details can be found Section 4. A list of the
monolingual data used can be found in Table 9.

We rescored our n-best lists using both class language models
(order-7) and recurrent neural network language models (RNNLM)
[21]. The former were trained on the target side of the cross entropy
filtered data, while the latter were trained on the monolingual TED
data (train.fr/train.en). The recurrent neural network contained 160
hidden units, 300 classes and backpropagation through time of 4.
Additionally, some of the Chinese-English systems used a second
RNN that contained 10 hidden units and 100 classes. RNN was
responsible for substantial gains in most cases. For a summary of
its effects, see Table 10.

2.6. Lexical approximation

Morphologically rich languages pose a challenge for machine trans-
lation systems due to the high number of alternate forms each word
may take. Particularly when the size of the training data is small,
this creates a sparsity problem for word alignments and results in a
higher out-of-vocabulary (OOV) rate. Without specific processing,
unknown words are either output without being translated, or are
omitted, both of which hurt translation quality. To translate these
words, we utilized lexical approximation, which generates align-
ments for unknown words by approximating those of the closest
known word in our GIZA++ word alignments [25].

For each OOV word, we find a series of most-likely candi-

Optimizer tst2010 tst2011 tst2012 tst2013
DREM 25.03 25.68 27.65 26.79
MERT 24.71 25.27 27.48 26.50
PRO 24.88 25.52 27.39 26.97
Rampion 24.05 24.83 26.53 25.83

Table 8: Performance of different optimization methods in Arabic-
to-English.



Corpus English French
Europarl-v7 55,730,697 61,888,789
News Commentary 3,404,297 4,928,120
NewsCrawl ’07-’11 2,309,306,270 616,057,716
FrGigaword v2 N/A 827,241,410
EnGigaword v5 4,195,862,612 N/A
UN 361,878,283 421,687,471
TED 2,719,842 2,800,512
109 668,269,385 810,599,307

Table 9: Summary of monolingual training data used.

Test set RNN? French Russian Chinese Arabic
tst2010 N 32.34 19.34 11.24 25.46

Y 32.82 19.39 11.32 25.49
tst2011 N 38.45 21.14 15.72 26.37

Y 39.35 21.46 15.74 26.23
tst2012 N N/A 19.33 13.92 28.41

Y N/A 19.28 13.91 28.47
tst2013 N N/A 21.41 14.65 28.09

Y N/A 21.57 14.60 28.21

Table 10: Performance of various systems with and without Recur-
rent Neural Network language model rescoring. Scores are average
BLEU over 10 iterations.

dates from word alignments utilizing character-based Levenshtein
distance. We experimented with “approximating” only the in-
vocabulary word with the minimum edit distance (1), and the set
under a particular threshold (2). In the latter case, we weighted
the probabilities of each alignment by the edit distance between the
OOV word and its in-vocabulary approximation.

Table 11 shows the reduction in OOV words and the resulting
performance improvement by using the above techniques. Due to its
higher OOV rate, RU-EN translation benefited more than AR-EN.

Russian Arabic
Processing OOV rate BLEU OOV rate BLEU
None 2.8% 21.85 2.2% 24.08
LA (1) 0.2% 21.86 0.1% 24.08
LA (2) 0.0% 21.98 0.1% 24.11

Table 11: OOV Rate and Mean BLEU scores for LA on tst2013.

As seen in table 11, LA with a set of values under a threshold
performs better than a single replacement, though both provide mi-
nor improvement over not processing OOV words. These results
are likely due to the fact that while edit distance finds close word
forms, there is no guarantee that similar word forms have similar
alignments. Further, an OOV word may have no truly similar words
in our vocabulary, making its approximation unrelated. In this light,
thresholding a set of values provides more possibilities from which
a likely alignment to arise.

2.7. Development set selection

In past evaluations we have always used the development data given
to tune the parameters of our system; however, there is no reason to
suspect that tuning performance is independent of the data used,
nor that the given TED talks will produce optimal weights for de-
coding. We try using alternative data for tuning, extracted directly
from the TED training data. The sentences not chosen are used for
the normal training procedure.

System tst2010 tst2011
En-Fr 29.11 35.42
En-Fr + Dev 29.23 35.74
En-Fr C4 32.01 38.75
En-Fr C4 + Dev 32.01 39.22
Ru-En 18.71 21.17
Ru-En + Dev 18.61 20.44
Zh-En 11.27 14.22
Zh-En + Dev 10.31 14.49

Table 12: Results with and without dev set selection, using
tst2010 as a target. Scores are average BLEU over 10 iterations,
case+punc. C4 refers to the submitted system “Contrastive 4.”

Ideally, a development set should resemble the data one expects
to decode. Given a language model describing the expected test
data, the development set should be drawn from the same distribu-
tion. dev2010 and all evaluation data sets are TED talks, so this is
loosely the case already, but we investigate further refinement of the
development set. We built a selection algorithm that, given a test set
as input, extracts the most similar subset of the TED training data.

Since language models are based off of n-gram counts, our al-
gorithm samples from among the training data to match overall n-
gram count frequency. Our algorithm samples to minimize an ob-
jective function that loosely resembles the KL-divergence between
two language models. (In future work, we will use discounting and
explicitly minimize KL divergence.) Let S and T refer to the se-
lection set and input test set, and let CS(j) indicates the count of
n-gram j in the selection set, CT (j) the analogous count in the test
data. The objective function F (S, T ) we used is:

F (S, T ) =
∑
j

a

(
log

CS(j)

CS
− log

CT (j)

CT

)
a(x) = if x > 0 then x else − 1

3
x

This pseudo absolute-value a(x) is used to penalize spurious
n-grams less than missing n-grams. We tracked n-grams up to order
3, and missing counts in the above formula were given the value
0.1. Table 12 gives the performance of this algorithm on several
experiments.

3. MT Language Specific Algorithms
3.1. Arabic-to-English Morphological Processing

In our Arabic-to-English MT systems for prior year evaluations
[22, 23, 24, 25, 26], we normalized various forms of alef and hamza
and removed the tatweel character and some diacritics before apply-
ing a light Arabic morphological analysis procedure that we called
AP5. Last year, [3] we modified the AP5 procedure to more closely
conform to the Arabic Treebank (ATB) segmentation format used
in the MADA Arabic morphological analysis, diacritization, and
lemmatization system, [27]. This year, we compared the AP5 sys-
tem to MADA directly, seen in Table 15.

All systems with the rule-based MADA+TOKAN processing
outperformed the same system on all test sets with AP5. The de-
gree depended both on the test set and on the optimizer, as seen in
Table 15. The most signifant gains were seen using MERT, with a
1.34 BLEU improvement over AP5 on tst2013. While both anal-
yses regularize affixes and perform stemming, MADA more per-
vasively normalizes character variation and segments more heavily
than AP5, reducing the OOV rate from 7.0% with AP5 to 2.2% with
MADA.



Segmenter BLEU
charSeg 10.37
cmuSeg 9.78
stanSegCTB 10.72
stanSegPKU 10.58
charSeg+cmuSeg 10.71
charSeg+stanSegCTB 10.83
charSeg+stanSegPKU 10.66

Table 13: Comparison of baseline MT systems for Chinese-English
based on vaious word segmenters. The BLEU score is an average
over 10 experiments for tst2010.

3.2. Chinese-to-English Character and Word Segmentation

One challenge of building a machine translation system for Chinese
is the absence of spaces between words. We trained systems based
on a few different word segmenters for the machine translation task
and selected the top performer based on average BLEU score to be
our baseline system for this evaluation. The results of our compari-
son are in Table 13.

The Stanford Chinese Word Segmenter [28] was evaluated us-
ing both the Chinese Penn Treebank (CTB) and the Peking Uni-
versity (PKU) segmentation standards. In addition, the CMU LDC
Word Segmenter [30] and simply segmenting each individual char-
acter were evaluated. GIZA++ was trained using sentences from
each segmentation result. Next, the alignment file for each seg-
menter was further character segmented and combined with the
GIZA++ alignments from the character segmenter before being
used to create the phrase table.

The Stanford CTB segmenter out-performed the other indi-
vidual segmenters, and we saw additional gains from combining
GIZA++ alignments for this segmenter with the character seg-
mented GIZA++ alignments. As a result, we chose to use the
char+stanCTB segmenter for this evaluation.

3.3. Russian-to-English Morphological Segmentation

To compensate for the morphological complexity in Russian, we
experimented with segmentation. We utilized Morfessor Cat-MAP
both to process all the data as well as only for word alignments
(WA), [29]. Table 14 shows the mean BLEU scores for individual
Russian-to-English MT systems trained on the 2013 training data
and tested on the 2010 test set. Morfessor categorizes proposed
segments as prefixes, stems, or suffixes. We both kept all generated
segments, as well as only stems.

RUSSIAN
Processing OOV rate BLEU
None 5.0% 17.26
Stems for WA only 3.3% 16.44
Morfessor Stems 4.5% 16.15
Morfessor All Segs 2.4% 16.54

Table 14: Russian-Specific Experiments, OOV rate and BLEU
scores for tst2010.

Though processing the data with Morfessor decreased the OOV
rate by up to 51.6%, BLEU score decreased. Though word align-
ments were improved, it was more difficult to organize a greater
number of target words into meaningful sentences. Before segmen-
tation, source sentences had on average 14.2 tokens per sentence
against 17.12 for English, the relation we would expect given the
morphological complexity of Russian. With the best segmentation

result (see Table 14) we have 19.3 tokens per Russian sentence. An
explanation for poorer performance, then, is that instead of bringing
sentence lengths closer together and making fertility closer to 1:1,
segmentation widened the gap between the two languages.

4. MT Submission Summary
The different experiments we ran in Sections 2 and 3 of this paper
played different roles in the submission systems of different lan-
guages. In this section we describe the systems that were submitted,
and their respective scores. In the tables that follow, the following
abbreviations are used:

• lexDist: Refers to the moses lexicalized reordering model
wbe-msd-bidirectional-allff

• dunk: Drop unknown words

• (corpus 1)· · · (corpus n) LM: Linear interpolation of several
LMs

• RNNx: RNN order x

• FiltLM: Data for language model filtered via Cross Entropy
with TED LM (not interpolated)

• LA: Lex approx

System combinations were trained using the tst2010. We
therefore omit scores for tst2010 on those systems.

It is also worth noting that systems trained at MITLL used man-
ual cross entropy filter sizes, while those at AFRL used minimum
perplexity threshold filter sizes. This is mentioned in the discussion
sections.

4.1. English-to-French

For French, our best system for tst2013 (which was submit-
ted as contrastive) used a single order 5 language model from the
MITLM toolkit, consisting of the following LMs linearly interpo-
lated (using the MITLM toolkit) on dev2010: TED, Europarl-
v7, News-Commentary-v7, News-Crawl2007, News-Crawl2008,
News-Crawl2009, News-Crawl2010, News-Crawl2011, and the
109 corpus. We found inclusion of LDC French Gigaword v2 did
not improve the performance of this language model. The phrase
table was filtered at 10% extra data using cross entropy, without
using Common Crawl. Our other French systems used a combi-
nation of a 6th-order TED language model, and a linearly interpo-
lated language model over LDC Gigaword v2, Europarl, and News
Commentary data set. Results are in Table 15. The phrase ta-
bles were obtained using cross-entropy filtering with minimum per-
plexity thresholds on each of the data sets, and including Common
Crawl.

4.2. Chinese-to-English

Table 15 describes each of the systems we submitted for the
Chinese-English portion of the machine translation task. Our pri-
mary system is a combination of four different systems.

The best-scoring single system on the tst2010 data set was
the PRO-optimized system, so we decided to set the system combi-
nation weights to favor the PRO system over the others. However,
the DREM system scored the best for the other data sets. Our con-
trastive2 submission had a significantly higher weight for the PRO
system compared to the weight for our primary submission. Perhaps
we would have seen even higher scores for the tst2013 data set
if we had set the weights higher for the DREM system. When per-
forming system combination, the primary and contrastive2 systems
used different prior weights during training.



4.3. Russian-to-English

Table 15 describes each of the systems we submitted for the
Russian-English portion of the machine translation task. Our pri-
mary system is a combination of three different systems. Our
best system on tst2013, improperly tokenized when submitted
as Contrast3†, used a single 4th-order language model from the
MITLM toolkit, consisting of the following LMs linearly interpo-
lated (using the MITLM toolkit) on dev2010: TED, MultiUN,
Wikipedia headlines, and LDC English Gigaword v5. The phrase
table kept 20% of extra data using cross entropy filtering, and used
Wikipedia Headlines + United Nations data. Our other Russian sys-
tems used a combination of a 6th-order TED language model, and a
linearly interpolated language model over the LDC Gigaword, Mul-
tiUN, and News-Crawl2007, News-Crawl2008, News-Crawl2009,
News-Crawl2010, News-Crawl2011 corpora. For the cross entropy
filtering, we used News-Commentary-v7 and the News-Crawl cor-
pora with minimal perplexity thresholds.

4.4. Arabic-to-English

Before the deadline, we were only able to submit results for AP5
with various optimization. However, we include in the table results
for MADA, which significantly outperforms the submitted systems.

5. Automatic Speech Recognition
Acoustic training data for our ASR systems were harvested from
838 TED Talks. We applied the same alignment and closed caption
filtering process as IWLST 2011 [26], except that each utterance
was padded by a maximum of 0.25 seconds (instead of 2.0 seconds)
and the filtering threshold was set to 30% WER (Word Error Rate).
This yielded 166 hours of audio.

A GMM-HMM system was trained using Perceptual Linear
Prediction (PLP) features. This system was developed using the
same training procedure as our IWSLT 2011 system, except that
this year we applied mean and variance feature normalization on a
per speaker basis. The updated data partition and feature normaliza-
tion yielded a 1.0% WER reduction on dev2010, tst2010, and
dev2012.

A secondary GMM-HMM (GMM-HMM-2) system was trained
in a similar fashion as the prior, but using the CMU Pronounc-
ing Dictionary [31]. Missing dictionary entries from the training
data were generated by training a grapheme-to-phoneme model us-
ing Sequitur G2P, an open-source grapheme-to-phoneme converter
[32]. This system did not quite reach the performance of the other
GMM-HMM system, however, use of the stress markings included
in the CMU Pronouncing Dictionary are being furthered explored
to evaluate their impact on performance, and initial tests show a de-
crease in WER on dev2010 of approximately 0.3% as compared
to ignoring the stress markings.

A hybrid Deep Neural Network (DNN)-HMM speech recog-
nition system was developed using Theano [33] and a version of
HTK that we modified according to the method of [34]. The DNN
included 5 hidden layers, each of which had 1000 neurons with lo-
gistic activation functions. A context window of 9 frames was used
at the input, and the output included 6000 units corresponding to the
shared states of our GMM-HMM system. The feature set consisted
of 13 PLPs with delta and acceleration coeffcients, and all features
were normalized to zero mean and unit variance on a per speaker
basis. Training was performed using layer growing back propaga-
tion [35] with a minibatch size of 512, and an initial learning rate of
0.008 that was halved after each epoch once the improvement in ac-
curacy on the cross validation partition fell below 0.5%. A second
DNN was trained on PLP features that were transformed using Con-

strained Maximum Likelihood Linear Regression (CMLLR). This
system applied a single transform per speaker.

LM data selection was implemented using the same procedure
as our IWSLT 2012 system [3]. Interpolated trigram and 4-gram
LMs were estimated on TED, 1/8 of Gigaword, and 1/4 of News
2007–2012 using the SRILM Toolkit.1 Compared to a trigram
LM trained on all of the available data, applying data selection re-
duced the WER of our GMM-HMM system by 0.4% on dev2010,
tst2010, and dev2012. Recurrent Neural Network Maximum
Entropy (RNNME) LMs were trained on 1/16 of Gigaword and 1/8
of News 2007–2012 using the RNNLM Toolkit [21]. Each network
included 160 hidden units, 300 classes in the output layer, 4-gram
features for the direct connections, and a hash size of 109. The LM
vocabulary included 95000 words.

A neural network based Speech Activity Detector (SAD) was
developed using Theano. The SAD was trained on 22 hours of TED
data and 5 hours of public domain music downloaded from Wiki-
media Commons,2 the United States Air Force Band,3 and the Open
Goldberg Variations project.4 The network included a context win-
dow of 21 frames on the input, 1 hidden layer of 500 neurons with
logistic activation functions, and 3 output units corresponding to
speech, silence/noise, and music. The feature set consisted of 13
PLPs with delta and acceleration coeffcients, and all features were
globally normalized to zero mean and unit variance. Training was
perfomed using the same procedure as the DNNs.

Automatic segmentation of the test data was performed by eval-
uating the SAD, applying a dynamic programming algorithm to
choose the best sequence of states, and padding the speech end
points by 0.15 seconds. The speech segments from each talk were
clustered using the MIT-LL GMM-based speaker recognition soft-
ware package. Compared to the manual segmentation provided in
the reference files, automatically segmenting the test data increased
the WER of our GMM-HMM system by 0.7% on dev2010,
tst2010, and dev2010.

Initial transcripts of the test data were produced using the hy-
brid DNN-HMM system. Next, CMLLR transforms were estimated
for the GMM-HMM system and the second hybrid DNN-HMM
system. Recognition lattices were produced for each system and
then rescored with the interpolated 4-gram LM. The final transcripts
were produced by rescoring n-best lists with the RNNME LMs.

System combination was performed as in IWSLT 2012 [3] us-
ing a Confusion Network Combination system (CNC). Confusion
networks for combined systems are generated from rescored n-
best lists of size 1000. The confusion networks are aligned with
each other, and this alignment is used to merge the individual
system’s confusion networks into one. Each system is weighted
(weights generated from a Powell-like grid search) and acoustic
model and language model scores of each are combined. Due to
time constraints, tests for our system combination were performed
on dev2010 using the GMM-HMM and DNN-HMM, but results
were not submitted. Table 16 shows WERs for the individual sys-
tems and WER for the combined system using this methodology.

Table 17 shows results on dev2010 for the DNN-HMM sys-
tem, the GMM-HMM system, and the GMM-HMM-2 system be-
fore and after RNNLM rescoring. Table 18 shows the progress of
our current systems against our best submission from IWSLT 2012
[3] on tst2011 and tst2012. Results for tst2013 on our cur-
rent submissions are also shown.

1Available at: http://www.speech.sri.com/projects/srilm
2Available at: http://commons.wikimedia.org
3Available at: http://www.usafband.af.mil
4Available at: http://www.opengoldbergvariations.org



System Description tst2010 tst2011 tst2012 tst2013
English-to-French

primary DREM + UNTen9EuroNCommCC FiltLM + Giga LM + RNN3 + dunk 32.82 39.35 39.76 37.05
contrast1 Ramp + UNTen9EuroNCommCC FiltLM + Giga LM + RNN3 + dunk 32.88 39.10 39.94 37.12
contrast2 Primary + Contrast4 N/A 38.97 39.70 37.32
contrast3 PRO + UNTen9EuroNCommCC FiltLM + Giga LM + RNN3 + dunk 32.79 39.37 39.70 37.41
contrast4 MERT + tedUNTen9NewsCrawlEuro LM + dunk 32.21 38.90 39.83 37.58
contrast5 Primary + Contrast3 N/A 39.27 39.97 37.21

Chinese-to-English
primary contrast5 + contrast3 + contrast6 + contrast4 11.46 15.92 14.05 14.85
contrast1 contrast5 + contrast3 + contrast4 11.40 15.90 13.59 14.77
contrast2 contrast5 + contrast3 + contrast6 + contrast4 11.53 16.00 14.00 14.77
contrast3 PRO + tedGiga LM + RNN3 + lexDist + dropunk 12.03 15.14 13.50 14.36
contrast4 MERT + tedUNGiga LM + RNN5 11.72 14.64 12.35 13.25
contrast5 DREM + tedLM + Giga LM + RNN3 + lexDist + dunk 11.47 15.85 13.93 14.61
contrast6 MERT + tedUNGigaEuroNComm LM + RNN5 + dunk 11.20 14.87 12.63 13.50

Russian-to-English
primary contrast1 + contrast2 + contrast3 N/A 21.49 19.61 21.65
contrast1 PRO + tedNewsCrawlCC FiltLM + Giga LM + RNN3 + LA2 + dunk 19.67 21.32 19.61 21.71
contrast2 MERT + tedNewsCrawlCC FiltLM + Giga LM + RNN3 + LA2 + dunk 19.24 21.24 19.30 21.70
contrast3† MERT + tedUNWiki LM + LA2 + dunk 19.42 21.68 19.58 22.13
contrast4 DREM + tedNewsCrawlCC FiltLM + Giga LM + RNN3 + LA2 + dunk 19.39 21.46 19.28 21.57

Arabic-to-English
primary DREM + lexDist + ted LM + giga LM + RNN3 + AP5 + dunk 25.03 25.66 27.66 26.64
contrast1 PRO + lexDist + ted LM + giga LM + RNN3 + AP5 + dunk 24.88 25.81 27.52 27.27
contrast2 MERT + lexDist + ted LM + giga LM + RNN3 + AP5 + dunk 24.71 24.95 27.27 26.22
contrast3 MERT + lexDist +tedUNGigaEuro LM + AP5 + dropunk 24.36 24.96 26.95 25.77
MADA DREM + lexDist + ted LM + giga LM + RNN3 + MADA + dunk 25.49 26.23 28.47 28.21
MADA1 PRO + lexDist + ted LM + giga LM + RNN3 + MADA + dunk 25.21 26.41 27.92 27.70
MADA2 MERT + lexDist + ted LM + giga LM + RNN3 + MADA + dunk 25.14 26.01 27.97 27.56

Table 15: All Submission Systems. †For this system, fixed tokenization issue after submission.

dev2010
DNN-HMM GMM-HMM Combined

13.9 14.5 13.7

Table 16: WER for individual DNN-HMM and GMM-HMM sys-
tems and their system combination on dev2010 (automatic seg-
mentations, without RNNLM rescoring).

dev2010
without RNNLM with RNNLM

DNN-HMM 14.1 12.9
GMM-HMM 13.8 12.8

GMM-HMM-2 17.2 15.6

Table 17: WER without and with RNNLM rescoring on dev2010
(manual segmentations).
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Abstract

This paper describes the Automatic Speech Recognition
(ASR) and Machine Translation (MT) systems developed
by IOIT for the evaluation campaign of IWSLT2013. For
the ASR task, using Kaldi toolkit, we developed the system
based on weighted finite state transducer. The system is con-
structed by applying several techniques, notably, subspace
Gaussian mixture models, speaker adaptation, discriminative
training, system combination and SOUL, a neural network
language model. The techniques used for automatic seg-
mentation are also clarified. Besides, we compared different
types of SOUL models in order to study the impact of words
of previous sentences in predicting words in language mod-
eling. For the MT task, the baseline system was built based
on the open source toolkit N -code, then being augmented by
using SOUL on top, i.e., in N -best rescoring phase.

1. Introduction
This paper describes the two systems developed by IOIT,
serving the two tasks in the IWSLT 2013 evaluation cam-
paign, namely Automatically Speech Recognition (ASR) and
Machine Translation (MT).

The English ASR task focuses on translating TED talks
which are a collection of public lectures on a variety of top-
ics, ranging from Technology, Entertainment to Design. Ap-
parently, the hindrances in the track are the spontaneous and
natural way of speech, interruption of invalid noises such as
music or applauses or dealing with topic adaptation. This
year, since the evaluation data is no longer provided with
manual sentence segmentation, dividing the long audio files
into short utterances properly becomes a new challenging ob-
stacle. For this task, we use Kaldi [1] to construct the sys-
tem based on state-of-the-art techniques, notably, subspace
Gaussian mixture models, speaker adaptation, discrimina-
tive training, system combination and SOUL [2], a neural
network language model (NNLM). Finally, the system is a
combination of two systems differing in acoustic model, aug-
mented by rescoring the output N -best list with SOUL lan-
guage models. Besides, we study the impact when SOUL
language models take into account words of previous sen-
tences in the context.

On the English to French MT task, since it is our first
participation, our aim is to build a whole system from scratch
using open source toolkits for normalization, tokenization,
tagging, data filtering, system construction. . . which will be
served as a baseline system for future research. The system
is based on N -code1, a bilingual n-gram approach for MT
and the use of SOUL in N -best rescoring.

The organization of the paper is as follows: Section 2 is
the description of our ASR system. While acoustic model
training procedure is presented in Section 2.1, the automatic
segmentation process is described in Section 2.2. The lan-
guage modeling with three types of SOUL models are de-
scribed in Section 2.3. Then, in Section 2.4, the decoding
procedure will be presented in detail. Section 2.5 is devoted
to ASR experimental results and our analyses . Section 3
is concentrated on the MT task. It consists of three parts:
Section 3.1 for data preprocessing, Section 3.2 for the de-
scription of our system and Section 3.3 for the experimental
evaluation.

2. Automatic Speech Recognition Task
2.1. Acoustic Modeling

2.1.1. Training corpus

We decided to collect TED lectures as training materials, in
order to guarantee the homogeneity of training and devel-
opment data in terms of speaking environment and speaking
style. Approximately 220 hours of audio, distributed among
920 talks, were crawled with their subtitles, which were de-
liberately used for making transcripts. However, the pro-
vided subtitles do not contain the correct time stamps cor-
responding with each phrase as well as the exact pronunci-
ation for the words spoken, which lead to the necessity for
long-speech alignment.

Proved to be effective for long-speech alignment task,
SailAlign [3, 4] is applied to extract text-aligned speech seg-
ments, which helps us to not only acquire the transcript with
exact timing, but also to filter non-spoken sounds such as
music or applauses. A part of these noises are kept for noise
training while most of them are abolished. After that, the re-

1http://ncode.limsi.fr



mained audio used for training consists of around 175 hours
of speech, distributed among nearly 175K utterances.

The lexicon was built based on the Carnegie Mellon Uni-
versity (CMU) Pronouncing Dictionary v0.7a, in which the
phoneme set contains 39 phonemes and the word set contains
131,137 words. The vowels may also vary in lexical stress,
ranging from no stress, primary stress to secondary stress.

2.1.2. Front-end

The front-end of the system is based on the conventional
Mel-frequency cepstral coefficients (MFCC) features. The
initial feature vectors, which contain 39 coefficients includ-
ing 12 cepstral coefficients, 1 energy coefficient added with
delta and double-delta features were extracted after window-
ing with the window size of 25 milliseconds and frame shift
of 10 milliseconds. After that, Ceptral Mean and Variance
Normalization (CMVN) was applied for normalization.

2.1.3. Training Procedure

The acoustic models were based on Hidden Markov Model
(HMM), using Gaussian Mixture Models (GMM) for emis-
sion probabilities. In order to model context dependency, we
used the tri-phone setup, with three states per phoneme and
the topology was left-to-right. The model was trained with
the expectation-maximization (EM) algorithm with a split-
ting procedure according to the maximum likelihood crite-
rion. After splitting, the total number of gaussians, which
are initiated at 2000, reached 200000. Furthermore, Maxi-
mum Likelihood Linear Regression (MLLR) technique was
used to adapt the acoustic models with speaker information,
for which we assumed that each TED talk in the training data
is corresponding to one speaker.

Figure 1 reveals that we developed the systems in two di-
rections after the baseline. On one hand, the acoustic model
was strengthened throughout further training with subspace
GMM, which was proved to significantly increase the system
performance [5]. The SGMM model was then enhanced with
discriminative training, producing the SGMM-MMI system.
On the other hand, feature space discriminative training was
implemented on top of the baseline system, to create the
fMMI system. In order to display the progressive result, the
error rates on dev2010 and tst2010 data are illustrated in Ta-
ble 1. It is notable that the language model used in the ex-
periments is the 3-gram LM described in Section 2.3. The
SGMM was able to improve the performance of our sys-
tem by 8% relatively, while discriminative training on top
of the SGMM system showed its effectiveness by reducing
the error rates by 13%. Feature space MMI training over the
baseline system was efficient enough to reduce 18% of er-
rors relatively. In brief, the SGMM+MMI training on top of
the baseline system was slightly better than the counterpart
trained with fMMI.

System 1
(SGMM-MMI)

System 2
(fMMI)

Feature 
Extraction:

MFCC  + CMN

Tri-phone 
training

LDA + MLLT
Speaker 

Adaptation 
with fMLLR 

Subspace 
GMM Training

Discriminative 
Training 

Discriminative 
Training

Feature-space 
MMI Training

Figure 1: Training Procedure diagram

Table 1: Progressive results shown by consecutively trained
systems

System WER
dev2010 tst2010

MFCC+LDA+SAT (baseline) 26.6 26.4
baseline+SGMM 24.9 24.2

baseline+SGMM+MMI 21.8 21.1
baseline+fMMI 21.9 21.6

2.2. Auto-segmentation

Since the evaluation data in 2013 is no longer provided with
timing information for segmentation, we utilize the LIUM
Diarization toolkit [6] in order to divide the talk into small
sentence-like segments,

Figure 2 provides a general description on the diarization
process. First, 13 MFCC features are extracted from the long
audio file. Subsequently, the long talk is segmented based on
Viterbi Decoding, producing shorter segments which are at
least 20 seconds long. After that, 8 one-state HMMs are used
to remove music and jingle regions, leaving only speech seg-
ments. Detection of gender and bandwidth is then done using
a GMM for each of the 4 combinations of gender (male / fe-
male) and bandwidth (narrow / wide band). Finally, GMM-
based speaker clustering is carried out to map each speech
segment to the corresponding speaker. Apparently, one TED
talk can be given by only one or several speakers.

The disparity in word error rates is disclosed in Table 4,
in Section 2.4. It is notable that the automatic speech detec-
tion caused approximately 2 percent loss of the spoken audio,
resulted in inevitably decreasing the error rates, presented by
deletions. Experiments conducted with tst2010 and dev2010
data illustrated that the WER increased 10% relatively, com-
pared with the same data sets which are manually segmented.
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Figure 2: Diarization Process.

Due to the fact that the segmentation cannot be guaran-
teed to be precise at the beginning (end) of the sentence, the
output segments are almost incomplete sentence, or incom-
plete phrases, which affects recognition results. The influ-
ence of language models on this problem will be analyzed
later in Section 2.3.2.

2.3. Language Modeling

2.3.1. Overview

We used the in-domain data provided by organizer. In ad-
dition, we utilize 1

8 of Giga corpus by filtering it according
to the Moore-Lewis approach [7]. Both two datasets were
normalized using the normalization toolkit from CMU2. The
statistics of training data is summarized in Table 2. The vo-
cabulary used to train language models is the same as in the
lexicon. It consists of 131,137 words.

Table 2: Training data for language modeling for English
ASR Task

Data Number of sentences Number of tokens
TED 156,460 2,708,816
1
8 Giga 2,565,687 56,488,064

The final model is the combination of two models trained
on these datasets using SRILM toolkit with the modified in-
terpolated Knesey-Ney smoothing technique [8].

Simultaneously, we trained SOUL language models on
the same training data following exactly the procedure de-
scribed in [9]. We use 300 as the dimension projection,
600; 300 as the size of 2 hidden layers and 1000; 1000 as
the size of the shortlist and the number of classes for the out-

2http://www.festvox.org/nsw/

of-shortlist words. For each type of SOUL models presented
below, only one model is trained and used while decoding.

2.3.2. Auto-segmentation and sentence boundary problem

As auto-segmentation presented in Section 2.2 is based
solely on acoustic features, each resulting segmentations
does not correspond to a “normal” sentence but rather a
phrase. For example, in dev2010, the audio for this sentence:

Now there are many of us who sort of forget that when I
say. . .

is segmented into three parts corresponding to:

Now
there are many of us who sort of

forget that when I say. . .

If we train language models on data containing normal
sentences, there will be a mismatch between test data and
training data. The question is to what extent this mismatch
affects the final performance. To partially answer this ques-
tion, we proposed to use three types of SOUL models that
differ in the way of treating sentence boundary. The detailed
explanation of each model will be presented as follows:

Standard model Supposing that we use 4-gram language
models and have a couple of sentences in a document:

Music can be the food of love
Let’s do this

In the traditional way, the probability of the second sentence
is:

p(Let’s|<s> <s> <s>).p(do| <s> <s> Let’s).
p(this|<s> Let’s do).p(</s>|Let’s do this), (1)

where <s>, </s> stand for the start (end) of the sentence.
<s> is repeated at the beginning of the sentence to better
represent the context in SOUL structure because the number
of input tokens of SOUL is fixed to 3. So, sentence boundary
is introduced by using these two special tokens. Each sen-
tence in the document is independent which means that there
is no information between consecutive sentences that is taken
into account. This type of SOUL model is call “standard”.

Cross model If we assume that there does not exist any
negligible information between sentences, we can still follow
an n-gram approach by considering the whole document as
one long sentence and using </s> to mark sentence bound-
ary. The probability of the second sentence turns out to be as
follows:

p(Let’s|of love </s>).p(do|love </s> Let’s).
p(this|</s> Let’s do).p(</s>|Let’s do this), (2)



By doing this, we obtained the “cross” SOUL model.
Theoretically, by increasing the order n, the model could take
almost all words of the previous sentences into the context to
predict words in the current sentence. Note that, there exists
other ways to take all previous words into account, such as a
“cache” maximum entropy language model [10], a recurrent
neural network language model (RNNLM) [11].

Intuitively, it is evident that the information between sen-
tences in the document is helpful. However, in practice, it is
often difficult to take this type of information into account to
improve the system performance, especially on large scale
tasks. Conclusions for the literature for this problem are
mixed at best. In [12], RNNLM was shown to work better
than any other methods including n-gram NNLM. However,
it is unclear that RNNLM is more efficient due to the dif-
ference in structure of the two models, or the capacity of
RNNLM to take into account a long-range dependency be-
tween words (possible to be in different sentences), or both.
Measuring the influence between words was once imple-
mented in [13]. In this article, a recurrent SOUL model is
shown to work only on par with a standard 10-gram SOUL
models on a large scale WMT English to French translation
task. The problem for this comparison is that two types of
models don’t have the same architecture.

For this reason, we used the same n-gram SOUL struc-
ture with large n (10) to investigate whether the words in
previous sentences which have the distance to the predicted
word not further than 9 is helpful in prediction.

Cross-wo-boundary model Both standard and cross
SOUL models could not deal with the mismatch between
training and test data. To clarify, supposing that after em-
ploying auto-segmentation, we have two phrases:

Music can be the food
of love Let’s do this

The probability of the new second sentence estimated by
a cross SOUL model becomes:

p(of|the food </s>).p(love|food </s> of).
p(Let’s|<s> of love).p(do|of love Let’s).

p(this|love Let’s do).p(</s>|Let’s do this) (3)

Compared to Equation (2), the sentence boundary is
moved two positions to the left. It leads to poor probabil-
ity estimation because typically the training data do not have
any sentence boundary placed in similar position.

One solution is to carry out the same auto-segmentation
procedure with the acoustic training data, then using the cor-
responding transcriptions of the resulting audio segmentation
as the training data. In this case, the training data and test
data are guaranteed to be drawn from the same distribution,
i.e., no mismatch exists. But now the training data does not
contain “real” sentences but rather phrases. The main prob-
lem is that since the audio is required, the size of the training

data for language modeling is restricted. Moreover, this so-
lution hinders the use of out-of-domain data because there is
now the mismatch between in-domain data having the asso-
ciated audio from the same source as the test data and out-of-
domain data often composed of “real” sentences.

Another solution is to completely ignore the sentence
boundary, so the probability of the second sentence becomes:

p(of|be the food ).p(love|the food of).
p(Let’s|food of love).p(do|of love Let’s).

p(this|love Let’s do) (4)

The underlying idea is simple: Since there is no trivial
solution for detecting sentence boundary when testing, we
completely ignore it in the training phase to guarantee the ho-
mogeneity between the training and test data. In equations,
sentence boundary is not in the context neither in the pre-
dicted position. So we have a “cross-wo-boundary” model.
It is worth noting that three types of SOUL models presented
above have the same architecture. They differ only in the
way of constructing the context, see Table 3 for an example
about the probability of the word “of”.

Table 3: Example for three types of SOUL models

SOUL probability
standard p(of|<s> <s> <s>)

cross p(of|the food </s>)
cross-wo-boundary p(of|be the food)

In Section 2.5, these three types of SOUL models will
be compared experimentally in both cases where long audio
signals are automatically segmented into phrases or where
they are segmented manually into sentences.

2.4. Decoding Procedure

As can be seen from Figure 3, there are three main phrases
constituting the decoding process. The first phase begins
with the feature extraction step, followed by decoding with
the baseline system (MFCC+LDA+SAT) in order to esti-
mate the transformations for speaker adaptation (fMLLR al-
gorithm). In the second phase, Viterbi decoding is conducted
with the SGMM-bMMI model and the fMMI model sepa-
rately, with fMLLR adaption using the pre-estimated trans-
formations, resulted in one set of lattice for each system.
These two lattice sets are then re-scored with the 4-gram lan-
guage model. Afterward, system combination is carried out
to reduce the error rates from both above systems, by exploit-
ing lattice interpolation. In our experiment, the two systems
are equally treated, by setting their lattice weights to 0.5.

The last phase is where our NNLM is applied for rescor-
ing N-best results from the lattices. Specifically, each lattice
is decoded for 1000 best outputs, in which the best output is
chosen based on NNLM rescoring. To do N -best rescoring
with SOUL, we follow the same scheme for RNNLM pro-
vided by Kaldi [1], i.e., we adapt related scripts for SOUL.
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Basically, it is done as follows. First, N -best is extracted
from lattices. Then the probability estimated by SOUL mod-
els for each sentence is computed. Language model scores
are updated as the interpolation of the scores provided by
the back-off language model and the SOUL model. The co-
efficient is optimized on the development data. After that,
N -best is converted back into lattices. Finally, any standard
decoding method can be employed on the output lattices to
have final results. In our case, consensus decoding is used at
this step.

So the scripts we need to modify is for using SOUL mod-
els to compute probability for each line of a text file and com-
bining scores of language models. For the first task, it is one
of basic inference functions of standard SOUL models which
can be done efficiently by using several speed-up techniques
such as multi-threading, context grouping. . . 3. Therefore,
the computational time of N -best rescoring phase is dom-
inated by the other steps concerning N -best extraction and
lattice construction. In case of cross or cross-wo-boundary
models, the computational time is similar. The only differ-
ence is that we need to use words from previous sentences
while we don’t have true previous sentences but their best
lists. For simplification, we decide to use the best hypotheses
of previous sentences provided by original lattices to predict
words in a current sentence.

For the second task, it is in fact straightforward to use
the script provided by Kaldi where for each sentence, a fi-
nal score is the weighted average of its scores estimated by
two language models. However, the interpolation in this way
is only at sentence level while a (more) traditional way is
to interpolate models at word level, i.e., for each word, its
probability is computed as a combination of scores provided
by language models. Therefore, we add scripts in order to

3On lattices tst2013 of ≈ 33 million n-grams, it costs around 4 minutes
on Intel(R) Core(TM) i7-3770K CPU with Intel(R) Math Kernel Library.

compare these two interpolation fashions.

2.5. Experimental results

Table 4 shows the experimental results with the three fi-
nal systems. The combination technique allows us to reduce
slightly the WER, by around 3% which is identical in the
case of rescoring the lattice with the 4-gram language model.
Besides, it is clear that auto-segmentation and speech detec-
tion exacerbated the systems’ performance, by increasing the
WER by 10% relatively. As mentioned above, the speech
detection inevitably ignores 2% of spoken data, leading to
uncompensated deletions in recognition.

Table 4: ASR results for various acoustic models and seg-
mentation types (manual, auto)

System WER
dev2010 tst2010

manual auto manual auto
SGMM+MMI+4gram(1) 21.6 23.6 20.9 23.4

fMMI+4gram(2) 21.4 23.0 21.3 23.8
combine(1+2) 20.8 22.2 20.0 22.5

Table 5: ASR results for different types of SOUL models

System WER
dev2010 tst2010

manual auto manual auto
combine(1+2) 20.8 22.2 20.0 22.5
+ standard SOUL (inter) 18.8 20.5 18.1 20.9
+ standard SOUL 18.9 20.4 18.1 20.6
+ cross-wo-boundary SOUL 18.9 20.1 18.6 20.6
+ cross SOUL 19.0 20.4 18.4 20.8

Table 6: Official results for English ASR task. Note that,
results in tst2013 column is with auto-segmentation

System WER
tst2011 tst2012 tst2013

combine(1+2) 16.8 18.5 30.0
+ standard SOUL 14.6 16.2 27.4

In Table 5, we summarize WER results for different types
of SOUL models which are used in N -best rescoring. There
are some remarks drawn from these results. First, interpola-
tion at sentence level is slightly better than at n-gram level.
It supports the idea that two types of language models (back-
off, SOUL) have different characteristics, so it is better to
combine them at sentence level.

Second, cross model under-performs significantly stan-
dard model in both cases (manual and auto). It means that
within the SOUL structure, taking into account words of pre-
vious sentences seems to be harmful rather than useful.



Third, concerning manual segmentation, the cross-wo-
boundary model performed worst than the standard model.
It shows that to predict a word, while words in previous sen-
tences seems unnecessary, the role of sentence boundary is
undeniable. On the contrary, in the case of auto segmen-
tation, as the sentence boundaries for test data are not reli-
able, cross-wo-boundary model can potentially bring bene-
fit. The experiments with development data showed this im-
provement, but unfortunately the improvement is not carried
over test data. There are several possible reasons behind this
phenomenon. First, we used only the best original hypothe-
ses of the previous sentences to predict the words in the con-
text. Second, the automatic segmentation caused the high
rate of word deletion so the continuity of segmentations is
not guaranteed.

Finally, all types of SOUL models bring significant im-
provements over the baseline system. As seen in Table 6, on
all test data (tst2011, tst2012, tst2013), the standard SOUL
model achieves improvements of about 10% relatively. Note
that, the achievements could be more considerable if we use
more than one SOUL model for N -best rescoring.

3. Machine Translation Task
In this section, we present our system used for the English
to French Machine Translation task. The baseline system
is based on the bilingual n-gram approach for Statistical
MT [14, 15, 16]. This system is then enhanced with a SOUL
language model [2]. The experimental evaluation shows that
the system achieves competitive results, therefore it can be
served as a baseline system for our further research.

3.1. Data setup and preprocessing

We used the training TED data provided by the cam-
paign [17] and several datasets from the evaluation campaign
of Workshop for Machine Translation (WMT) 20134. We
don’t use Common-Crawl or any data from LDC. Consider-
ing the TED data as the in-domain data, half of the parallel
dataset Giga is filtered out by applying a technique described
in [7] on the French side. Note that, in our configuration, we
use tst2010 as the development set and dev2010 as the test
set. The reason behind this substitution is simple: We want
to have more sentences in the development set than in the
test set. This development data is used in the optimization
procedure for the log-linear framework as well as optimizing
other hyper-parameters such as the interpolation weights for
language modeling, data filtering. . . The (internal-)test data is
used to choose the best system for evaluation. The final par-
allel data consist of TED, NewsCommentary, Europarl and 1

2
Giga. The monolingual data contain TED, News2008-2012,
Europarl, Giga, UN for a total of 58,793,286 sentences and
1,744,768,777 tokens.

The preprocessing step was done as follows. As data sets
are obtained from several sources, notably Internet. In order

4http://www.statmt.org/wmt13/translation-task.html

to have a clean and homogeneous data in terms of format,
we decided to delete unnecessary characters, especially mal-
form unicode ones, then converted texts into standard pre-
composed unicode format. We treated cases as is.

For the English side, we followed Penn Treebank style
and used the script provided by Penn5. As we need Part-
Of-Speech (POS) tags on the source side, we use TreeTag-
ger [18] toolkit applied on the tokenized data. For the French
side, the tokenization process was done by using BonSai
toolkit well adapted for French6 [19]. It separates common
French phrases such as “donnez-le-nous” into three words:
“donnez -le -nous”. Another point of this process is that it
matches compounds in a text, then replacing the space that
separates the components by a “ ”. Compounds were taken
from a built-in list, which contains phrases such as “a for-
tiori”, “au lieu de”, “ partir de” . . . As there is not any avail-
able scripts in Bonsai toolkit to convert tokenized texts back
to original texts, we implement that task ourselves by break-
ing out compound words and then applying detokenization.

3.2. System overview

We used N -code to build a baseline system, hence fol-
lowing exactly the bilingual n-gram approach described
in [14, 15, 16]. Note that, the baseline system construction
is very similar to the one used in [20]. To build a translation
model, word alignments were first obtained by carrying out
MGIZA++[21]. Based on the information from word align-
ment, words in each source sentence were reordered to match
the word order in its target sentence. Tuples were defined as
basic translation units containing source and target phrases.
Each pair of sentences was considered as a sequence of tu-
ples. For each pair, there were maybe more than one pos-
sible sequence. Therefore, some conditions are added [15]
to guarantee that there is a unique sequence of tuples which
can be associated to a pair of sentences. The most important
condition is that each tuple in the sequence cannot be divided
into small tuples. After that, translation models are n-gram
models that estimate the probability of a sequence of tuples.

When inference, translation was broken into two steps: a
source reordering step and a translation step. In the source
reordering step, a source sentence was represented in the
form of word lattices which contains the most likely reorder-
ing hypotheses. These hypotheses were obtained by apply-
ing rewrite rules learned from word alignments and Part-of-
Speech (POS) taggers of the source side. It has been shown
in [16] that learning rules from POS tagger has a better gener-
alization. In the translation step, all hypotheses in the lattice
were translated monotonically using the log-linear frame-
work.

The baseline system is the combination of four trans-
lation models based on lexicalized weighting and relative
frequency (4 features), a monotone-swap-forward-backward
(MSFB) lexicalized reordering model [22, 23] (8 features), a

5http://www.cis.upenn.edu/ treebank/tokenizer.sed
6http://alpage.inria.fr/statgram/frdep/fr stat dep malt.html



word bonus (1 feature), a tuple bonus (1 feature), a “weak”
distance-based distortion model (1 feature), four 3-gram
translation models trained on TED, NewsCommentary, Eu-
roparl and 1

2 Giga (4 features) and a 4-gram language model
(1 feature). It results in 20 feature functions combined in the
log-linear framework. Their optimization weights are ob-
tained by employing the MERT procedure [24]. N -gram
translation models and language models are trained using
SRILM toolkit with the modified interpolated Knesey-Ney
smoothing technique [8].

For language modeling, the vocabulary contains 500,156
most frequent words, which occur more than 15 times in the
training data. The back-off language model is the interpo-
lation of nine 4-gram sub-models trained on each training
dataset with weights optimized on the development data. The
perplexity of the final model computed on the test data is 74.

We trained a 10-gram SOUL model on the same training
data following exactly the procedure described in [9]. We
used 500 as the dimension projection, 1000; 500 as the size
of 2 hidden layers and 2000; 2000 as the size of the short-
list and the number of classes for out-of-shortlist words. It
achieves 59 as the perplexity on the test data (20% better
than the back-off model).

Proved to be helpful [25, 26], SOUL language model was
used on top of this system in the 300-best rescoring phase.
For each hypothesis in the list, a score of the SOUL lan-
guage model is computed, then being added as a new score.
Weights of models are re-optimized following the MERT
procedure on the development data.

3.3. Experimental results

MT systems are evaluated according to BLEU, NIST metri-
ces computed by the script provided by NIST7. The results
are summarized in Tables 7 and 8. Note that the results in
Table 7 are computed on tokenized texts while the results in
Table 8 are the official results provided by organizer. We see
that 300-best rescoring with SOUL improves significantly
the performance (≈ 1.4 BLEU points improvement).

Table 7: Results for English to French MT task. Scores are
case-sensitive with tokenized texts

Systems Scores
dev data test data

BLEU NIST BLEU NIST
baseline 34.9 7.55 28.6 6.60

+ rescoring with SOUL 35.8 7.69 29.7 6.73

4. Conclusion
In this paper, our systems served for the English ASR and En-
glish to French MT tasks of IWSLT2013 were presented in
detail. On the ASR task, by comparing three types of SOUL

7ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl

Table 8: Official results for English to French MT task.
BLEU is case-sensitive

Systems BLEU
tst2011 tst2012 tst2013

baseline 37.1 38.6 36.2
+ rescoring with SOUL 38.8 39.9 37.6

language models distinguished in the way of treating sen-
tence boundary, we found that in the SOUL structure, tak-
ing into account words of previous sentences were not effec-
tive, even in the case of auto-segmentation. In both tasks, the
SOUL models were used on top in N -best rescoring phase.
They were proved to improve significantly the system perfor-
mance with approximately 10% relative WER reduction for
ASR task and an addition of about 1.4 BLEU points for MT
task.

This work was partially supported by National ICT
Project KC.01.03/11-15
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Abstract
This paper describes the TÜBİTAK Turkish-English submis-
sions in both directions for the IWSLT’13 Evaluation Cam-
paign TED Machine Translation (MT) track. We develop
both phrase-based and hierarchical phrase-based statistical
machine translation (SMT) systems based on Turkish word-
and morpheme-level representations. We augment training
data with content words extracted from itself and experi-
ment with reverse word order for source languages. For the
Turkish-to-English direction, we use Gigaword corpus as an
additional language model with the training data. For the
English-to-Turkish direction, we implemented a wide cov-
erage Turkish word generator to generate words from the
stem and morpheme sequences. Finally, we perform system
combination of the different systems produced with different
word alignments.

1. Introduction

We participated in the IWSLT Evaluation Campaign for the
Turkish-English MT track for both directions. The typo-
logical, morphological and word order differences of this
language pair make the implementation of SMT systems
a challenging task. English and Turkish are typologically
rather distant languages. English has a very limited mor-
phology and rather fixed Subject-Verb-Object (SVO) con-
stituent order. However, Turkish is an agglutinative language
with very flexible (but Subject-Object-Verb (SOV) domi-
nant) constituent order, and has a very rich and productive
derivational and inflectional morphology where word struc-
tures might correspond to complete phrases of several words
in English when translated.

Overview of the systems can be summarized as follows:
(1) We used the feature-based representation of Turkish in
order to aggregate the statistics from different morphologi-
cal forms of the words in addition to the word representa-
tion as in [1], (2) We compared phrase-based SMT systems
with hierarchical phrase-based systems, (3) We augmented
the training data with the content words extracted from it-
self to bias the stem word alignments as in [2], (4) We used
reverse word order of the source language in order to ob-
tain alternative translations similar to [3], (5) We preferred
to use WIT corpus for the translation model training, (6)

We combined both SETIMES and WIT corpora as one lan-
guage model for English-to-Turkish systems, (7) We imple-
mented a wide-coverage Turkish morphological word gen-
erator to generate Turkish words from stem and morpheme
sequences, (8) We added Gigaword corpus as an additional
language model for Turkish-to-English systems, (9) We com-
bined systems (2), (3) and (4) to improve the translation qual-
ity from different word alignments. As a result, we improved
+1.4 BLEU points ontest2011and+1.5 BLEU points on
test2012compared to the best system of IWSLT’12 Turkish-
to-English MT track.

This paper is organized as follows: Section 2 introduces
the challenges of implementation of SMT systems for the
Turkish-English language pair and summarizes the previous
work. Section 3 describes the data sets and explains the ex-
perimental setups. Section 4 shows the experimental results
in both directions and reports the official submission scores.
We conclude with Section 5.

2. Turkish-English Statistical Machine
Translation

Turkish exhibits interesting properties from an SMT point of
view. Its agglutinative structure has very productive inflec-
tional and derivational processes for word formation. Words
are created by concatenating morphemes to the stem word
or to other morphemes. Generally, word formation is done
by suffixation. Except for very few cases, surface realiza-
tions of the morphemes are conditioned by various regular
morphophonemic processes such as vowel harmony, conso-
nant assimilation, and elisions. The morphotactics of word
forms could be quite complex when multiple derivations are
involved. The average number of bound morphemes (i.e.,
excluding the stem) in words is about two. The productive
morphology of Turkish potentially implies a very large vo-
cabulary size. In most cases, single Turkish words typically
tend to align with whole phrases on the English side when
sentence pairs are aligned at the word level.

During the development of SMT systems, morphologi-
cal preprocessing is useful and sometimes crucial when at
least one of the languages is morphologically complex. Turk-
ish is one of the languages that need special attention as



several derivational and inflectional processes can produce
very complex Turkish words. Mapping the rich morphol-
ogy of Turkish to the limited morphology of English has
been addressed by several researchers. To reduce the large
vocabulary size and to force more one-to-one word align-
ments, researchers prefer a sub-word representation of the
foreign language while translating to/from English. The re-
search showed that replacing the Turkish word representa-
tion with a sub-word representation performs better in the
translation process in both directions. [1, 2, 4] used morpho-
logical analysis to separate some Turkish inflectional mor-
phemes that have counterparts on the English side in English-
to-Turkish SMT. Along the same direction, [5] applied syn-
tactic transformations such as joining function words on the
English side to the related content words. [6] used an unsu-
pervised learning algorithm to find the segmentations auto-
matically from parallel data. [7] presented a series of seg-
mentation schemes to explore the optimal segmentation for
statistical machine translation of Turkish. In addition, an im-
portant amount of effort was spent by several research groups
on Turkish-to-English SMT in the IWSLT’091 BTEC task,
IWSLT’102 and IWSLT’123 TED tasks.

3. Experiments

In the experiments, we used all supplied monolingual and
parallel texts for the system development. We tuned sys-
tems withdev2010and usedtest2010as the internal test set.
In terms of official evaluation of the translation systems, we
submitted the last two years’ test setstest2011, test2012and
a new test settest2013. As we noticed that some portions
of the Turkish texts in WIT corpus [8] are asciified, we em-
ployed a deasciifier tool4 to clean these portions of the data.

Tables 1 and 2 show the Turkish (with word and
morpheme-based representations) and English statistics after
the pre-cleaning step. One can notice that with full segmen-
tation, the number of unique words of Turkish and English
are closer than the word representation. As the vocabulary
sizes of the languages get closer, we expect better word align-
ments.

Table 1: WIT training data statistics

Sentences Unique words Total words

Turkish (Word) 158K 1.8M
Turkish (Feature) 130K 35K 2.9M
English 45K 2.5M

1www2.nict.go.jp/univ-com/multitrans/WS/IWSLT2009
2iwslt2010.fbk.eu
3hltc.cs.ust.hk/iwslt
4turkce-karakter.appspot.com

Table 2: SETIMES training data statistics

Sentences Unique words Total words

Turkish (Word) 143K 3.9M
Turkish (Feature) 173K 43K 5.5M
English 60K 4.6M

3.1. Phrase-based vs. Hierarchical Phrase-based Sys-
tems

Although phrase-to-phrase translation [9] overcomes many
problems of word-to-word translation [10] and has been suc-
cessful for some language pairs during the last decade, the
continuity of phrases is its main shortcoming. Clearly, this is
a problem for language pairs with very different word orders
such as Chinese-English. For that kind of language pairs, to
generate the target phrase, we may need sub-phrases from
different parts of the source sentence which are distant from
each other. To overcome the limitations of the phrase-based
model, Chiang [11] has introduced a hierarchical phrase-
based model that uses bilingual phrase pairs to generate hi-
erarchical phrases that allow gaps and enable longer distance
reorderings. Previous work [1, 7] showed that using hierar-
chical phrase-based (HPB) decoder outperforms the phrase-
based (PB) systems for Turkish-English.

For this reason, we performed experiments mainly with
HPB decoders but also implemented systems with PB de-
coders in order to use the output of the PB systems in the
internal system combination.

3.2. Sub-word Representation

We implemented the baseline experiments with the word-
level representation of Turkish. As mentioned in Section 2,
incorporating morphology when working with morpholog-
ically rich(er) languages in SMT performs better than the
word-level. For this reason, in the further experiments, we
preferred using a feature-based representation of Turkishin
both directions as this representation dramatically reduces
the vocabulary size on the Turkish side as shown in Tables 1
and 2. To produce the feature-based word representation, we
first pass each word through a morphological analyzer [12].
The output of the analyzer contains the morphological fea-
tures encoded for all possible analyses and interpretations of
the word. Then we perform morphological disambiguation
on the morphological analyses [13]. Once the contextually-
salient morphological interpretation is selected, we remove
the redundant morphological features that do not correspond
to a surface morpheme such as part-of-speech featuresNoun,
Verb etc., 3rd singular agreement featureA3sg, and positive-
ness featurePosand so on. There only remain features that
correspond to lexical morphemes making up a word such as
dative Dat, accusativeAcc, past participlePastPartand so
on.

We segmented the morphologically-analyzed Turkish



sentences at every feature boundary, denoted by the () sym-
bol. A typical sentence pair with Turkish word representation
and full segmentation is as follows:

• Word representation: Organize edecěgim ,
yönetecěgim ve onu d̈unyaya sunacǎgım .

• Full segmentation: Organize et Fut A1sg , ÿonet
Fut A1sg ve o Acc dünya Dat sun Fut A1sg .

• Reference: I’m going to organize it and direct it and
get it going in the world .

3.3. Content Words

From the morphologically segmented corpora, we also ex-
tract for each sentence in the training corpus, the sequenceof
stems for open-class content words (Nouns, Adjectives, Ad-
verbs, and Verbs). For Turkish, this corresponds to removing
all morphemes and any stems for closed classes.

For English, we used the TreeTagger [14] to tag the sen-
tences and removed all words tagged as closed class words
along with the tags such as+VVG that signal a morpheme on
an open-class content word. We use this data to augment the
training corpus and bias content word alignments, with the
hope that such stems may get a better chance to align with-
out any additional “noise” from morphemes and other func-
tion words. An example of a content word (bold) sentence
pair of is as follows:

• Turkish content words: Organize et Fut A1sg ,
yönet Fut A1sg ve o Acc dünya Dat sun Fut
A1sg .

• English content words: I +PP am +VBgo +VVG to
+TO organize +VV it +PP and +CCdirect +VV it
+PP and +CCget +VV it +PP go +VVG in +IN the
+DT world +NN . +SENT

Table 3 shows the Turkish and English content word cor-
pus statistics after the pre-cleaning step.

Table 3: WIT content word statistics

Sentences Unique words Total words

Turkish 128K 45K 1.1M
English 128K 39K 1M

3.4. Reverse Translation

Word order differences affect many steps of the translation
process such as word alignment, phrase extraction, and thus
the translation quality. It has been observed that one gets bet-
ter alignments and hence better translation results when the
word orders of the source and target languages are more or
less the same. When word orders are different, it can be use-
ful to systematically reorder the tokens of source sentences to

an order matching or very close to the target language word
order so that alignments could be very close to a monotonic
one. Thus instead of forcing the decoders to employ reorder-
ing schemes, the source sentences are similarly reordered and
then decoded with the decoder employing more simple re-
ordering models. As the word orders of Turkish (SOV) and
English (SVO) differ, reordering of the source sentence may
allow to produce an alternative translation table thus alter-
native translation performance. In order to make the word
orders especiallyVerbsa bit closer, one approach can be to
use the reverse order of the source side of the language pair.
In these experiments, we reversed the order of the source lan-
guage similar to [3] before the word alignment step as gener-
ally reordering target language is not preferred because ofthe
need of an additional post-processing. Reverse sentence ex-
amples of the source language for two translation directions
are as follows:

• Turkish reverse sentence: . A1sg Fut sun Dat
dünya Acc o ve A1sg Fut yönet , A1sg Fut et Or-
ganize

• English reverse sentence:. world the in going it get
and it direct and it organize to going I’m

4. Results

For the IWSLT’13 Evaluation Campaign, we performed sev-
eral SMT experiments for Turkish-English with different set-
tings. All available data was tokenized with an in-house
Turkish tokenizer and then truecased. We generated word
alignments using MGIZA [15] with default settings. We im-
plemented both the phrase-based and the hierarchical phrase-
based systems with Moses Open Source Toolkit [16]. The
system parameters were optimized with the minimum error
rate training (MERT) algorithm [17] on the tune setdev2010,
evaluated on the test settest2010, and scores are reported in
terms of BLEU [18]. We trained conventional 5-gram lan-
guage models (LMs) from the parallel corpus for both di-
rections but also performed tests with 4-gram Gigaword lan-
guage model for the Turkish-to-English systems. All lan-
guage models were trained with the SRILM toolkit [19] us-
ing modified Kneser-Ney smoothing [20] and then binarized
using Kenlm [21] .

For phrase-based systems, we allowed unlimited jumps
for word reordering (distortion-limit = −1). At each step,
systems were tuned with five different seeds with lattice-
samples and minimum Bayes risk decoding;-mbr [22] is em-
ployed during the decoding.

For hierarchical phrase-based systems, we relaxed the
rule table extraction by allowing sub-phrases of any size to
be replaced by a non-terminal(-MinHoleSource= −1), and
set-cube-pruning-pop-limitto 5000 to increase the number
of hypotheses created in each span.



4.1. Turkish-to-English

The baseline experiment was conducted with the hierarchical
phrase-based system and Turkish word representation (Exp.
#1), then we employed the morpheme-based representation
as explained in Section 3.2 which results in an improvement
of +2.5 BLEU points (Exp. #2). We experimented to remove
the out-of-domain dataSETIMEScorpus from the training
that gave us a+1.1 BLEU point increase (Exp. #3). Fur-
ther, including the 4-gram Gigaword corpus as an additional
language model improved the performance of the system by
1.1 BLEU points (Exp. #4). We performed two more ex-
periments with augmenting the corpus with content words
(Exp. #5) and using the reverse word order on the source side
(Exp. #6) which resulted in a−0.4 and−1.0 BLEU points
decrease, respectively. We also repeated the experiments4,
5, and6 with the phrase-based framework.

Table 4: Turkish-to-English BLEU scores

System dev2010 test2010

1. HPB - Word Rep. 11.31 12.47
2. HPB - Feature Rep. 13.54 14.96
3. 2 + WIT only 14.00 16.10
4. 3 + Gigaword 15.33 17.14
5. 4 + Content Corpus 14.80 16.68
6. HPB Reverse Corpus 14.18 16.18
7. 4 with PB 13.22 15.69
8. 5 with PB 13.53 15.95
9. 6 with PB 13.00 14.77

Table 4 shows the experimental results on the develop-
ment and test sets. All of the experiments run with five tuning
seeds and the one with the maximum score is selected after
each step. We observed that the reported improvements are
consistent in all tuning runs5. Although not reported here,
using Turkish-specific tokenizer improved the performance
by +0.3 BLEU points. As expected, the HPB systems out-
perform the PB systems by approximately1.5 BLEU points.
Adding content word corpus degraded the performance in
the HPB framework but induced a slight improvement (0.3

BLEU points) in the PB systems. Experiments showed that
using out-of-domain data without performing any domain
adaptation method hurts the performance of the systems. Re-
verse word order in the source language is slightly worse than
the exact word order individually but this system can be used
as a candidate in the system combination which will be ex-
plained later. We also performed experiments with combined
language model where SETIMES and WIT corpora are con-
catenated and trained together but observed a decrease of0.2

BLEU points.

5Variation between tunes are approximately0.4 BLEU points

4.2. English-to-Turkish

In this case, the target language is the morphologically-
complex Turkish. This presents a challenge in predicting the
correct word forms (or their morphological composition) us-
ing a sparser target language model data. In the morpheme-
based system, there is a need for a word-generation tool
that generates Turkish words from stem and morpheme se-
quences. The performance of this tool will directly affect the
translation quality of the morpheme-based system. The chal-
lenge in generating Turkish word forms is that Turkish word
features can be mapped to several suffixes and each combi-
nation leads to a different Turkish word. Moreover, during
the generation process the vowel harmony should be taken
into consideration.

Most of the experiments of Section 4.1 were repeated
for the English-to-Turkish direction. Similar to the Turkish-
to-English experiments, the baseline experiment was con-
ducted with the hierarchical phrase-based system using Turk-
ish word representation (Exp. #1), then we experimented
with Turkish morpheme-based representation which results
in an improvement of+0.6 BLEU points (Exp. #2). We also
removed the out-of-domain dataSETIMEScorpus from the
training, which resulted in an increase of+0.1 BLEU points
(Exp. #3). We performed experiments with the combined
language model which induced a+0.1 BLEU improvement
(Exp. #4). Above that, we performed experiments by aug-
menting the corpus with content words (Exp. #5) and using
the reverse word order on the source side (Exp. #6) which
resulted in a−0.3 and−0.4 BLEU points decrease, respec-
tively. Again, we also repeated the experiments4, 5, and6
with the phrase-based framework.

Table 5: English-to-Turkish BLEU scores

System dev2010 test2010

1. HPB - Word Rep. 6.11 7.70
2. HPB - Feature Rep. 7.14 8.31
3. 2 + WIT only 6.34 8.41
4. 3 + Combined LM 6.07 8.52
5. 3 + Content Corpus 6.54 8.24
6. HPB Reverse Corpus 5.99 8.13
7. 4 with PB 4.91 7.40
8. 5 with PB 4.91 7.23
9. 6 with PB 4.32 6.83

Table 5 shows the experimental results on the develop-
ment and test set. Similar to Turkish-to-English direction,
the HPB systems outperform the PB systems by approxi-
mately1.1 BLEU points. Adding content word corpus and
reverse word order hurts the performance in both HPB and
PB systems but they were kept for the system combination.
Employing combined language model increased the system
performance in the test set contrary to the Turkish-to-English
experiments.



Table 6: The word statistics of morphological generation for outputs of Exp. #4. (#stems: words with no morphemes, hence
no word generation is required, #sequences: words of the form stem+morphemes, found: sequence words for which an exact
single-word-form is found; sub-found: sequence words resolved after elimination of some trailing morphemes)

total #stems #sequences found (%) sub-found (%) missed (%)
test2010 23056 13604 9452 9065 (95.9%) 167 (1.8%) 220 (2.3%)
test2011 19447 11312 8135 7793 (95.8%) 124 (1.5%) 218 (2.7%)
test2012 22021 12609 9352 8878 (94.9%) 174 (1.9%) 300 (3.2%)
test2013 16410 9414 6996 6643 (95.9%) 132 (1.9%) 221 (3.2%)

4.2.1. Turkish Word Generation

In morpheme-based translation, a word generation tool is re-
quired to generate the correct Turkish word from the outputs
of systems which contain words represented with stems and
sequence of morphemes. We used an in-house morphologi-
cal generation tool that, given a text with words in a format
where each morpheme is concatenated to the previous mor-
pheme or stem, transforms these representations to the cor-
rect single-word form. This generation tool has been trained
by a large Turkish corpus and works by simply creating a
reverse-map through morphological segmentation of the cor-
pus. This map contains stem+morpheme sequences as keys
and their corresponding single-word forms as values. While
creating this map, the disambiguation step of morphological
segmentation is omitted to increase the coverage, as keep-
ing multiple resolutions for a single-word form increases the
number of keys for the reverse-map. An additional map is
generated through morphological segmentation of WIT and
SETIMES corpora to further increase coverage. These two
maps are combined giving the preference to the latter map in
case of disagreements.

The following are the working steps of the generation
tool:

1. The system outputs and the combined map of
’stem+morphemes to single-word form’ is taken.

2. Iterating through tokens, if an encountered token is:

(a) a stem; simply output the token.

(b) a ’stem+morphemes’ that is in the map; output
its value.

(c) otherwise; drop the trailing morpheme, and go to
2a.

Examples of word generation are as follows:

• Stem+Morpheme Sequence:et Aor A1sg
Surface Form: ederim6

• Stem+Morpheme Sequence:duy PastPartP3sg
Surface Form: duydu7

6I do it
7he/she/it heard

Step 2c in this procedure can help in cases where an ex-
traneous morpheme is found at the end of a word, which
in turn would increase the coverage of the generator. Ta-
ble 6 shows the coverage of the word generator for outputs
of (Exp. #4) for all the test data. For about 95% of the
tokens of the form stem+morpheme sequences, the proce-
dure finds an exact single-word form match. An additional
1-2% match is achieved by following the process of drop-
ping the trailing morpheme and re-checking the map for the
resulting sequence. For 2% to 3% of the words of the form
stem+morphemes, all morphemes are eliminated and only
the stem is represented in the output (missed).

4.3. System Combination

System combination attempts to improve the quality of ma-
chine translation output by combining the outputs of differ-
ent translation systems which usually are based on different
paradigms such as phrase-based, hierarchical, etc. aimingto
exploit and combine strengths of each system. The outputs of
some of our translation systems, which are based on different
methods as explained in the previous sections, were put into
a combination task. We combined the outputs of some of the
best performing -best tuning run in terms of BLEU score- hi-
erarchical phrase-based systems using the open-source sys-
tem combination tool, MEMT [23]. We also experimented
with adding phrase-based systems to the combination task
but did not observe any improvements, hence we provide re-
sults for combination of different hierachical phrase-based
systems.

MEMT should ideally be tuned by a separate held-out
data that is different from system training and tuning data.
As we did not have additional tuning data for system com-
bination tuning, we primarily useddev2010data to tune the
system combination decoder. To see how having separate
tuning data for system combination would have effected the
quality of the combined system outputs, we trained the sys-
tem combination decoder withtest2010data evaluating the
performance ontest2011, test2012, and test2013data (not
tested fortest2010as it would not be valid). Tuning the sys-
tem combination decoder withtest2010data yielded compa-
rable results with the system tuned bydev2010data. Also,
tuning with the combination ofdev2010and test2010data
yielded similar results. The results we provide in this paper
are for system combination tasks that employed either only



dev2010, or bothdev2010andtest2010data as tuning data.
The language models used for system combination train-

ing and decoding were i) a 4-gram language model con-
structed from the Gigaword database for Turkish-English
translations, and ii) a 5-gram language model constructed
from the combination of WIT and SETIMES corpora for
English-Turkish translations.

Table 7: BLEU scores of individual systems and their sys-
tem combinations for English-to-Turkish. (*Exp. #3 with
different tuning seed)

Experiment test2010 test2011 test2012 test2013

3* 8.84 8.85 8.81 8.50
4 8.52 8.86 9.20 8.65
5 8.24 8.74 8.70 8.08
Sys. Combo. 8.82 9.16 9.29 8.97
6 8.13 7.99 8.57 8.05
Sys. Combo. 8.77 9.34 9.48 8.86

Table 7 shows the BLEU scores of some individual sys-
tems as well as the the BLEU score of their combined outputs
for English-to-Turkish translations. Combining the outputs
of experiments 3, 4, and 5 yields about the same BLEU score
for test2010and better BLEU scores for test sets 2011, 2012,
and 2013 compared to the best individual system. Combina-
tion of the outputs of those three systems achieves a relative
BLEU improvement of about 3.5%, 0.98%, and 3.7% over
the best performing individual systems for test sets 2011,
2012, and 2013, respectively. Integration of a fourth sys-
tem, experiment 6, to the combination task provides better
improvements fortest2011(5.5%) andtest2012(3.0%) data,
but yields a lower score fortest2010andtest2013data com-
pared to the combination of 3, 4, and 5. The official results
we submitted to IWSLT’13 are the combined outputs of sys-
tems 3, 4, and 5. For the submitted combined outputs, the
improvements over the best performing individual systems
for test2011and test2013were computed to be statistically
significant (p<0.05).

Table 8 shows the BLEU scores of individual systems
and combined systems for the opposite translation direction,
Turkish to English. Using onlydev2010data for system
combination decoder tuning (Sys. Combo. (dev only)), the
combined system outputs in this direction provided about
1.17% improvements for bothtest2010andtest2012over the
best performing individual systems, and no improvements
for test2011and test2013data. Addingtest2010data into
the tuning of the system combination decoder (Sys. Combo.
(dev+test)) provided some improvement fortest2011and
test2013over (Sys. Combo (dev only)). The combined sys-
tems -compared to the best individual system- provided sta-
tistically significant improvements for this translation direc-
tion for test2010andtest2012data (p<0.05), and performed
worse or about the same fortest2011andtest2013data.

Our official submissions for English-to-Turkish and

Turkish-to-English are the fourth rows of Tables 7 and 8.

5. Conclusions

This paper presented the experiments and results of the
TÜBİTAK Turkish-English submissions in both directions
for the IWSLT’13 Evaluation Campaign TED Machine
Translation (MT) track. Due to the rich morphological and
syntactic properties of Turkish, statistical machine transla-
tion involving Turkish implies processes that are more com-
plex than standard statistical translation models.

In our implemented systems, we improved from12.47
to 17.34 BLEU points in Turkish-to-English SMT systems
and 7.70 to 8.82 in English-to-Turkish SMT systems on
the test2010set. For Turkish-to-English, we improved
+1.4 BLEU points ontest2011and+1.5 BLEU points on
test2012compared to the best system of IWSLT’12 Turkish-
to-English MT track. Major results of our work can be sum-
marized as follows:

• We compared the feature-based and word representa-
tion of Turkish,

• We compared phrase-based SMT systems with hierar-
chical phrase-based systems,

• We augmented the training data with the content words
extracted from itself,

• We used reverse word order of the source language in
order to obtain alternative translations,

• We preferred to use WIT corpus for the training,

• We added Gigaword corpus as an additional language
model for Turkish-to-English systems,

• We combined both SETIMES and WIT corpora as one
language model for English-to-Turkish systems,

• We implemented a wide-coverage Turkish morpholog-
ical word generator to generate Turkish words from
stem and morpheme sequences,

• We applied system combination to hierarchical phrase-
based systems that are trained on different representa-
tions of the training corpora.
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Abstract

This paper describes the systems submitted by FBK for the
MT track of IWSLT 2013. We participated in the English-
French as well as the bidirectional Persian-English trans-
lation tasks. We report substantial improvements in our
English-French systems over last year’s baselines, largely
due to improved techniques of combining translation and lan-
guage models. For our Persian-English and English-Persian
systems, we observe substantive improvements over base-
lines submitted by the workshop organizers, due to enhanced
language-specific text normalization and the creation of a
large monolingual news corpus in Persian.

1. Introduction
FBK’s machine translation activities in the IWSLT 2013
Evaluation Campaign [1] focused on the speech recogni-
tion and translation of TED Talks1, a collection of public
speeches on a variety of topics and with transcriptions avail-
able in multiple languages. In this paper, we describe our
participation in the Machine Translation translation tasks in
the official English-French as well as the optional English-
Persian and Persian-English languages. These tasks entail
translating subtitles transcribed and translated by the TED
community.

We begin with an overview of the domain adaptation
techniques used by each of our language pair experiments
in Section 2: namely, data filtering and methods to combine
translation models, reordering models, and language models
from multiple corpora, respectively. In Section 3, we de-
scribe several experiments in the English-French translation
task. In Section 4, we describe our first efforts at translated
to and from English and Persian, a language pair with few
parallel resources available. We introduce our efforts to col-
lect and preprocess Perian corpora to improve the quality of
Persian translation and show significant improvements over
the state of the art. In Section 5 we summarize our findings.

For all language pairs, we set up a standard phrase-based
system using the Moses toolkit [2]. We construct a statistical

1http://www.ted.com/talks

log-linear models including domain-adapted phrase transla-
tion and hierarchical reordering models [3, 4, 5], one or more
target language models (LM), as well as distortion, word, and
phrase penalties.

2. Domain adaptation techniques
In this section, we summarize several well-known techniques
for domain adaptation we applied to build high-performance
models for our SMT submissions.

2.1. Data selection

The idea of data selection is to find the subset of sentences
within an out-of-domain corpus that better fits with a given
in-domain corpus.

To this purpose, we follow the procedure described in [6],
which adapts the cross-entropy difference scoring technique
introduced by [7] toward bitext data selection. First, all sen-
tence pairs of the out-of-domain corpus are associated with
a source- and target-side scores, each computed as the basic
technique proposes for the corresponding monolingual sce-
narios, using the in-domain (TED) data as a seed and LMs of
order 3. Then, the sentences are sorted according to the sum
of these two scores. Finally, the optimal split between useful
and useless sentences is found by minimizing the source-side
perplexity of a development set on growing percentages of
the sorted corpus. In our experiments, dev2010 and tst2010
are concatenated and used as the filtering development set.

2.2. Translation model combination

Three methods are applied in our submissions to combine the
TM built on the available parallel training corpora: namely,
fill-up [8, 9], back-off, and interpolation.

2.2.1. Fill-up and Back-off

In the fill-up approach, out-of-domain phrase pairs that do
not appear in an in-domain (TED) phrase table are added,
along with their scores – effectively filling the in-domain ta-
ble with additional phrase translation options. The fill-up
process is performed in a cascaded order, first filling in miss-



ing phrases from the corpora that are closest in domain to
TED. Moreover, out-of-domain phrase pairs with more than
four source tokens are pruned.

Following [8, 9] the fill-up approach adds k-1 provenance
binary features to weight the importance of out-of-domain
data, where k is the number of phrase tables to combine. A
similar back-off approach performs the fill-up technique, but
does not add any provenance binary features.

2.2.2. Linear interpolation

A common approach for building multi-model is through
the linear interpolation of component models. Various ap-
proaches have been suggested for computing the coefficients
of the interpolated model, the most recent being perplexity
minimization described in [10] where the perplexity of each
component translation model is minimized on the parallel
development set. However, the mixing coefficients can be
separately computed by several other techniques. In this pa-
per, instead of calculating translation model perplexity we
calculate language model perplexity on target side develop-
ment set. After minimizing perplexity we get the interpo-
lation weights which we then use as mixing coefficients for
component translation models.

2.3. Reordering model combination

All techniques available for combining the TMs can be ap-
plied straightfowardly to combine the RMs. The only dif-
ference regards the fill-up technique: the additional binary
feature is discarded, since it is already present in the corre-
sponding filled-up TM. Hence, a filled-up RM is exactly the
same as a backed-off RM.

2.4. Language model combination

Language models are built from the monolingual training
data, as well as the target language of the parallel data. As
the corpora available in the IWSLT evaluation come from a
number of sources, we apply several methods to combine the
LMs built on the available target language training corpora,
rather than concatenating the data.

2.4.1. Mixture

Monolingual subcorpora can be combined into one mixture
language model [11] by means of the IRSTLM toolkit [12].
The optimization of the internal mixture weights is achieved
through a cross-validation approach on the same training
data; hence no external development set is required. The
mixture LM type can be loaded by Moses as any other LM
type.

2.4.2. Linear interpolation

This technique, provided by the IRSTLM toolkit, consists in
the linear interpolation of the n-gram probabilities from all
component LMs. The optimal interpolation weights are com-

puted by the EM algorithm which minimizes the perplex-
ity on a given held-out development sample. The IRSTLM
toolkit provides an interface that enables Moses to compute
n-gram probabilities from interpolated LMs.

2.4.3. Log-linear interpolation

This technique, provided directly within the Moses toolkit,
consists in the log-linear interpolation of the n-gram proba-
bilities from all component LMs. The weight optimization is
performed during the tuning of all Moses features.

3. English-French system
Our English-French systems are built upon a standard
phrase-based system using the Moses toolkit [2], exploiting
a huge amount of English-French bitexts and monolingual
French training data. Each system features a statistical log-
linear model including one phrase translation model [9] and
one lexicalized reordering model, multiple French language
models (LMs), as well as distortion, word, and phrase penal-
ties.

The training data are composed from some of the cor-
pora allowed by the IWSLT Evaluation Campaign organiz-
ers. As parallel data the following corpora were taken into
account: Web Inventory of Transcribed and Translated Talks
(version 2013-01) (TED) [13], 109-French-English (version
2) (Giga), English-French Europarl (version 7) (EP), Com-
mon Crawl (CC), MultiUN (UN), and the News Commen-
tary (News) corpus as distributed by the organizers of the
Workshop of Machine Translation (WMT). As monolingual
data we use the entire monolingual news corpora (Full) dis-
tributed by WMT organizers for language model training.
All texts were processed according to the language spe-
cific tokenization provided by Moses toolkit and kept case-
sensitive. Statistics of the training corpora are reported in
Table 1.

unselected selected
En Fr En Fr

Corpus Segm Words Words Segm Words Words
TED 155.5K 3.1M 3.2M 155.5K 3.1M 3.2M
Giga 22.5M 662.8M 774.7M 1.1M 23.8M 26.9M
UN 12.9M 361.6M 413.1M 257.7K 5.1M 5.6M
CC 3.2M 80.7M 88.0M 973.2K 23.2M 25.2M
EP 2.0M 55.6M 60.0M 240.9K 5.1M 4.8M
News 170.2K 4.4M 5.0M 51.1K 1.1M 1.3M
Full 84.0M na 2.4T na

Table 1: Statistics of the parallel and monolingual data exploited
for training our English-French systems. For the parallel data,
statistics before and after data selection are reported. Symbols ”T”,
”M” and ”K” stand for 109, 106 and 103, respectively.

In order to focus the models toward a TED-specific do-
main and genre and to reduce the model size, data selection
by means of the IRSTLM toolkit [12] is performed on the
English-French bitexts, using the TED training data as in-
domain data. Different amounts of data are selected from



each of the available out-of-domain corpora; statistics are re-
ported in Table 1. A detailed description of the data selection
procedure is provided in Section 2.1.

We construct five systems which exploit the training data
in different ways to construct the component models. Details
for these systems are provided in Section 3.1.

Most system parameters are kept fixed to allow a bet-
ter comparison among the systems. Word alignments are
computed by means of MGIZA++ on case-insensitive par-
allel texts to reduce data sparseness; casing information is
re-introduced in order to estimate case-sensitive models, un-
less otherwise specified in the particular experiment. In all
systems the maximum phrase length is set to 7 and the dis-
tortion limit is set to the default value of 6. We train 5-gram
LMs with IRSTLM toolkit [12] in most cases; in other cases,
KenLM [14] is used. Each language model is smoothed via
the improved Kneser-Ney technique. Singleton n-grams of
order three or higher are pruned.

The weights of the log-linear combination are optimized
either via minimum error rate training (MERT) [15] or the
Margin Infused Relaxed Algorithm (MIRA) [16, 17] on
dev2010.

3.1. English-French submissions

As described in Section 3, we submit five systems which dif-
fer in the exploitation of the training data for the creation of
TM, RM and LMs. We evaluate the performance of each
system in Table 2 and use the results on tst2010 to select our
primary submission. In our Primary, Contrastive 1, and Con-
trastive 2 systems, the dev2010 and tst2010 data are added to
the TED training data after optimizing each system’s feature
weights, before evaluating their performances on the 2011,
2012, and 2013 test sets.

3.1.1. Primary

A backed-off TM is created combining a primary TM trained
on TED training data (TED-TM) and a background TM
trained on the selected training data (Slct-TM). The RM is
constructed in a similar manner. A log-linear combination
of two LMs is employed. The first LM is a mixture es-
timated from the in-domain TED training data (TED-LM)
and the out-of-domain data-selected training data (Slct-LM).
Additionally, a second Full-LM is estimated from the en-
tire French monolingual corpora. Minimum Bayes Risk [18]
(MBR) decoding technique, provided by Moses, is also ex-
ploited. Feature weights are averaged over three MERT op-
timizations.

3.1.2. Contrastive 1

This system replaces the backed-off TM of the primary sys-
tem with a filled-up TM that exploits the same component
TMs. Moreover, the MBR decoding technique is not applied.
The feature weights are newly estimated averaging three dis-
tinct MERT optimizations.

3.1.3. Contrastive 2

This system aims at enhancing the primary system by fur-
ther focusing its models to each specific talk that comprises
the test set. Using the same optimized feature weights, we
construct talk-specific translation, reordering, and language
models and insert them with highest priority in their respec-
tive back-off and mixture models.

Given a talk to translate, we perform the data selection
procedure described in Section 2.1, using the source text of
the talk as seed data to extract the most similar portion from
the data-selected parallel training data. Unlike the training
phase, this selection is based on the English monolingual
score only and a fixed amount of parallel data (about 3.5M
English running words) were extracted.

Like the primary system, MBR decoding is applied. It is
worth highlighting that this system is actually a collection of
talk-specific instances working on their corresponding talk.

3.1.4. Enhanced Contrastive 2

In the post-evaluation activity, we performed an ad-hoc tun-
ing of the system weights. For each talk of tst2010, we search
for the optimal weights of the corresponding talk-specific
system with our standard MERT procedure; then, all talk-
specific weight sets are averaged and exploited for running
the system over the official tst2011-2013. We also test this
enhanced system on tst2010 in a fair manner: when translat-
ing a talk we exclude the corresponding set of optimal weight
during the averaging action.

3.1.5. Contrastive 3

Following [10], the corpus specific TMs and RMs are com-
bined according to the linear interpolation technique, but
a different procedure is performed to find the mixing co-
efficients of the linear-interpolated TM and RM. A linear-
interpolated LM is created by combining the corpus-specific
LMs and its mixing coefficients are optimized by minimiz-
ing the perplexity on dev2010 target side using Expectation-
Maximization by means of the IRSTLM toolkit. These in-
terpolation weights are utilized as mixing coefficients for the
linear-interpolated TM and RM. In this system we employ all
LMs, estimated on the each of the 6 different domains, and
the Full-LM combined in a log-linear fashion.

The system applies MBR decoding and case-insensitive
models; therefore, a re-casing module estimated on the train-
ing data is attached to the translation system.

The whole set of the Moses features weights are opti-
mized running the MIRA algorithm once.

3.1.6. Contrastive 4

This system differs from contrastive 3 only in the number of
employed LMs; rather than using a log-linear combination
of seven LMs, it utilizes only two: namely, TED-LM and
Full-LM.



3.2. English-French results

Performance in terms of case-sensitive BLEU and TER of
our primary (P) and contrastive (C) systems are reported in
Table 2 and are compared to a simple TED baseline2 (B).
This baseline relies on TED training data only for the estima-
tion of its TM, RM, and LM; the second Full LM is employed
as well.

Figures referred to tst2010 were computed in-house,
while those for tst2011-2013 are the official results provided
by the organizers. As the official evaluation uses a slightly
different text normalization procedure, the absolute scores
are not directly comparable between different test sets; nev-
ertheless, the relative difference among the systems are reli-
able.

In the result tables, the H and O symbols beside the BLEU
and TER scores indicate that the corresponding system per-
forms significantly worse than the primary system with p-
values not larger than 0.01 and 0.10, respectively. This an-
notation regards tst2010 only, for which the reference trans-
lations are available and hence the significance test can be
performed.

BLEU TER
tst10 tst11 tst12 tst13 tst10 tst11 tst12 tst13

P 34.11 38.41 39.51 37.69 0.472 0.420 0.406 0.441
C1 33.79O 37.84 39.44 37.60 0.478H 0.426 0.409 0.441
C2 31.90H 35.16 36.60 35.17 0.489H 0.443 0.429 0.458
C3 34.03 28.99 29.69 26.36 0.479H 0.511 0.496 0.550
C4 33.61O 28.83 29.36 26.35 0.480H 0.511 0.498 0.548

Table 2: Results of the official English-French submissions evalu-
ated on the IWSLT TED test sets. Symbols H and O near to BLEU
and TER scores on tst10 indicate that the system performs signifi-
cantly worse than the primary system with p-values not larger than
0.01 and 0.10, respectively.

We can draw out some comments from the analysis of
the official results. The primary system consistently outper-
forms the contrastive systems, and differences in scores are
somehow kept constant. The improvement over the refer-
ence baseline system (shown in Table 3) is strongly signifi-
cant, proving the effectiveness of the data selection approach
applied

The low scores achieved by C3 and C4 on the 2011-2013
test sets are due to a misconfiguration of these systems when
applied to the official data sets. After the official evalua-
tion we translated the test sets with the corrected systems
(C∗

3 and C∗
4), and asked the organizers to re-evaluate them.

New results are reported in Table 3. Scores for tst11, tst12,
and tst13 have been computed by means of a different evalu-
ation script; hence, figures in Tables 2 and 3 are not directly
comparable.

On tst2010, all systems, but C2, achieve very similar re-
sults in terms of both BLEU and TER. This is somehow ex-
pected, because the systems have very similar configurations.

2System B was not submitted for the official evaluation, and therefore no
results for tst2011-2013 are available.

In terms of BLEU, a statistical test shows a slightly signifi-
cant difference with respect to P only for C1 and C4, and only
at p-value of 0.10. Instead, the differences in terms of TER
are always significant.

Interestingly, from the results of C∗
3 and C∗

4, we observe
that the log linear combination of 6 language models does
not improve the performance of the system, but instead it
has negative effects on tst2011 and tst2013. Use of
out-domain language models diverge the “virtual domain” of
interpolated TM and RM away from TED domain. The main
difference between C∗

4 and P is the way of combining TMs
and RMs. P uses the back-off approach while C∗

4 uses linear
interpolation. This basically shows that back-off performs
better than the linear interpolation technique for TED-talks
data.

System C2 is statistically worse than P. Our preliminary
analysis showed that this system produced translation out-
puts about 4% shorter than P. Our feeling is that this is due
to the exploitation of log-linear weights not specifically es-
timated for the talk-specific system. In order to confirm our
conjecture, we translated the test sets with the enhanced sys-
tem (C∗

2) described in Section 3.1, and its performance are
reported in Table 3. It outperforms the primary system in
terms of BLEU, but the differences are not significant, at
least on tst2010. Instead, its performance in terms of TER
are worse than those of the primary system; this is probably
due to the fact that weight optimization aims at improving
only the BLEU metric. A more balanced improvement could
be achieved by tuning over several metrics.

BLEU TER
tst10 tst11 tst12 tst13 tst10 tst11 tst12 tst13

B 32.43H 35.77 36.95 34.56 0.489H 0.426 0.413 0.457
P 34.11 37.53 38.83 37.10 0.472 0.412 0.397 0.437
C1 33.79O 37.05 38.70 37.05 0.478H 0.418 0.401 0.433
C2 31.90H 34.42 36.08 34.76 0.489H 0.436 0.421 0.450
C∗

2 34.28 38.72 39.80 37.68 0.486H 0.413 0.407 0.444
C∗

3 34.03 36.95 38.40 36.26 0.479H 0.423 0.405 0.449
C∗

4 33.61O 37.28 38.14 36.42 0.480H 0.423 0.407 0.447

Table 3: Results of official and unofficial English-French submis-
sions evaluated on the IWSLT TED test sets. C∗

2, C∗
3, and C∗

4 are
unofficial revised submissions. Scores for tst11, tst12, and tst13 have
been computed by the organizers by means of an evaluation script
partially different from the official one. Symbols H and O near to
BLEU and TER scores on tst10 indicate that the system performs
significantly worse than the primary system with p-values not larger
than 0.01 and 0.10, respectively.

4. English-Persian systems
The Persian-English (Fa3-En) and English-Persian (En-Fa)
systems are built using similar configurations to our English-
French system, described in Section 3. To relax the prob-
lem of token inconsistencies in Persian documents, we devel-

3According to ISO 639-1 (Codes for the representation of names of lan-
guages), ”Fa” is used as the abbreviation of Persian.



oped a Persian text normalizer that yields consistently bet-
ter translation than the unnormalized text. Furthermore, to
have a more precise Persian LM, we created a large Persian
monolingual corpus by crawling feeds from several online
news agencies. We show that the combination of specialized
text normalization and a large LM trained on additional Per-
sian data provides substantitive improvements over previous
baselines.

4.1. Persian Text Normalization and Tokenization

Although there are some electronic standards for writing Per-
sian, they are not uniformly followed by writers and software
tools. These inconsistencies are observed in all existing tex-
tual resources, which cause many problems in natural lan-
guage processing tasks. Several problems that commonly
result in separate tokens for redundant types are described
below.

Different character sets may be used for the same letter.
Their appearance is virtually the same but different encod-
ings exist for the characters. YEH(ø



) and KAF (¼) are the

best known cases in this category. On the other hand, some
authors prefer to use imported letters from Arabic (e.g.


@) for

writing the words borrowed from Arabic (ø

@P), while others

use Persian letters (ø@P).
Diacritics are not typically written in the standard Per-

sian text, but some authors decide to use them to reduce the
ambiguty of the words. Although this makes the text more
clear and understandable to the reader, not all authors use
diacritic marks. Without proper preprocessing, the text pro-
cessing system cannot classify different instances of the same
word into one class.

Different word forms. This problem is mostly due to the
word boundary ambiguation and different ways of putting
space between different parts of words. For example, the
word ÐðP ú× (I am going) can be written in any of the follow-
ing forms: ÐðP ú×, ÐðPú×, and ÐðQ�
Ó. In the first and second
forms, the prefix ú× and verb ÐðP are separated using space
and zero-width non-joiner (ZWNJ) characters, respectively;
while in the last case, the prefix is attached to the verb.

To relax the problem of token inconsistency, we devel-
oped a Persian text normalizer and applied it on all of the
Persian texts used in the experiments. This normalizer is
published by the organizers and used to normalize all MT
outputs and references before evaluating the systems in the
English-Persian language pair tracks. A version of this tool
was released for use with the IWSLT 2013 shared task. An
enhanced version will be publicly available in the near future.

To measure the usefulness of the normalizer we de-
velop two baseline systems using the normalized and non-
normalized training data, and evaluate their translation qual-
ity in Table 4. The results show significant improvements
in the final quality of the systems in both directions (1.5+
in BLEU scores and 2.7+ in TER). Furthurmore, comparing
the vocabulary size of the normalized and non-normalized

BLEU TER
Metric Fa-En En-Fa Fa-En En-Fa
Baseline 12.47 9.13 0.734 0.758
Normalized 13.94 10.70 0.706 0.725

Table 4: Comparing the results of the normalized and unnormal-
ized baselines on the IWSLT TED test set 2010.

training corpus, shows more than 11 percent reduction in the
number of unique words.

4.2. Data Preparation

The data provided by the organizers for the Persian-English
task is only the TED corpus; no additional parallel or mono-
lingual corpora are provided for Persian. Though there
are some other publicly available parallel corpora (namely,
TEP [19], and PEN [20]), our initial experiments showed that
using these corpora do not improve the baseline. Therefore,
we decided not to use them in our submissions.

Regarding monolingual corpora, the Hamshahri corpus
[21], used widely used in different Persian text processing
tasks, has inconsistent sentence boundaries in such a way that
in many cases one sentence is split into several lines, with
no boundary markers in the corpus to capture the complete
sentence.

Since this affects the language model creation and de-
creases the accuracy of the LM, we decided to create our
own large Persian monolingual corpus with proper sentence
boundaries. To create this corpus we extract texts from the
archives of more than 20 online news agencies, mainly lo-
cated in Iran. We extract the body of the news stories, as
well as the title, publish date, and the genre, if available. The
documents smaller than 1K are filtered out in this step. We
normalize the documents using the aforementioned normal-
izer. The statistics of the corpus are presented in Table 5.
This corpus will be publicly released at a future date.

Tokens Types
Corpus Segm English Persian English Persian
TED 77.1K 1.5M 1.7M 16.4K 20.8K
FBK 11.2M na 309.2M na 536.2K
FBK-slct 3.6M na 50.1M na 213K

Table 5: Statistics of the parallel and monolingual data exploited
for training purpose in the English-Persian and Persian-English sys-
tems. Symbols “M” and “K” stand for 106 and 103, respectively.
“FBK-slct” refers to the data selected portion of our internal Persian
monolingual corpus.

For our Persian-English MT submission, we construct
a common 5-gram mixture LM consisting of TED data, a
subset of corpora from the LDC Gigaword fifth edition cor-
pus, and the WMT News Commentary. From the Giga-
word corpus, we select the articles from the Los Angeles
Times/Washington Post, New York Times, and Washington
Post/Bloomberg subcorpora. For the English-Persian task we
used the TED training data (Persian side) and the monolin-



BLEU TER
tst10 tst11 tst12 tst13 tst10 tst11 tst12 tst13

B 12.47 16.39 12.80 12.49 0.734 0.678 0.88 0.876
P 14.62 18.85 14.40 14.32 0.703 0.664 0.861 0.858
C1 – – – 14.47 – – – 0.858

Table 6: Results of submitted Persian-English runs evaluated on
the IWSLT TED test sets.

gual corpus described earlier.

4.3. English-Persian submissions

For both English-Persian and Persian-English tasks, we sub-
mitted a primary and a contrastive systems, which are briefly
described in the following.

4.3.1. Primary

Our primary system uses the text normalization approach
described in Section 4.1. For both the English-Persian and
Persian-English submissions a TM is trained on TED train-
ing data, using similar configurations to our English-French
systems, described in Section 3. For the Persian-English sub-
mission a log-linear combination of two LMs is employed.
The primary LM is a 5-gram LM, trained on TED training
data (English side), while the second LM is a 5-gram mix-
ture LM consisting of TED data and the out-of-domain data-
selected training data.

In the English-Persian direction the log-linear combina-
tion of LMs consist of three 5-gram LMs, trained on TED
data, data selected from FBK Persian monolingual corpus,
and whole FBK Persian monolingual corpus, respectively.
As in our primary English-French submission, Minimum
Bayes Risk decoding is exploited. Feature weights are op-
timized via Margin Infused Relaxed Algorithm (MIRA) on
dev2010.

4.3.2. Contrastive

As mentioned earlier, the English-Persian language pair has
few bitexts available for constructing a translation model. To
measure the effects of adding additional in-domain corpora
on translation quality, we augment the translation and re-
ordering models with tst2011 and tst2012 and evaluate the
results on tst2013 while retaining the log-linear weights of
the original models.

4.4. English-Persian results

Our primary (P) and constrastive (C) results for Persian-
English and English-Persian are reported in Tables 6 and 7,
respectively. We compare the performance of our systems
against a simple baseline (B), trained on the unnormalized
TED data only. Scores on tst2010 clearly prove that our pri-
mary system highly outperforms the baseline.

The small amount of additional training data exploited
in the contrastive system only gives a slight improvement in

BLEU TER
tst10 tst11 tst12 tst13 tst10 tst11 tst12 tst13

B 9.13 11.57 9.67 8.93 0.758 0.718 0.741 0.727
P 11.55 12.55 10.94 10.12 0.723 0.701 0.727 0.716
C1 – – – 10.32 – – – 0.715

Table 7: Results of submitted English-Persian runs evaluated on
the IWSLT TED test sets.

BLEU.
Long distance reorderings and the morphological rich-

ness of Persian are the two major problems in Persian-
English SMT systems. On the other hand, hierarchical mod-
els are known to outperform the phrase-based systems for
language pairs with differing word orders or long-distance
reorderings. Our primary experiments in using hierarchical
models for this langauge pair do not outperform the phrase-
based baseline system, however. We will investigate this in
more detail in future work.

One technique to overcome data sparsity due to morpho-
logical inflections is to perform unsupervised segmentation
[22] and using the root forms for word alignment. However,
in preliminary experiments we did not observe improvements
over a baseline that only considers the surface form. One rea-
son for this behavior may be due the fact that the suffixes they
carry meaning that is lost during word alignment, which sub-
sequently affects the quality of the extracted phrases. In the
future we plan to try other morphological analysis strategies
that better model the characteristics of Persian.

5. Conclusion
We presented the MT systems with which we participated
in the IWSLT 2013 TED MT Evaluation Campaign. Our
English-French systems benefited most from a “back-off”
combination of in-domain and out-of-domain translation
models, as well as a log-linear combination of two language
model flavors: one which combines corpus-specific language
models in a mixture model, and the other that concatenates
all corpora and generates a gigantic LM.

Our English-Persian and Persian-English systems
showed substantial improvements over a baseline provided
by the workshop organizers, largely from improving the
normalization and tokenization of Persian texts, as well as
acquiring a large monolingual Persian news crawl corpus.

6. Acknowledgments
This work was partially supported by the EU-BRIDGE
project (IST-287658), funded by the European Commission
under the Seventh Framework Programme for Research and
Technological Development.

7. References
[1] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli,
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Abstract

We present our systems for the machine translation evalua-
tion campaign of the International Workshop on Spoken Lan-
guage Translation (IWSLT) 2013. We submitted systems
for three language directions: German-to-English, Russian-
to-English and English-to-Russian. The focus of our ap-
proaches lies on effective usage of the in-domain parallel
training data. Therefore, we use the training data to tune pa-
rameter weights for millions of sparse lexicalized features us-
ing efficient parallelized stochastic learning techniques. For
German-to-English we incorporate syntax features. We com-
bine all of our systems with large language models. For
the systems involving Russian we also incorporate more data
into building of the translation models.

1. Introduction
This paper describes Heidelberg University (HDU)’s ma-
chine translation (MT) systems built for the IWSLT 2013 MT
evaluation campaign. We submitted results for three transla-
tion directions: German-to-English, Russian-to-English and
English-to-Russian.

Our German-to-English system does not use any parallel
data other than the data provided by the organizers. Hence,
we try to use this small amount (as compared to data avail-
able for other domains) of parallel data as effectively as pos-
sible by using the full training data to tune models with mil-
lions of features, e.g. lexicalized features derived from trans-
lation rules. The model parameters are learned by a percep-
tron algorithm in a pairwise-ranking framework with shard-
ing for parallelization. See subsection 1.2 for a full expla-
nation of this learning framework and a brief description of
the features. For German-to-English we additionally experi-
mented with the soft-syntactic constraints of [1] to determine
whether or not they can improve spoken language translation.

The systems for the Russian-to-English and English-to-
Russian directions were built using the same techniques, but
with additional parallel training data for the translation model
estimation, as the baseline systems are of low quality – with
BLEU scores far below the 20% mark.

All systems make use of large language models (LM) at
test-time. We do not use any data filtering or domain adap-
tion techniques for any of our systems.

1.1. Technical System Commonalities

The systems described in this paper are all based on the hier-
archical phrase-based paradigm for statistical machine trans-
lation [2] using the cdec1 [3] decoding framework.

Pre- and post-processing, i.e. (de-)tokenization and re-
casing were done using the moses toolkit2. The recaser was
always trained with default parameters using solely the tar-
get side of the provided parallel data (parallel transcriptions
of TED talks) – even if the rest of the system was trained
using more data.

Word alignments for the parallel data were built accord-
ing to a variant of IBM’s model 2 as described in [4] using the
associated implementation3. To obtain many-to-many align-
ments, models for both directions were built and the resulting
alignments were symmetrized using the grow-diag-final-and
heuristic. We applied a Dirichlet prior on the lexical transla-
tion distributions and favored alignments that are close to the
monotonic diagonal using default parameters for all language
pairs.

Hiero-style grammars – allowing only a single type of
non-terminal X – were built using the suffix array technique
described in [5] with parameters as in [2].

All Language models use modified Kneser-Ney smooth-
ing and are estimated using the implementation4 of [6].

System-selection was carried out using either a
tournament-like subjective evaluation of several annotators
on a random sample of 30 translations for each round; or
simply based on automatic scoring results on the develop-
ment test set, which was tst2010 for all language pairs.

Evaluation scores reported in this paper are calculated
with cased and tokenized text using MultEval5, so that our
results are comparable to the official results of the evaluation
campaign of IWSLT 2012. All MERT results we report are
averaged scores over three runs, to overcome optimizer in-
stability (see [7]). All other methods discussed in this paper
are stable in this respect.

1http://www.cdec-decoder.org/
2https://github.com/moses-smt/mosesdecoder
3https://github.com/clab/fast_align
4http://kheafield.com/code/kenlm/estimation/
5https://github.com/jhclark/multeval

http://www.cdec-decoder.org/
https://github.com/moses-smt/mosesdecoder
https://github.com/clab/fast_align
http://kheafield.com/code/kenlm/estimation/
https://github.com/jhclark/multeval


Get data for Z shards, each including S sentences;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all sentences i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]

T

Select top K feature columns of W by `2 norm
for k ← 1 . . .K do

v[k] = 1
Z

Z∑
z=1

W[z][k].

end for
end for
return v

Figure 1: Pairwise ranking-optimization algorithm with
`1/`2 regularization that enables the use of large tuning sets
and millions of sparse features. The data is divided into
evenly sized shards, which can then be processed in parallel.
The core of the algorithm is the stochastic gradient update in
the innermost loop. After all shards are finished, the regular-
ization selects the top K features by `2 norm of weights over
shards for another epoch.

1.2. Tuning on the Training Set

To effectively make use of the limited in-domain parallel
training data we employ the technique of [8] to train mod-
els with a large number of features using the full training
set. The parameters of the translation and language models
as well as other dense features are trained simultaneously.

While the amount of in-domain parallel data provided is
small compared to other data sets, tuning on this amount of
data is a non-trivial task, as most approaches are tailored to
use a few thousand parallel segments.

The approach described in [8] enables the use of millions
of sparse features using hundreds of thousands parallel seg-
ments. The algorithm is shown in Figure 1. The core of this
algorithm is the stochastic gradient update in the innermost
loop. With this, the algorithm seeks to minimize the follow-
ing loss in a pairwise-ranking setup (see e.g. [9]):

lj(w) = (−〈w, x̄j 〉)+,

where x̄ = x(1)−x(2); x are feature representations of trans-
lations; x(1) is preferred over x(2) by a local approximation
of the BLEU score as discussed in detail in [10]6. Taking the
derivative of this loss function leads to a standard perceptron
update.

As [11] show, the theory behind the perceptron algorithm
still holds – as an instance of stochastic gradient descent –

6Our variant is grounded and BP-smoothed, as we found superior perfor-
mance compared to other variants.

when training data is sharded and resulting parameters are
averaged. [8] extend this by adopting `1/`2 regularization,
which limits the number of features in the model and thus
improves efficiency. For use with a single set of parallel seg-
ments (e.g. a standard development set) the whole algorithm
reduces to the innermost loop. In this case, the weight vec-
tors of all epochs are averaged to obtain the final model, see
[12] for a theoretical and empirical background.

Several sparse feature templates are used, all of which are
derived from translation rules:

• rule id: Each rule is a feature in the new model.

• rule n-grams: n-grams of source and target side of
rules (including non-terminals); we use bigrams for
both source and target.

• rule shape: Each rule is represented by its shape de-
fined by its composition of terminal and non-terminals,
see [8] for an example.

We call this method “dtrain”, no matter what amount of
training data is used for tuning. Please note that in this paper
dtrain is always combined with the sparse feature set as listed
above.

To prevent overfitting on the training set, we employ the
“folding” method described in [13] when building translation
and language models for shards. For each shard, separate
language and translation models are built from all available
data, but excluding the data of the current shard.

2. German-to-English
For German-to-English we only use the provided parallel
TED data for estimation of the translation model: 138,499
parallel segments, with 2,639,101 German and 2,762,380
English tokens after pre-processing. German compound
words were split using the empirical approach described in
[14]. The compound splitting model was trained on the Ger-
man side of the parallel corpus using the defaults of the im-
plementation in the moses toolkit.

As English is the prevalent language in machine trans-
lation evaluation campaigns, there is a wide range of freely
available English corpora to build large language models. We
used the data listed in Table 2 to build a 5-gram language
model, which was only used for evaluation at test time. An-
other 5-gram LM was built from the LDC2011T07 corpus
(English Gigaword Fifth Edition, “Giga”) alone. For tun-
ing and development we used a 4-gram language model built
from the provided monolingual TED data.

2.1. Syntax Features

In decoding with the hierarchical phrase-based approach
there is the possibility to reward proper use of syntax on
source- or target-side, as hierarchical derivations are built for
both sides during the process. [1] introduce soft-syntactic
constraints to reward partial derivations which correspond



System TED 4-gram LM Giga 5-gram LM Large 5-gram LM
baseline 26.7 - -

mert-dev 26.7 28.1 28.4
dtrain-dev 27.6 28.8 28.8

dtrain-train(clustered)∗ 28.0 29.4 29.6
dtrain-train+soft-syntax† 28.1 28.9 -

dtrain-train+ 28.1 29.2 29.6

Table 1: German-to-English evaluation results on tst2010 in % BLEU-4. MERT was used to tune the dense weights of
the hierarchical phrase-based system using the dev2010 set. dtrain exploits the full sparse feature set for dev2010. Systems
below the double dash are large-scale experiments utilizing the full training set for tuning. We submitted three systems: ∗ primary,
† contrastive #1, + contrastive #2. Our best results are marked in bold.

Corpus Segments Tokens
109 FR-EN Release2 22,520,400 575,667,242
Europarl v7 (merged) 2,342,410 58,567,624

News Comm. v8 (merged) 272,508 6,363,229
News Crawl 2007 3,782,548 77,701,721
News Crawl 2008 12,954,477 265,801,031
News Crawl 2009 14,680,024 300,118,377
News Crawl 2010 6,797,225 136,709,612
News Crawl 2011 15,437,674 309,687,553
News Crawl 2012 14,869,673 299,023,941

UN corpus 14,118,662 343,386,910
LDC2011T07 187,848,540 4,872,200,262∑

295,624,141 7,245,227,502

Table 2: Counts of corpora used for the large English lan-
guage model. English sides of parallel data sets and corre-
sponding monolingual data were merged by repeating each
unique segment the maximum number of times it has oc-
curred in any of the files involved in the process.

to syntactic constituents on the source side. This is done
through features which indicate proper syntactic structures
in the parse of the source sentence. This way, the system can
learn whether or not it is beneficial to the evaluation metric
optimized in tuning to match or cross7 syntactic constituents
(e.g. NP, VP etc.). For each rule application, the feature
searches a pre-computed syntax tree for a constituent match-
ing its span. We used the Stanford Parser8 for pre-computing
the German parses. This approach is considered “soft”, as it
is feature-based and therefore only encodes preferences, not
enforcing hard constraints.

2.2. Experiments

We conducted several preliminary experiments with this lan-
guage pair, the results were carried over to our other systems:
A search for a good trade-off between speed and performance
for the shard size (we found 2,200 segments per shard to

7Two features are defined for each non-terminal label.
8http://nlp.stanford.edu/software/lex-parser.

shtml

be a good value) and a coarse grid search for the optimal
learning rate of the pairwise-ranking optimization (dtrain).
Our main results for German-to-English are shown in Table
1. “mert-dev” is a simple recreation of the official baseline
using our hierarchical phrase-based system, including our
pre- and post-processing. “dtrain-dev” uses our method for
pairwise-ranking optimization on the same development set
(dev2010) with the full sparse feature set, i.e. rule id, rule
bigrams and rule shape features. We see that this already
gives an improvement of about 1.0 BLEU% point over mert-
dev. Adding the large language model when evaluating leads
to further improvements.

For each of the experiments conducted on the training set
(“dtrain-train*”) the full sparse feature set was used. “dtrain-
train(clustered)” is a system where we clustered the talks in
the training set according to their assigned keywords, fol-
lowing the intuition of [15] that data should be divided by
natural “tasks” for optimal learning. We chose the number
of clusters such that the shard size was comparable to the
optimal shard size found in preliminary experiments. This
resulted in a use of about 70% of the original training data,
as some clusters were just too small to be included. The sec-
ond system (“dtrain-train+soft-syntax”) utilized the training
set, partitioned into equally sized shards (2,200 segments per
shard), including the soft-syntactic constraint features as de-
scribed in subsection 2.1 in addition to the sparse features.
We used all available 20 non-terminal symbols, resulting in
40 features overall. Our third submitted system for German-
to-English, “dtrain-train”, is equivalent to the previous de-
scribed system, but does not make use of the soft-syntactic
constraints. We find very similar performance in all of our
training set experiments, with the exception that the system
with syntax features is falling behind when scaling to larger
language models (we did not use the largest language model
with this system due to time constraints).

Using the large language model and our best system we
see an improvement of 2.9 BLEU% points over the official
baseline.

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml


Corpus Segments RU Tokens EN Tokens
Common Crawl 878,386 17,399,366 18,772,065

Yandex 1M corpus 1,000,000 20,237,417 22,796,278
News Commentary v8 150,217 3,269,668 3,488,752

Wiki Headlines 444,532 917,277 1,045,416
TED parallel data 128,592 2,218,547 2,575,289∑

2,601,727 44,042,275 48,677,800

Table 3: Corpora that were combined for the extended
Russian-to-English translation model.

3. Russian-to-English
[16] show that translating into or from Russian is harder than
translation of other Romanic or Germanic languages, at least
in the TED domain. The provided parallel and monolin-
gual TED training data is of similar size as for the German-
English language pair. Therefore, we used additional data
besides the official parallel TED data for building the trans-
lation model. The data sets used for this are listed in Table
3. We reused the English language models from the German-
to-English systems.

3.1. Experiments

The cascade of experiments conducted for the Russian-to-
English direction is shown in Table 4. We approximately
match the baseline using our standard hierarchical phrase-
based system (mert-dev). There are small improvements us-
ing the sparse feature set and utilizing the pairwise-ranking
optimization (dtrain-dev). When enabling the large language
model while tuning, we achieve additional 0.3 BLEU%
points improvement. We see big gains with the enlarged
translation model, at least 2.0 points for all systems.

Increasing the amount of training data for the pairwise-
ranking optimization does not improve over the best system
on the small development set when using the small transla-
tion model.

The best result, with an improvement of 3.7 BLEU%
points over our baseline, was achieved by scaling up all as-
pects of the machine translation system, the language and
translation models, as well as the training data size for dtrain.
But note that this system only used 42,000 segments of the
available TED training data, as the “folding” technique de-
scribed in subsection 1.2 is very time consuming when used
in combination with larger amounts of parallel data.

4. English-to-Russian
English-to-Russian is a very challenging translation direction
in the TED domain, which is reflected by low baseline eval-
uation scores – the baseline reported in [17] is about 12.5
BLEU% points. Hence, we chose to use more parallel train-
ing data for the English-to-Russian system, the same data as
used for the Russian-to-English system. We built a 4-gram
language model from the provided monolingual data and a

Corpus Segments Tokens
Common Crawl 878,386 17,399,366

News Comm. v8 (Russian tgt) 150,217 3,269,668
News Comm. v8 (Russian) 183,083 3,649,222

Yandex 1M Corpus 1,000,000 20,237,417
News Crawl 2008 38,195 587,775
News Crawl 2009 91,119 1,331,658
News Crawl 2010 47,818 652,288
News Crawl 2011 9,945,918 142,629,530
News Crawl 2012 9,789,861 143,407,485
TED Russian data 136,101 1,859,376∑

22,260,698 335,023,785

Table 5: Data for the large Russian language model.

large Russian 5-gram language model from the data listed in
Table 5.

4.1. Experiments

Results for the English-Russian experiments are given in
Table 6. Our MERT-trained baseline with dense features
(“mert-dev”) achieves about the same performance as the of-
ficial phrase-based baseline. Using only the dense feature
set, this system does not benefit strongly from using the en-
larged translation model. We manage to improve over MERT
using sparse features and the pairwise-ranking optimization
on the development set (“dtrain-dev”). If the large Russian
language model is used during tuning and evaluation, we ob-
tain another improvement of 0.2 points. Our best results are
obtained using dtrain on the development set with sparse fea-
tures and the extended translation model. While the improve-
ment using the small 4-gram language model is not large at
0.3 points, the combination of the large translation model and
the large language model for evaluation is very significant
and leads to an overall improvement of 2.4 BLEU% points
over our baseline.

Using the full training data for dtrain leads to inferior
results for this translation direction. The reasons for this re-
main to be investigated. Therefore, we did not try to use the
enlarged translation model with this approach.

5. Conclusions
For all language pairs we considered, our baseline hierar-
chical phrase-based systems perform on a par with the offi-
cial baselines that build upon the phrase-based moses toolkit.
Adding sparse features derived from translation rules helps
for all language pairs, even if their parameters are estimated
on a small development set. Scaling up in terms of training
data for the pairwise-ranking optimization leads to further
improvements, with the notable exception of our English-to-
Russian system, where we have a weak translation model.
Increasing the size of the language model is a trivial but ef-
fective improvement, even more so without applying any fil-
tering or domain adaptation techniques. A drawback to these



System TED 4-gram LM Large 5-gram LM
baseline 17.2 -

mert-dev 17.0 17.5
dtrain-dev 17.2 17.8

dtrain+large LM+ - 18.1
dtrain+large TM 19.2 19.8

dtrain+large TM+large LM - 20.1
dtrain-train† 17.7 18.4

dtrain-train+large LM+large TM∗ - 20.7

Table 4: Results for Russian-to-English systems on tst2010. We submitted three systems: ∗ primary, † contrastive #1, + con-
trastive #2. Our best result is marked in bold. Systems in italics were not available for the submission deadline.

System TED 4-gram LM Large 5-gram LM
baseline 12.5 -

mert-dev 12.4 13.1
mert-dev+large TM 12.5 13.5

dtrain-dev 12.8 13.7
dtrain-dev+large LM - 13.9

dtrain-dev+large TM∗ 13.1 14.8
dtrain-dev+large LM+large TM - 14.6

dtrain-train† 11.8 13.2

Table 6: Results for English-Russian systems on tst2010 in % BLEU-4. ∗ denotes the primary system for this language pair;
† the contrastive system. Our best result is marked in bold.

simple improvements is the strongly increased computational
requirements, although most of the tools we used scale up
nicely.

6. Official Results

Table 7 shows the official results for our submitted systems
for the three translation directions we participated in. All
systems use the largest language model built for their respec-
tive target language. Unlike the development and training
sets, the source for tst2013 contained disfluencies, thus
the organizers calculated BLEU scores using two different
reference sets, one with and one without disfluencies. Our
systems seem robust, as both of the scores are nearly iden-
tical, e.g. our primary system for German-to-English scores
23.06 without disfluencies and 22.91 with disfluencies in the
reference. Our primary submission for Russian-to-English
was erroneous, using a small scale translation model when
the large TM was used for tuning. Corrected, the primary
Russian-to-English system shows good performance, scaling
up in all aspects of the translation system: language model
(used for tuning and evaluation), translation model, feature
set and tuning data size. The English-to-Russian system de-
picts the same gap between small and large tuning set size as
shown on the development test set.
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Abstract

This paper describes the University of Edinburgh (UEDIN)
English ASR system for the IWSLT 2013 Evaluation.
Notable features of the system include deep neural network
acoustic models in both tandem and hybrid configuration,
cross-domain adaptation with multi-level adaptive networks,
and the use of a recurrent neural network language model.
Improvements to our system since the 2012 evaluation –
which include the use of a significantly improved n-gram lan-
guage model – result in a 19% relative WER reduction on the
tst2012 set.

1. Introduction

We report on experiments carried out for the development of
automatic speech recognition (ASR) systems on the English
datasets of the International Workshop on Spoken Language
Translation (IWSLT) 2013. We report our work on the new
TED German task in an accompanying paper [1] since the
development of the two systems was largely independent.
Work on our machine translation system may be found in
[2]. Significant changes to the English ASR system since
2012 include improvements to our baseline language mod-
els, described in Section 2.1, and the use of recurrent neu-
ral network language models, described in Section 2.2. The
acoustic models are described in Section 3 – the main ad-
dition is that we now use deep neural networks in a hybrid
configuration, and apply automatic voice activity detection
to the tst2013 test set.

2. Language modelling

The ASR system used Kneser-Ney smoothed N-gram lan-
guage models for decoding and lattice rescoring, and a recur-
rent neural network (RNN) language model for a final rescor-
ing stage based on N-best lists. These models are described
in the subsections below.

This work was supported by the European Union under the FP7
projects inEvent (grant agreement 287872) and EU-Bridge (grant agreement
287658), and by EPSRC Programme Grant grant EP/I031022/1, Natural
Speech Technology.

2.1. N-gram models

The N-gram language models were obtained by interpolating
individual modified Kneser-Ney discounted LMs trained on
the small in-domain corpus of TED transcripts and the larger
out-of-domain (OOD) sources. The OOD sources were Eu-
roparl (v7), News Commentary (v7), News Crawl (2007 to
2011) and Gigaword (Fifth Edition).

The News Crawl and Gigaword sources in particular con-
tained a wide variety of phenomena such as money amounts
and other numerical expressions, abbreviations, and listed
and tabulated information, which required normalisation to
create data resembling spoken word sequences. Consider-
able effort was put into developing appropriate text normal-
isation scripts. Starting from the scripts used in LM train-
ing for the IWSLT 2012 evaluation, over 1000 lines of Perl
code and 1400 abbreviation entries were added (expanding
the original files by more than 50%). The processing applied
to the data can be summarised as follows.

1. Remove documents that are not of type story, strip out
markup and split text into sentences (required for Gi-
gaword only).

2. Eliminate duplicate lines (common in some newswire
sources, where multiple copies or variants of the same
story may occur).

3. Convert Unicode characters and encodings for frac-
tions, symbols etc into standard ASCII forms such as
“1/4” (for subsequent conversion to words).

4. Filter out newswire datelines, e.g. “LONDON, Nov
2”, and other extraneous material.

5. Normalise punctuation, abbreviations, units of mea-
surement etc.

6. Convert numerical expressions to words.

7. Remove punctuation and convert to lower-case without
diacritics.

8. Convert British to American English spellings and cor-
rect some common spelling errors.



The vocabulary for the ASR system was defined so as to
include all words occurring in the in-domain training corpus
(other than words which occurred only once and were not
in a standard dictionary) and all words exceeding specified
occurrence count thresholds in the OOD corpora, while re-
maining below the maximum of 64K words imposed by the
version of HDecode in use here. The vocabulary size was
62,522.

Initialisms included in the vocabulary were treated as sin-
gle words for LM purposes, e.g. “u.s.” (with the dots retained
to distinguish them from words such as “us”). Once the
vocabulary had been defined, out-of-vocabulary initialisms
were broken into single letters, e.g. “m. f. n.”, so as to be
modelled as sequences of in-vocabulary words (letter names)
rather than treated as OOV.

In view of the mismatch in content and style between the
target domain (TED talks) and the OOD data, a data selection
process [3, 4] was applied to the OOD corpora to obtain an
appropriate subset of data for LM training. The set of out-of-
domain data DS was chosen by computing a cross-entropy
difference (CED) score for each sentence s:

DS = {s|HI(s)−HO(s) < τ} (1)

where HI(s) is a cross-entropy of a sentence with a LM
trained on in-domain data,HO(s) is a cross-entropy of a sen-
tence with a LM trained on a random subset of the OOD data
of similar size to the TED corpus, and τ is a threshold to
control the size of DS

Language models were trained on the in-domain and
OOD data using the SRILM toolkit [5], and were interpo-
lated with weights optimised on the TED development set
(dev2010 and tst2010: total 44,456 words).

Perplexities on the development set with 3-gram and 4-
gram models trained on the TED corpus and selected OOD
data are shown in Table 1. Selecting 25% of the OOD sen-
tences yielded an OOD training set of 751M words; setting
the CED threshold to 0 gave a smaller but more targeted set
of 312M words, which gave a lower perplexity on the TED
data than the 751M word set when used alone to train the
LM, but a slightly higher perplexity after interpolation with
the TED LM. The perplexities obtained here are substantially
lower than the values of 160 (3-gram) and 159 (4-gram) with
the LMs used in our IWSLT 2012 system [6], which were
trained using a much smaller set of OOD data with no CED
filtering.

The LMs finally used in the ASR system were
the TED+312MW trigram model (for decoding) and the
TED+312MW 4-gram model (for lattice rescoring). The
amounts of data from the respective sources used in these
LMs are shown in the “Selected” column of Table 2. Com-
parison with the total sizes of the source corpora (after text
normalisation) given in the preceding column shows that the
proportion of data selected by the CED criterion ranged from
8% for the Gigaword corpus to 15% for News Commentary.

Language model Perplexity
TED 3-gram 183.2
OOD (312MW / 751MW) 3-gram 133.5 / 138.3
TED+OOD (312MW / 751MW) 3-gram 125.1 / 124.9
TED 4-gram 179.9
OOD (312MW / 751MW) 4-gram 123.9 / 126.4
TED+OOD (312MW / 751MW) 4-gram 114.9 / 113.4

Table 1: Perplexities of N-gram language models on TED
development set.

Corpus Total Selected
TED 2.4M 2.4M
Europarl 53.1M 6.3M
News Commentary 4.4M 0.7M
News Crawl 693.5M 72.9M
Gigaword 2915.6M 232.9M
OOD total 3666.6M 312.8M

Table 2: Numbers of words in LM training sets.

2.2. RNN models

Neural network language models have shown to consis-
tently improve the word error rates (WER) of LVSCR tasks
[7, 8, 9]. For this year’s evaluation, we investigated the effec-
tiveness of RNN LMs for TED lecture transcription. To study
the effectiveness of RNNs we rescored the n-best hypothesis
using RNNs trained on in-domain and different subsets of
out-of-domain (OOD) data, shown in Table 3, selecting ac-
cording to the CED score as in Section 2.1 In-domain data
consists of 2.4M tokens. Since it is very difficult to train the
RNNs on large amounts of OOD data, we restrict the maxi-
mum size of OOD data to 30M.

The number of hidden neurons ranged from 300 to 500
and number of classes in the output layer was 300. Models
are trained using RNN training tool of [10]. Table 4 shows
the perplexity (PPL) and WER on on development data pro-
vided by IWSLT evaluation campaign. We can observe that
rescoring the n-best hypothesis with the RNNs reduce the
WER by 0.8%. We choose the best model from this ex-
periments to rescore the n-best hypothesis from tst2011,
tst2012 and the tst2013 test sets. The interpolation
weight between n-gram and RNNLM is optimised on devel-

Table 3: Subsets of OOD data
#Words #Sentences Threshold(τ )

5M 664.2K -1.14
10M 1156.7K -0.963
15M 1596.7K -0.862
20M 2011.3K -0.79
25M 2412.6K -0.733
30M 2792.4K -0.687



Table 4: Perplexity and WER on development data
Tokens Vocabulary PPL WER(%)
n-gram - - 15.6
7.4M 47.7K 171.56 15.2

12.4M 54.8K 161.66 15.2
17.4M 61.7K 147.17 15.0
22.4M 68K 142.22 14.9
27.4M 74.3K 133.5 14.8
32.4M 80K 126.0 14.8

opment data, to minimise WER.

3. Acoustic modelling
For the acoustic modelling components of the system, we
used a setup identical to that described in [11], where more
details may be found. Briefly, we used a combination of tan-
dem and hybrid deep neural network (DNN) systems trained
on a corpus of in-domain TED talks, incorporating out-of-
domain data of multi-party meetings from the AMI corpus
using the multi-level adaptive networks (MLAN) technique
[12]. Compared to our 2012 system, the main addition is
the use of DNNs with MLAN features in the hybrid frame-
work. We describe this further below. Additionally, unlike
earlier test sets from the IWSLT evaluation, the 2013 test set
was not provided with a manually derived segmentation; we
therefore employed an automatic segmentation system, de-
scribed in Section 3.3.

3.1. Training data

For in-domain training data, we used 813 TED talks recorded
prior to the end of 2010. The talks were segmented and
aligned to the crowd-sourced transcriptions available online
using a lightly-supervised technique described in [13]. This
produced 143 hours of labelled speech segments for use in
acoustic model training. Additionally, we used 127 hours
of out-of-domain data from the AMI Corpus of multi-party
meetings1 using a setup based on [14]. This data is not in
general well-matched to the TED-domain. The OOD data
was not used directly in acoustic model training, but used to
generate out-of-domain neural network features for the in-
domain data.

3.2. Deep neural network systems

For our 2012 system, we used neural networks within the tan-
dem framework [15, 16], using DNNs to generate log proba-
bilities over monophones. The monophone probabilities are
decorrelated and projected to 30 dimensions, then augmented
with the original acoustic features to give a total feature vec-
tor of 69 dimensions. These vectors are used for standard
HMM-GMM training. Additionally in this year’s system, we

1http://www.amiproject.org/
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Figure 1: Tandem and hybrid MLAN training

used DNNs in a hybrid configuration, generating posterior
probabilities over tied-state triphones, as proposed in [17].
These are converted to pseudo-likelihoods for use in the de-
coder.

Both tandem and hybrid nets used PLP input features
with 9 frames of temporal context. For the tandem systems,
the final nets used had four hidden layers with 1024 hidden
units per layer; the hybrid systems used six hidden layers
with 2048 hidden units per layer. The tandem nets had an
output layer of size 46; the size of the output layer of the
hybrid nets varies according to the number of tied states,
which resulting from clustering with a GMM; it was typi-
cally around 6,000. The nets were trained with a tool based
on the Theano library [18] on NVIDIA GeForce GTX 690
GPUs. For the tandem systems, we applied speaker adaptive
training of the GMMs using CMLLR [19] regression class
trees with 32 classes. For the hybrid systems, we performed
adaptation of the input feature space at training and test time
using a global CMLLR transform for each speaker. Tandem
systems were discriminatively trained with MPE.

As in the 2012 system, we incorporated out-of-domain
data using the MLAN technique. Neural networks were
trained on the AMI corpus and the resulting nets used to gen-
erate posterior features for each utterance in the TED corpus.
Th2ese neural net features are known to provide a degree
of domain-independence [20]. In the MLAN scheme, the
OOD features are augmented with the original acoustic fea-
tures and a further DNN is trained on these features, allowing
further adaptation to the target domain. This second adaptive
network may be used to generate tandem features, or used in
a hybrid system. The possible configurations are illustrated
in Figure 1.

3.3. Voice activity detection

The voice activity detection component of the system com-
prises a GMM-HMM based model which is used to per-
form a Viterbi decoding of the audio. The HMM has 2
classes: speech and non-speech. These are modelled with
diagonal-covariance GMMs with 12 and 5 mixtures respec-
tively. We allow more mixture components for speech to
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cover its greater variability. Features are calculated every
10ms from a 30ms analysis window and have a dimensional-
ity of 14 (13 PLPs and energy). Models were trained on 70
hours of scenario meetings data from the AMI corpus using
the provided manual segmentations as a reference. To avoid
over segmentation a minimum duration constraint of 50ms is
enforced by inserting a series of 50 states per class that each
have a transition weight of 1.0 to the next, the final state has
a self transition weight of 0.9.

4. Decoder architecture
Figure 2 shows the complete decoding architecture. After an
initial pass, used to generate transcripts to estimate speaker
transforms, we operate two parallel decoding sequences for
the tandem and hybrid acoustic models. For each model, the
complete process consists of a decoding with the trigram LM
using HTK’s HDecode2. Lattices output from the this pass
were rescored using the 4-gram LM, generating 100-best
lists, which were rescored with the final interpolated RNN
LM. Finally, the one-best outputs from tandem and hybrid
systems are combined at the hypothesis level using ROVER.

5. Results
In this section we first present development results from indi-
vidual components of the complete system pipeline. Table 5
shows results using the manual segmentations provided for
earlier evaluations. The results may differ slightly from of-
ficial results due to variations in scoring procedure. It may
be observed that there is no clear winner out of the tandem
and hybrid systems; however, they are clearly complemen-
tary as system combination consistently yields improved per-
formance.

The trends are similar when the automatic segmentation
is used, shown in Table 6. When the automatic segmentation
is used there is a deterioration in performance of up to 3%
WER. Some of this may be attributed to an increase in inser-
tion and deletion errors of the result of segmentation errors;
however, an additional source of error, particularly affecting
the RNN LM, is that the automatic segmenter typically re-
sults in shorter segments, not divided along semantic lines as
the manual version is, resulting in reduced language mod-

2http://htk.eng.cam.ac.uk

System dev2010 tst2010 tst2011
Tandem MLAN 15.9 14.1 11.2
+ 4gram 15.6 13.6 10.8
+ RNN - - 10.4
Hybrid MLAN 15.6 13.9 11.5
+ 4gram 15.2 13.5 11.3
+ RNN - - 10.5
ROVER combination
4gram 14.7 12.6 10.3
+ RNN - - 9.9

Table 5: Development system results with manual segmenta-
tion (WER%)

System dev2010 tst2010 tst2011
Tandem MLAN 18.8 17.6 14.9
+ 4gram 18.4 17.2 14.5
+ RNN 17.6 16.6 -
Hybrid MLAN 18.6 17.4 14.6
+ 4gram 18.4 17.2 14.3
+ RNN 17.6 16.7 -
ROVER combination
4gram 17.6 16.2 13.2
+ RNN 17.0 16.1 -

Table 6: Development system results with automatic segmen-
tation (WER%)

elling power, since we do not propagate LM probabilities
across segment boundaries. Note that the results with the
RNN model are available only for a subset of experiments as
this component of the system was not fully automatic at the
time of system development.

Finally, we provide the official results from the 2013
evaluation in Table 7. Automatic segmentation is used only
for tst2013 set. It is notable that the WER is substantially
higher on this set than on the other development and evalu-
ation sets. A preliminary analysis suggests that this is prob-
ably not due to problems with the segmentation, as insertion
and deletion errors do not make up a noticeably higher pro-
portion of the total errors than for the other test sets. Over
the talks, the WER ranges from 9% to 48%, suggesting that



tst2011 tst2012 tst2013
Primary system 10.2 11.6 22.1

Table 7: Official system results from the 2013 evaluation
(WER%)

perhaps this year’s test set contains a more diverse range of
acoustic conditions.

6. Machine translation
We applied machine translation to the ASR output. Details
may be found in the accompanying paper [2]. Table 8 com-
pares MT performance for various inputs from the ASR sys-
tem. Note that performing translation from a confusion net-
work containing multiple ASR hypotheses resulted in worse
results that using the one-best output. We are investigating
the reasons for this – one theory is that, due to the gener-
ally low WER of the systems, the alternative hypotheses are
rarely correct, often simply indicating OOV errors when they
have high acoustic scores. Table 9 presents, for reference, the
official 2013 BLEU results comparing, as inputs, the use of
our best system, and the transcription by the IWSLT organ-
isers.

ASR input en-fr
1-best 22.9
1-best punctuated 24.1
Confusion net 18.4

Table 8: Cased BLEU results for models when tuned and
tested on ASR output in different formats.

en-fr
Edinburgh ASR system 22.45
IWSLT ASR system 23.00

Table 9: Official test 2013 cased BLEU results for 1Best SLT
input. The Edinburgh ASR system input was our primary
system.

7. Conclusions
We have described our ASR system for the English 2013
IWSLT evaluation Improvements to our system since the
2012 evaluation result in relative WER reductions of 17%
19% on the tst2011 and tst2012 sets respectively. The
use of RNN LMs does not give improved performance on
the tst2013 set, a result that is probably due to the shorter
utterances derived from the automatic segmentation.

Improvements planned for future systems include the use
of neural network based voice activity detection, and the

pooling of German and English audio data in multi-condition
DNN training, whereby both systems are trained simultane-
ously, sharing lower layers of the network. We also plan to
apply talk-level language model adaptation.
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Abstract
This paper describes the NAIST English speech recognition
system for the IWSLT 2013 Evaluation Campaign. In par-
ticular, we participated in the ASR track of the IWSLT TED
task. Last year, we participated in collaboration with Karl-
sruhe Institute of Technology (KIT). This year is our first
time to build a full-fledged ASR system for IWSLT solely de-
veloped by NAIST. Our final system utilizes weighted finite-
state transducers with four-gram language models. The hy-
pothesis selection is based on the principle of system combi-
nation. On the IWSLT official test set our system introduced
in this work achieves a WER of 9.1% for tst2011, 10.0% for
tst2012, and 16.2% for the new tst2013.

1. Introduction
Similar to the IWSLT 2012 Evaluation Campaign [1],
IWSLT 2013 featured an Automatic Speech Recognition
(ASR) track in which systems are required to recognize the
recordings made available by TED on their website1. TED
talks bring together the world’s most fascinating thinkers and
doers, who are challenged to give the talk of their lives in
about 5-25 minutes covering topics related to technology,
entertainment and design (TED). Spanning everything, from
internet trends to solving the world’s water supply problems,
today TED is a global movement “riveting talks by remark-
able people free to the world”.

This paper describes the NAIST English speech recog-
nition system. The main challenge of this ASR track is
to develop a system that is capable of recognizing sponta-
neous and open-domain speeches. Last year, we partici-
pated in collaboration with Karlsruhe Institute of Technol-
ogy (KIT). This year is our first time to build a full-fledged
ASR system for IWSLT solely developed by NAIST. Our
system utilizes weighted finite-state transducers which is
based on the Kaldi speech recognition toolkit [2]. Basi-
cally, our strategy in this year is to explore and investigate
various acoustic features (MFCC, PLP, FBANK), front-end
processing (LDA, STC, fMLLR, SAT), and acoustic models
(HMM/GMM, SGMM, DNN) provided in the Kaldi toolkit,
as well as various grapheme-to-phoneme strategy (Sequitur
G2P, DirectTL+, Structured ARROW). However, in case of

1http://www.ted.com/talks

language models, only traditional four-gram language mod-
els were performed at the moment.

The final submission is based on the principle of system
combination. The underlying assumption of system combi-
nation is that different systems commit different errors which
may cancel each other out. However due to limited time,
we were not able to submit the full-set combination system.
The submitted system was a combination of (HMM/GMM
MFCC + SGMM MFCC + HMM/GMM FBANK + SGMM
FBANK + DNN FBANK). Furthermore, only half of data
were used to train DNN-FBANK model. Nevertheless, ex-
periment results reveal that in comparison with last year best
system on the 2011 and 2012 evaluations set which serves
as a progress test set, we were still able to reduce the word
error rate of our transcription systems from 10.9% to 9.1%
for tst2011 and from 12.1% to 10.0% for tst2012, giving a
relative reduction of 16.5% and 17.4% respectively. And on
the new official 2013 evaluation set, the final system reached
a WER of 16.2%.

The rest of this paper is structured as follows. Sec-
tion 2 summarizes data resources used for the experiments,
and Section 3 provides a description of acoustic front-ends
used in our system. An overview of the techniques and data
used to build our acoustic models is given in Section 4. We
describe the vocabulary and language model used for this
evaluation in Section 5 and pronunciation lexicon including
grapheme-to-phoneme conversion in Section 6. Our decod-
ing strategy and experimental results are explained in Sec-
tion 7. Finally, the conclusion is drawn in Section 8.

2. Data Resources
2.1. Training Corpora
For acoustic model training, we used TED talks released be-
fore the cut-off date of 31 December 2010, downloaded from
the TED websites with the corresponding subtitles. The col-
lected talk resulting in a total of 157 hours of speech.

For language model training, the following text corpora
provided by the IWSLT organizer were used:

• 2M words of TED transcripts.

• The English portion of the English-French training
data from the Sixth Workshop on Statistical Machine



Translation (WMT 2011), including EuroParl (EPPS),
News Commentary (NC), and NEWS.

Table 1: Total size (word count) and vocabulary size of the
individual text corpora.

Data Size Vocabulary
TED 2.7m 45k
EPPS 54m 82k
NC 4.5m 50k
NEWS 2,402m 1,047k

We normalized the text corpora of TED, EPPS, NC, and
NEWS, in a case-insensitive fashion. Table 1 shows the re-
sulting text corpora along with their total size (word count)
and vocabulary size.

2.2. Test Corpora

Concerning the test corpora, the development and evalua-
tion data sets (dev2010, tst2010, dev2012) used in past edi-
tions, were provided by IWSLT organizer for development
purposes. As for evaluation purposes, evaluation data sets of
tst2011 and tst2012 were used as the progress test set to com-
pare the results of this year against the best results achieved
in 2011 and 2012. Then, a new released test set for official
test set of 2013 (tst2013) were used for final evaluation of
our systems.

3. Front-End Processing
We investigated the use of three different kinds of acoustic
front-ends: (1) mel-frequency cepstral coefficients (MFCC),
(2) perceptual linear prediction (PLP)[3] and (3) log mel-
filter bank (FBANK). The frontend provides features every
10ms with 25ms width. For each utterance in the speech
training data, 13 static of acoustic features (MFCCs, PLPs,
or FBANKs) including zeroth order for each frame are ex-
tracted and normalized with cepstrum mean normalization in
order to have zero mean per speaker.

To incorporate the temporal structures and dependencies,
9 adjacent frames (4 frames on each left-right side of the
current frame) of the acoustic features (MFCCs, PLPs, or
FBANKs) are spliced together into one single feature vector
leading to 117 dimensional super vectors (9x13 dimensions).
These are then projected down to an optimum 40 dimensions
by applying a linear discriminant analysis (LDA). After that,
the resulting features are further de-correlated using maxi-
mum likelihood linear transformation (MLLT)[4], which is
also known as global semi-tied covariance (STC)[5] trans-
form. Moreover, speaker adaptive training (SAT)[6] is per-
formed using a single feature-space maximum likelihood lin-
ear regression (fMLLR)[7] transform estimated per speaker.

4. Acoustic Model
Acoustic models are trained on the LDA+STC+fMLLR fea-
tures describe above. We employed 39 phonemes of English
based on CMU dictionary without stress information. Addi-
tionally, we added 9 special phoneme of non-speech sounds
derived from TED speech sources. These include SIL for si-
lence, SENTSTART and SENTEND for head and tail TED’s
sound effect, and APPLAUSE, BEEP, LAUGHTER, MUSIC,
NOISE, and VOICENOISE for sound that appeared in TED
speech sources.

Here we investigated the use three different kinds of
acoustic models: (1) Hidden Markov Model/Gaussian Mix-
ture Model (HMM/GMM) (2) Subspace Gaussian Mixture
Models (SGMM) (3) Deep Neural Network (DNN) which
are described below.

• HMM/GMM
Three-state left-to-right HMM topology without skip
states. The HMM units are derived from 39 phonemes
of English. Each phoneme is classified by its position
in word (4 classes: begin, end, internal and singleton).
Context-dependent cross-word triphone HMMs were
first trained with GMM output probability. The fi-
nal model totally include 320K Gaussians trained with
boosted maximum mutual information (MMI)[8] cri-
terion of discriminative training.

• SGMM
For SGMM, the Kaldi toolkits provides an implemen-
tation of the approach described in [9]. In this case,
HMMs are builts with subspace GMM output proba-
bility. The final model consists of 9.1K states, which
is also trained with boosted maximum mutual informa-
tion (MMI) [8] criterion of discriminative training.

• DNN
Here, we performed HMM/DNN hybrid framework,
in which the network is trained with 7 layers, where
each hidden layer has 2048 neurons. This DNN is
initialized with stacked restricted Boltzmann machines
(RBMs) that are pretrained in a greedy layerwise fash-
ion.

5. Vocabulary and Language Model
5.1. Vocabulary
For the vocabulary selection, we followed an approach pro-
posed by Venkataraman et al. [10]. We built unigram lan-
guage models from all text sources, and combined them to
satisfy unigram probabilities that maximize the likelihood of
a held-out TED data set dev2010, by using the SRILM toolkit
[11]. We then defined the 100k most probable unigrams from
the combined unigram language model as the vocabulary.

5.2. LM Training
We constructed a 3-gram language model for decoding a ut-
terance, and a 4-gram language model for rescoring hypothe-



ses. At first, we built 3-gram and 4-gram language models
with modified Kneser-Ney smoothing [12] from each of the
text corpora by using kaldi LM toolkit2. These were then
combined per n-gram language model using linear interpola-
tion as follows:

P (w|h) = λ1P1(w|h) + λ2P2(w|h) + · · ·
+λkPk(w|h) (1)

The interpolation weights λ1, . . . , λk were chosen to maxi-
mize the likelihood of a held-out TED data set dev2010. Ad-
ditionally, we pruned the n-gram entries that have a lower
probability than 5e-10 in the combined 3-gram language
model. For combining and pruning the language model, we
employed the SRILM toolkit. The combined and pruned 3-
gram language model contains 20 million bigrams, 45 mil-
lion trigrams. The combined 4-gram language model con-
tains 35 million bigrams, 194 million trigrams, and 397 mil-
lion 4-grams. Perplexities on tst2010 for each 3-gram and
4-gram language model is shown in Table 2.

Table 2: Language model perplexities on tst2010 for each 3-
gram and 4-gram language models. The n-gram entries that
have a lower probability than 5e-10 in the 3-gram language
model is pruned.

Data 3-gram 4-gram
TED 174.38 170.82
EPPS 450.38 429.14
NC 413.97 410.51
NEWS 200.63 192.30
Combined 138.58 127.72

6. Dictionary
6.1. G2P conversion
G2P conversion is employed to obtain a pronunciation of
words that does not exist in a dictionary. We try three G2P
conversion methods, (1) joint n-gram model [13] as im-
plemented in Sequitur G2P (Sequitur), (2) DirecTL+ (Di-
recTL+) which is an online discriminative training based
on MIRA for G2P conversion [14, 15] and (3) Structured
AROW [16] which is also an online discriminative training
that extends AROW [17] to structured learning (SAROW).

Table 3: Phoneme error rate (PER), word error rate (WER)
and learning time (Time) for each G2P conversion methods
in the CMU dictionary.

PER(%) WER(%) Time(hr.)
Sequitur 6.77 28.55 17.5
DirecTL+ 6.19 26.38 55.4
SAROW 6.15 26.48 28.5

2http://merlin.fit.vutbr.cz/kaldi/kaldi lm.tar.gz

We have compared these methods in a preliminary exper-
iment in term of phoneme error rate (PER) and word error
rate (WER). In the CMU dictionary, we have employed 10%
as test data, 5% as development data and the reminder as
training data. As showing in Table 3, DirecTL+ and SAROW
significantly improved over Sequitur in terms of PER and
WER. The SAROW was almost the same performance as the
DirecTL+ in terms of PER and WER, while the SAROW im-
proved the learning time of the DirecTL+. From the learning
time of the SAROW, We determined to employ Structured
AROW as our G2P conversion method in dictionary con-
struction.

6.2. Dictionary construction
We first constructed a G2P model with Structured AROW
as described above. Here, all data in the CMU dictionary
were employed as training data. For some training param-
eters such as learning iteration, we re-used parameters em-
ployed in the preliminary experiment. After that, we applied
the trained G2P model to a word that appears in the language
model but does not appear in the CMU dictionary, except ab-
breviation words with all capitalized letters. The pronuncia-
tion of abbreviation words were constructed based on rule in
which in each letter is converted to the corresponding single-
letter pronunciation. The number of the converted word was
36k words in the 100k vocabulary.

7. Decoding Strategy and Results
Our decoding algorithms use weighted finite state trans-
ducers (WFSTs)[18] based on Kaldi speech recognition
toolkit[2], a free, open-source toolkit for speech recogni-
tion research. The decoding-graph construction process is
basically based on the conventional recipe described in [18]
with slight modification to allow different phones to share the
same context-dependent states.

7.1. Single System
Figure 1 shows the results given various configurations on
the use of different acoustic features and acoustic models.
For comparison we evaluated the performance on the devel-
opment set. The results reveal that on each development
set, DNN models with MFCCs, PLPs, or FBanks always
outperformed HMM/GMM and SGMM. On the most left
“dev2010” is the ASR performance on development set of
2010 given the segmentation data, while on the second one
“dev2010 (no seg)” is the ASR performance on development
set without time segmentation information. As can be seen,
without time segmentation, the performance of ASR systems
slightly reduced.

7.2. Combination System
Here, we investigate model combination system, feature
combination system and full combination described below.

• Model Combination System
Here, we focus to investigate the ASR performance



Figure 1: Performance of the single system on the develop-
ment set and test set in WER.

of each acoustic features of MFCCs, PLPs, and
FBANKs. Figure 2 shows the results of those acous-
tic features in combination of all acoustic models
(HMM/GMM+SGMM+DNN). In average, the perfor-
mance of those features are mainly the same. In most
systems, the combination with optimum weight pro-
vide an improvement of the performances. Unfortu-
nately, MFCC (HMM/GMM+SGMM+DNN) combi-
nation system performed worse than the best MFCC
(DNN) single system. This is because the optimum
weight was calculated at once (globally) based on the
results of all single systems in all development sets,
which may not be effective for all cases.

• Feature Combination System
Here, we focus to investigate the ASR performance
of each acoustic models of HMM/GMM, SGMM,
and DNN. Figure 3 shows the results of those acous-
tic models in combination of all acoustic features
(MFCCs+PLPs+FBANKs). The HMM/GMM always
performed the worst. The best performance was
achieve with DNN. However, the combination with
optimum weight does not provide any significant im-
provement of the performances.

• Full Combination System
Here, we perform feature and model combination
system from 4-combination system to the full 9-
combination system. Figure 4 shows the results
of those acoustic models in combination of various
acoustic features (MFCCs+PLPs+FBANKs) and var-
ious acoustic models (HMM/GMM+SGMM+DNN).
The results reveal that the full 9-combination system
provide a better performance than others. However,
it is quite surprising that there is no significant im-
provement from 4-combination system to the full 9-
combination system.

Figure 2: Performance of each acoustic features of MFCCs,
PLPs, and FBANKs with acoustic model combination
(HMM/GMM+SGMM+DNN) on the development set in
WER.

Figure 3: Performance of each acoustic models of
HMM/GMM, SGMM, and DNN with acoustic features com-
bination (MFCCs+PLPs+FBANK) on the development set
and test set in WER.

7.3. Final Submission System
As we described previously, due to a limited time, we were
not able to submit the full-set of 9-combination system.
Our submitted primary system was based on a combination
of (HMM/GMM MFCC + SGMM MFCC + HMM/GMM
FBANK + SGMM FBANK + DNN FBANK). Table 4 shows
the summary of our final system based on IWSLT 2013 eval-
uation feedback in comparison with the best system from
feature combination, model combination, and the full 9-
combination system.

In comparison with last year best system, experiment re-
sults reveal that the performance of the submitted system on
the 2011 and 2012 evaluations set which serves as a progress
test set, were still able to reduce the word error rate of our
transcription systems from 10.9% to 9.1% for tst2011 and
from 12.1% to 10.0% for tst2012, giving a relative reduction
of 16.5% and 17.4% respectively. And on the new official
2013 evaluation set, the submitted system reached a WER of



16.2%. However, the best performance was provide by full 9-
combination system which reached a WER of 15.6% giving
another 3.7% relative reduction from the submitted system.

Figure 4: Performance of 4-combination system to the full
9-combination system on the development set and test set in
WER.

ASR System tst2011 tst2012 tst2013
Model Combination System 9.4% 10.4% 16.1%
Feature Combination System 9.2% 10.1% 16.0%
Full 9-Combination System 9.0% 9.7% 15.6%
Official Submitted System 9.1% 10.0% 16.2%

Table 4: Summary of final system performances based on
IWSLT 2013 evaluation feedback in comparison with the
best system from feature combination, model combination,
and the full 9-combination system.

8. Conclusion
In this paper we described our English speech-to-text system
with which we participated in the IWSLT 2013 TED task
evaluation on the ASR track. The decoding strategy for the
final submission is based on the principle of system com-
bination. The underlying assumption of system combina-
tion is that different systems commit different errors which
may cancel each other out. However due to a limited time,
we are not able to submit the full-set combination system.
The submitted system was a combination of (HMM/GMM
MFCC + SGMM MFCC + HMM/GMM FBANK + SGMM
FBANK + DNN FBANK). Nevertheless, experiment results
reveal that on the 2011 and 2012 evaluations set which serves
as a progress test set, we were still able to reduce the word
error rate of our transcription systems from 10.9% to 9.1%
for tst2011 and from 12.1% to 10.0% for tst2012, giving a
relative reduction of 16.5% and 17.4% respectively. And on
the new official 2013 evaluation set, the final system reached
a WER of 16.2%. The best performance was provided by
full 9-combination system which reached a WER of 15.6%
giving another 3.7% relative reduction from the submitted
system.
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Abstract
In this paper, we present the KIT systems participating
in all three official directions, namely English→German,
German→English, and English→French, in translation tasks
of the IWSLT 2013 machine translation evaluation. Addi-
tionally, we present the results for our submissions to the op-
tional directions English→Chinese and English→Arabic.

We used phrase-based translation systems to generate the
translations. This year, we focused on adapting the systems
towards ASR input. Furthermore, we investigated differ-
ent reordering models as well as an extended discriminative
word lexicon. Finally, we added a data selection approach
for domain adaptation.

1. Introduction
In the IWSLT 2013 Evaluation Campaign [1], we partici-
pated in the tasks for text and speech translation for all the of-
ficial language pairs: English→German, German→English
and English→French as well as two optional directions. The
TED tasks consist of automatic translation of both the man-
ual transcripts (MT task) and transcripts generated by auto-
matic speech recognizers (SLT task) for talks held at the TED
conferences1. For German→English, the test data was col-
lected from the TEDx project2.

The TED talks are given in English in a large number of
different domains. Some of these talks are manually tran-
scribed and translated by global volunteers into many lan-
guages [2]. The TED translation tasks this year bring up
interesting challenges: (1) the problem of adapting general
models - mainly trained on news data - towards the diverse
topics in TED talks, (2) the need of universal techniques for
translating texts from and to various languages, and (3) the
appropriate solution for inserting punctuation marks and case
information on automatic speech recognition (ASR) outputs
for the spoken language translation (SLT) task.

To deal with those challenges, we provided several ad-
vanced adaptation methods both for translation and language
models to leverage both the wide coverage of large data por-
tions and the domain-relevance of the TED corpus. In addi-

1http://www.ted.com
2http://www.ted.com/tedx

tion, we optimized our universal techniques to better conform
with different languages.

Compared to our last year’s system, we focused on four
new components: handling of ASR input (Section 3), combi-
nation of reordering models of different linguistic abstraction
levels (Section 4), data selection for language model (LM)
adaptation (Section 5) and an extended discriminative word
lexicon (Section 6).

The next section briefly describes our baseline system,
while Sections 3 through 7 present the different components
and extensions used by our phrase-based translation system.
After that, the results of the different experiments, including
official and optional language pair systems, are presented and
we close the paper with a conclusion.

2. Baseline System
Among the parallel data provided, we utilize EPPS,
NC, TED, Common Crawl for English→German and
German→English, plus Giga for English→French. The
monolingual data we used include the monolingual part
of those parallel data, the News Shuffle corpus for all
three directions and additionally the Gigaword corpus for
English→French and German→English.

A common preprocessing is applied to the raw data be-
fore performing any model training. This includes removing
long sentences and sentences with length difference exceed-
ing a certain threshold. In addition, special symbols, dates
and numbers are normalized. The first letter of every sen-
tence is smart-cased. In German→English, we also apply
compound splitting [3] to the source side of the corpus. Fur-
thermore, an SVM classifier is used to filter out the noisy
sentence pairs in the Giga English→French corpus and the
Common Crawl as described in [4].

Unless stated otherwise, the language models used are 4-
gram language models with modified Kneser-Ney smooth-
ing, trained with the SRILM toolkit [5] and scored in
the decoding process with KenLM [6]. The word align-
ment of the parallel corpora is generated using the GIZA++
Toolkit [7] for both directions. Afterwards, the alignments
are combined using the grow-diag-final-and heuristic. For
German→English, we use a discriminative word alignment
(DWA) approach [8]. The phrases are extracted using the



Moses toolkit [9] and then scored by our in-house parallel
phrase scorer [10]. Phrase pair probabilities are computed
using modified Kneser-Ney smoothing as in [11].

In all directions, beside the word-based language models,
some of the non-word language models are used. In order to
increase the bilingual context used during the translation pro-
cess, we use a bilingual language model as described in [12].
To model the dependencies between source and target words
even beyond borders of phrase pairs, we create a bilingual to-
ken out of every target word and all its aligned source words.
The tokens are ordered like the target words. In addition,
to alleviate the sparsity problem for surface words, we use a
cluster language model based on word classes. This is done
in the following way: In a first step, we cluster the words of
the corpus using the MKCLS algorithm [13]. Then we re-
place the words in the TED corpus by their cluster IDs and
train an n-gram language model on this corpus consisting of
word classes.

3. Preprocessing for Speech Translation
The system translating automatic transcripts needs special
preprocessing on the data, since generally there is no or no re-
liable case information and punctuation in the automatically
generated transcripts. We have used a monolingual transla-
tion system as shown in [14] to deal with the difference in
casing and punctuation between a machine translation (MT)
and an SLT system. In contrast to the condition in their work,
in this evaluation campaign sentence boundaries are present
in the test sets. Therefore, we use this monolingual transla-
tion system for predicting commas instead of all punctuation
marks in the test set. In addition to predicting commas, we
also predict casing of words using the monolingual transla-
tion system. This preprocessing will be denoted as Monolin-
gual Comma and Case Insertion (MCCI).

In order to build the monolingual system which translates
a source language into the same language with commas in-
serted, we prepare the parallel corpus for training. For the
source side of the corpus, we take the preprocessed monolin-
gual corpus of a normal translation system, remove all punc-
tuation marks, and insert a period mark at the end of each
line. For the target side of the corpus, we take the prepro-
cessed corpus of same language from the normal translation
system and replace all sentence-final punctuation marks such
as “!”, “?”, “.” by a period. Therefore, the only difference be-
tween the source and the target side corpus is inserted com-
mas on the target side.

In this evaluation campaign we work with two source lan-
guages, English and German. Therefore, we build a mono-
lingual translation systems each for the two languages. The
speech translation system with English on the source side is
built using true-cased English source and target side. As the
test set often contains only lower-cased letters, in the En-
glish monolingual system we take this already lower-cased,
preprocessed automatic transcript for translation. In order to
match this input during decoding, the source side of a phrase

table is lower-cased. As the case information contains more
information for German, the German monolingual transla-
tion system is built using lower-cased German source and
true-cased target side. All words in the preprocessed Ger-
man automatic transcript are lowercased, but are translated
into true-cased text using the monolingual translation sys-
tem.

The monolingual translation systems for both languages
are built on the corresponding side of the EPPS, TED, and
NC corpus, which sum up to 2.2 million sentences. A 4-gram
language model trained on the word tokens is used. Word re-
ordering is ignored in these systems. In order to capture more
context, we use a 9-gram language model trained on part-of-
speech (POS) tokens. Moreover, a 9-gram cluster language
model is trained on 1,000 clusters, based on the MKCLS al-
gorithm as described in the baseline system.

For the speech translation tasks, the output of the mono-
lingual translation system becomes the input to our regular
translation system which is trained using data with punctua-
tion marks.

4. Word Reordering Model

Word reordering is modeled in two ways. The first is a lexi-
calized reordering model [15] which stores reordering prob-
abilities for each phrase pair. The second model consists of
automatically learned rules based on POS sequences and syn-
tactic parse tree constituents and performs source sentence
reordering according to target language word order.

The rules are learned from a parallel corpus with POS
tags [16] for the source side and a word alignment to learn
continuous reordering rules that cover short-range reorder-
ings [17]. Discontinuous rules consist of POS sequences
with placeholders and allow long-range reorderings [18]. In
addition, we apply a tree-based reordering model [19] to bet-
ter address the differences in word order between German
and English. Syntactic parse trees [20, 21] for the source
side of the training corpus and a word alignment are required
to learn rules on how to reorder the constituents in the source
sentence to simulate target sentence word order. The POS-
based and tree-based reordering rules are applied to each in-
put sentence before translation. The resulting reordered sen-
tence variants as well as the original sentence are encoded in
a word lattice.

In order to apply the lexicalized reordering model, the
lattice includes the original position of each word. Then the
lattice is used as input to the decoder. During decoding the
lexicalized reordering model provides the reordering prob-
ability for each phrase pair. At the phrase boundaries, the
reordering orientation with respect to the original position of
the words is checked. The probability for the respective ori-
entation is included as an additional score in the log-linear
model of the translation system.



5. Adaptation
In order to achieve the best performance on the target do-
main, we perform adaptation for translation models as well
as language models.

We adapt the translation model (TM) by using the scores
from the in-domain and out-of-domain phrase table as de-
scribed in the backoff approach [22]. This results in a phrase
table with six scores, the four scores from the general phrase
table as well as the two conditional probabilities from the
in-domain phrase table. In addition, we adapt the candidate
selection in some of our systems by taking the union of the
candidates translations from both phrase tables (CSUnion).

The language model (LM) is adapted by log-linearly
combining the general language model and an in-domain lan-
guage model trained only on the TED data. In addition, in
some of the systems we combine these language models with
a third language model. This language model was trained on
data automatically selected using cross-entropy differences
[23]. We selected the top 5M sentences to train the language
model.

6. Discriminative Word Lexica
Mauser et al. [24] have shown that the use of DWL can im-
prove the translation quality. For every target word, they train
a maximum entropy model to determine whether this target
word should be in the translated sentence or not using one
feature per source word. In our system we use the extended
version using also source context and target context features
[25]. When using source context features, not only the words
of the sentence are used as features, but also the n-grams oc-
curring in the sentence. The target context features encode
information about the surrounding target words.

One specialty of the TED translation task is that we have
a lot of parallel data we can train our models on. However,
only a quite small portion of these data, the TED corpus,
is very important for the translation quality. Therefore, we
achieve a better translation performance by training the mod-
els only on the TED data.

7. Continuous Space Language Model
In recent years, different approaches to integrate continuous
space models have shown significant improvements in the
translation quality of machine translation systems [26]. Since
the long training time is the main disadvantage of this model,
we only train it on the small, but very domain-relevant TED
corpus.

In contrast to most other approaches, we did not use a
feed-forward neural network, but used a Restricted Bolz-
mann Machine (RBM). The main advantage of this approach
is that the free energy of the model, which is proportional to
the language model probability, can be calculated very effi-
ciently. Therefore, we are able to use the RBM-based lan-
guage model during decoding and not only in the rescoring
phase.

The RBM used for the language model consists of two
layers, which are fully connected. In the input layer, for ev-
ery word position there are as many nodes as words in the
vocabulary. Since we used a 4-gram language model, there
are 4 word positions in the input layer. These nodes are con-
nected to 32 hidden units in the hidden layer. The model is
described in detail in [27].

8. Results

In this section, we present a summary of our experiments for
all tasks we have carried out for the IWSLT 2013 evaluation.
All the reported scores are case-sensitive BLEU scores cal-
culated based on the provided development and test sets.

8.1. English→German

We conducted several experiments for English→German
translation using the available data. They are summarized
in Table 1. The baseline system is a phrase-based translation
system using POS-based reordering rules. Preprocessing of
the source and target language of the training corpora is per-
formed as described above. Adaptation of the phrase table
and language model using the in-domain part of the train-
ing data is included, as well as a bilingual language model
to increase the source context across phrase boundaries. Fi-
nally, the baseline system also includes a cluster-based lan-
guage model using the clusters automatically generated by
the MKCLS toolkit.

System Dev Test
Baseline 23.58 23.50
+ Tree-based Rules 23.61 23.87
+ Lexicalized Reordering 23.74 23.93
+ POSLM 23.81 24.14
+ DWL 24.44 24.76
+ Class-based 9-gram LMs 24.19 24.93
+ TargetContext + LM DataSelection 24.24 25.06

Table 1: Experiments for English→German (MT)

By adding tree-based reordering rules and a lexicalized
reordering model we increase the translation quality by more
than 0.4 BLEU points. An additional language model for
POS sequences gives another increase of 0.2 BLEU points. A
remarkable improvement of 0.6 can be observed by introduc-
ing a discriminative word lexicon trained on the in-domain
data where bigrams are used to include more information
about the context words on the source side. Extending the
class-based language model to 9-grams leads to further im-
provement by 0.2. The final system includes target context
features in the discriminative word lexicon and a language
model trained on 5 million sentences selected from all data
based on cross entropy similarity.



8.1.1. SLT Task

For the English→German SLT task, we used one of the sys-
tems developed for the MT task. For reordering, it includes
the lexicalized reordering model and long-range reordering
rules. The tree-based rules are excluded since they do not
conform well with the speech data. In addition, the system
uses 9-gram POS-based and MKCLS language models and
an in-domain DWL with source context. This system ignores
case information on the source side. While both development
and test data were available for the MT task, for the SLT task
only one data set was provided. Therefore, we used it for
testing and performed optimization on text data.

In order to adapt the system further towards the task of
translating speech input, we added the monolingual comma
and case insertion model, which performs a preprocessing
step consisting of monolingual translation of lowercased En-
glish speech into true-cased English while also inserting
commas. For this, no new optimization was performed, only
the input was changed. This special treatment of the speech
input helped improve the system performance by 1.3 BLEU
points. Table 2 shows the overview of the speech translation
system.

ASR Adaptation Test
Baseline 17.60
MCCI 18.92

Table 2: Experiments for English→German (SLT)

8.2. German-English

We summarize the development of the German→English
system in Table 3. The translation model of the baseline
system uses a bilingual language model. It uses all types
of reordering rules and a lexicalized reordering model. Fur-
thermore, three language models are combined log-linearly
in this system. One language model is trained on all data,
one only on the in-domain data and we use one cluster lan-
guage model trained on all data using 1,000 clusters. Adding
the DWL trained on the TED corpus using source and tar-
get context features improves the performance by 0.9 BLEU
points. Further improvements are achieved by adding a lan-
guage model trained on the automatically selected data. We
further adapt the system to the TED task using the union
candidate selection and by adding a RBM-based language
model. This improves the system only slightly by 0.1 BLEU
points. Finally, we replace the cluster language model by one
trained only on the TED corpus and also use morphological
operations to translate unknown word forms [12].

8.2.1. SLT Task

For the SLT task, we use the MT system without the in-
domain cluster LM and morphological operations. By di-
rectly using the MT system to translate the ASR output, a

System Dev Test
Baseline 35.17 29.76
+ DWL 35.42 30.65
+ LM DataSelection 35.51 30.80
+ CSUnion + RBMLM 35.75 30.87
+ In-domain Cluster LM 35.74 31.10
+ Morphological Operations - 31.15

Table 3: Experiments for German→English (MT)

translation quality of 18.33 BLEU points is reached. As there
are often no case information and commas in the ASR out-
put, we remove these information from the source side of the
phrase table. Using this system, we improve the translation
quality to 19.09. Then we use the MCCI system described
in Section 3 to insert case information and commas into the
ASR output. When translating this modified ASR output, we
reach a final BLEU score of 20.1.

ASR Adaptation Test
Baseline 18.33
Phrase Table 19.09
MCCI 20.10

Table 4: Experiments for German→English (SLT)

8.3. English→French

Table 5 reports some remarkable improvements as we com-
bined several techniques on the English→French direction.
The big phrase table is trained on TED, EPPS, NC, Giga
and Crawl data, while the language model is trained on the
French part of those corpora plus News Shuffle. The system
also uses short-range reordering rules derived from smaller
data portions (TED, EPPS and NC). The result of this setting
is 31.08 BLEU points.

System Dev Test
Baseline 27.68 31.08
+ PT+LM Adaptation 28.48 31.76
+ Bilingual LM 28.66 32.57
+ POS+Cluster LMs 28.85 32.53
+ Lexicalized Reordering 29.22 32.83
+ DWL Source Context 29.45 33.06

Table 5: Experiments for English→French (MT)

Several advanced adaptations are conducted both on
translation and language models. First, the phrase table is
adapted using the clean EPPS, NC and TED data. After-
wards, it is adapted towards the TED domain. For the lan-
guage models, we follow the similar adaptation scheme with
the models ranging from in-domain to general-genre data.



We log-linearly combine the language models trained on
TED, EPPS, NC, Giga, and Crawl by minimizing the per-
plexity on the development set. Those adaptation techniques
boost the system around 0.7 BLEU points. Further gains
come from using different non-word language models. In-
troducing the bilingual language model leads to a small im-
provement of 0.18 on Dev and 0.81 BLEU points on Test.
Adding a 9-gram POS-based language model and a 4-gram
50-cluster language model trained on in-domain data helps
gain almost 0.2 BLEU points on Dev, but results in a slightly
reduction of 0.04 on Test. The system is further enhanced by
0.3 BLEU points when we integrated lexicalized reordering
probabilities as an independent feature. Finally, by taking the
source context of the DWL into account, we achieve the best
system with a 0.23 increase, reaching 33.06 BLEU points.

8.3.1. SLT Task

We approached the SLT tasks in two distinct ways. The
first is that we use the best system of the MT task to trans-
late the ASR outputs which were already preprocessed by
Monolingual Comma and Case Insertion (MCCI) system as
mentioned in Section 3. The second approach is the system
named ASR-Dedicated, which evolves from rebuilding the
translation model from modified Giza alignments dedicated
for ASR data only. The modifications consist of removing
the case and punctuation marks except the period.

Table 6 presents the results using the best MT system to
translate two ASR outputs and from the second approach.
The ASR outputs are the raw text without any comma (None)
and the output using MCCI preprocessing. The numbers
show that a big improvement of almost 3 BLEU points comes
from the input preprocessed by MCCI. The commas MCCI
inserted have a great effect on the fluency of the ASR out-
put and consequently improved the translation quality. The
numbers also show that the system trained and optimized to
work best for texts would work adequately for ASR outputs
as well.

We submitted the best MT system with MCCI as the pri-
mary, and the second approach’s result as the contrastive.

ASR Adaptation Test
None 20.75
MCCI 23.69
ASR-Dedicated 22.90

Table 6: Experiments for English→French (SLT)

8.4. English→Arabic

For this pair, we use the parallel data from TED. The UN
parallel data is provided in raw format. In order to get use-
ful parallel pairs out of this raw data, we segment the two
sides into sentences, exclude all documents having a large
difference in number of sentences, sentence-align the result-

ing document pairs, and finally filter out the noisy sentence
pairs.

We use the default sentence segmenter provided by the
NLTK toolkit [28] to segment both sides. The sentence align-
ment is performed using the Hunalign aligner [29]. Since
this aligner works better with a lexicon, we build one from
Giza alignments trained on the TED corpus. The filtering
is carried out using an SVM classifier as stated in Section
2. The tokenization and POS tagging of the Arabic side are
performed using the AMIRA toolkit [30].

In addition to the parallel data provided, the fifth edition
of the LDC Gigaword Arabic corpus is also used for lan-
guage modeling.

Table 7 summarizes the experiments for the
English→Arabic pair. The baseline translation model
is trained on all parallel data (TED and UN) and involves
many language models which are log-linearly combined.
These include individual models one from each corpus
(TED, UN, Gigaword) and two more (UN & TED and all
corpora together). In this configuration we use the short
range reordering. This system gives 13.15 on Dev and
8.43 on Test. The effect of translation model adaptation is
remarkable: it improves the system performance by almost
1.4 BLEU on Dev and 0.26 on Test. Slight improvements
could be brought by introducing more language models. For
instance, using a bilingual language model trained on all
parallel data increases the performance on Dev by almost
0.2 while it has no observable effect on Test. On the other
hand, adding a 4-gram cluster language model trained on
TED only (with 50 classes) enhances the score on Test by
0.2 while it leaves the Dev score almost unchanged. This
last system is used in our submission.

System Dev Test
Baseline 13.15 8.43
+ PT Adaptation 14.54 8.69
+ Bilingual LM 14.79 8.70
+ Cluster LM 14.81 8.92

Table 7: Experiments for English→Arabic (MT)

8.5. English→Chinese

The English→Chinese system is trained on the bilingual
TED and filtered UN corpora. As the UN corpus is
document-aligned, we have filtered out about 30k aligned
sentences as training data with a KM algorithm. The weight
of a sentence pair is the accumulation of word and its trans-
lation occurring in a dictionary. The dictionary used here is
from LDC (LDC2002L27). The language models are trained
on the monolingual TED data and the target side of the whole
UN data.

In contrast to European languages, there are no spaces
between Chinese words. In our primary system we segment
Chinese into characters and tokenize and lowercase English.



Adaptation, reordering and DWL source context models
have given contribution to the improvement of translation.
In Table 8 we present the steps which achieve improvement.
The baseline is a monotone translation with 6-gram language
model. As the adaptation described in Section 5, we use the
TED corpus as the in-domain data to adapt the phrase ta-
ble and language model. We use two reordering models:
short-range POS-based reordering and lexicalized reorder-
ing, which are described in Section 4. Finally, after adding
the DWL source context model as described in Section 6 and
CSUnion model in Section 5, the BLEU score on test data
has gained more than 1 point compared to the baseline.

We have also built a system based on Chinese words as
a contrastive system, where the words are generated with the
Stanford word segmenter3.

System MT SLT
Dev Test Test

Baseline 14.01 16.75 -
+ Adaptation 14.61 16.77 -
+ POS Reordering 14.71 17.51 -
+ Lexicalized Reordering 14.91 17.18 -
+ DWL+CSUnion 15.14 17.84 17.28

Table 8: Experiments for English→Chinese

8.5.1. SLT Task

The speech translation system has used the same configura-
tion as the best one for the MT task. We built the test data
set by removing the case information and punctuation from
the text test data. In order to apply the system trained on text
for speech automatic transcripts, we predict commas with the
preprocessing described in Section 3. The result is shown in
Table 8.

9. Conclusions
In this paper, we presented the systems with which we par-
ticipated in the TED tasks in both speech translation and text
translation of the IWSLT 2013 Evaluation Campaign. Our
phrase-based machine translation system was extended with
different models.

When translating ASR input, we need to adapt the system
to these conditions. Often case information or commas are
missing or misplaced. Therefore, we use a method to auto-
matically correct this information in order to directly use our
default translation model without training a separate model.

The successful application of different supplementary
models trained exclusively on TED data (cluster language
model, DWL, and continuous space language model) shows
the usefulness and importance of in-domain data for such
tasks, regardless of their small size. Furthermore, we could

3http://nlp.stanford.edu/software/segmenter.shtml

adapt the system even more to the task by using data selec-
tion methods.

The DWL allows us to include arbitrary features when
calculating the translation probabilities. By extending these
models to also include contextual information about the
source and target sentence, we were able to increase the
translation performance. Furthermore, we could improve the
translation performance by combining information about the
word order from different linguistic levels.
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Abstract
In this paper, we describe the CASIA statistical machine
translation (SMT) system for the IWSLT2013 Evaluation
Campaign. We participated in the Chinese-English and
English-Chinese translation tasks. For both of these tasks, we
used a hierarchical phrase-based (HPB) decoder and made it
as our baseline translation system. A number of techniques
were proposed to deal with these translation tasks, includ-
ing parallel sentence extraction, pre-processing, translation
model (TM) optimization, language model (LM) interpola-
tion, turning, and post-processing. With these techniques,
the translation results were significantly improved compared
with that of the baseline system.

1. Introduction
This paper describes the machine translation (MT) system
developed by the Institute of Automation Chinese Acade-
my of Sciences (CASIA) for the evaluation campaign of I-
WSLT 2013. We participated in the optional MT track with
the Chinese-English and English-Chinese translation tasks.
Our translation system is based on the hierarchical phrase-
based translation model [1]. We used the state-of-the-art H-
PB translation system as our baseline system.

Efforts have been made to improve the translation per-
formance. To obtain high quality parallel sentences, we in-
troduced a parallel sentence extraction method based on the
lexical translation probabilities. Rule-based translation of
named entities was proposed to deal with translations of time
and numbers that are done incorrectly. For our translation
model training, the forced alignment technique [2] was used
for optimizing the translation rules and reducing the hierar-
chical phrase table size. In addition, we used the provided
monolingual corpora to train different language models and
interpolated the language model to adapt to the translation
tasks. At last, we added word-to-word phrases to the hier-
archical phrase table to reduce the number of untranslated
words.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the resources used in our system. Section 3
gives an overview of the whole system. Section 4 discusses
the improvement of translation performance in detail. Sec-
tion 5 presents the experiments and evaluation results. Final-
ly, section 6 concludes the paper.

2. Resources Used in IWSLT 2013
Training of the translation models and language models for
MT systems is constrained to data supplied by the organiz-
ers. Since we only participated in the Chinese-English and
English-Chinese translation tasks, we made full use of the
parallel and monolingual training corpora in Chinese and En-
glish. The training corpora are divided into two parts: the
parallel data for the TM training and the monolingual data
for the LM training.

Parallel Data: There are two types of parallel data for
our translation model training.

• WIT3 (Web Inventory of Transcribed and Translated
Talk), which redistributes the original content pub-
lished by the TED Conference website [3]. After
the pre-processing, there are 151,149 aligned English-
Chinese parallel sentences in these data. We will
use WIT3 to represent the extracted parallel sentences
from the WIT3 training corpus.

• MultiUN (Multilingual UN Parallel Text 2000-2009),
which provides parallel corpus extracted from the U-
nited Nations website [4]. As the data has alignment
problems, we realigned the parallel sentences (Details
will be introduced in section 4.1). Finally, 7,819,291
parallel sentences were extracted in these data. We will
use UN to represent the parallel sentences extracted
from the MultiUN training corpus.

Monolingual Data (English): There are five English
datasets used for the LM training in our experiment.

• News Commentary v7 from WMT 2012

• News Crawl from WMT 2012

• Europarl v7

• LDC2011T07 English Gigaword Fifth Edition

• Monolingual UN corpus (the English part of MultiUN)

Monolingual Data (Chinese): There are three Chinese
datasets used for the LM training in our experiment.

• WIT3 (the Chinese part of the parallel data mentioned
above).



• Monolingual UN corpus (the Chinese part of Mul-
tiUN)

• Google book grams

3. System Overview
3.1. Chinese Word Segmentation System

The Chinese word segmentation (CWS) system is based on
our in-house toolkit [5], which combines both CRF-based
model and N-gram language model to segment Chinese
words. CRF model treats the CWS task as a sequence tag-
ging question. It overcomes the tagging bias problem in gen-
erative models. However, it tends to generate longer word-
s, which is harmful to SMT system because it causes data
sparseness. To overcome this drawback, we introduced N-
gram language model as a supplement to CRF-based model.
The N-gram language model generates significantly shorter
words than the CRF-based model does, which can be help-
ful to distinguishing shorter words. Compared to the open
source CWS toolkit ICTCLAS1, the CRF++2 training toolk-
it was used to train our CRF based model and the SRILM
toolkit was used to train the N-gram language model with the
annotated Chinese People’s Daily News corpus as resources
from February to June, 1998. We tested the performance on
the news corpus in January, 1998. The results measured by
precision (P), recall (R) and F1 measure are listed in Table
1.

Table 1: The CWS results on the Chinese People’s News cor-
pus.

System P R F1
ICTCLAS 98.1% 98.7% 98.4%

CASIA 97.5% 97.7% 97.6%

3.2. Hierarchical Phrase-based System

For our HPB translation system, we employed an in-house
implementation of the state-of-the-art MT decoder, which is
mainly based on the work of [7]. In HPB translation sys-
tem, a weighted synchronous context-free grammar is in-
duced. There are two types of phrases distinguished by the
non-terminals in HPB rules. Phrases without non-terminals
are the initial phrases and those with up to two non-terminals
are the hierarchical ones. Both of them were heuristically ex-
tracted from the aligned parallel sentences. The search was
carried out on a CKY parser with beam search together with
a post-processor for mapping source language derivations to
target ones. The standard features integrated into our decoder
include: phrase translation probabilities and lexical probabil-
ities in both translation directions, word and phrase penalty,

1http://www.ictclas.org/
2http://crfpp.sourceforge.net/

glue rules, and N-gram language model, all of which are as-
signed by the log-linear model [8]. Besides, we used the cube
pruning [9] to speed up our decoder, and the standard MERT
[10] to tune the weights of our features on the 100-best trans-
lation assumptions on IWSLT 2010 development set.

3.3. Forced Alignment System

Usually, the original HPB phrases can be extracted heuristi-
cally from the aligned words of parallel sentences, as pro-
posed in [7]. However, the heuristical phrases extraction
suffers from a large amount of redundant rules and meet-
s difficulties in probability estimation. To avoid these, we
employed the idea of force-aligning training data with the
heuristically trained HPB rules [2]. Instead of directly ap-
plying these HPB rules in decoding, we used the original H-
PB rule to align the parallel training sentences and generated
the bilingual derivation trees that represent both the source
and target sentences. Then, HPB rules were extracted from
the derivation trees with a threshold pruning. The translation
probabilities of HPB rules were updated.

It should be noted that we only re-estimated the phrasal
translation probabilities, and kept the lexical translation
probabilities estimated with the method of [11]. After gen-
erating the optimized HPB rules, we tested our forced align-
ment (FA) method on the IWSLT 2012 and 2013 Chinese-
English MT test set with the translation models trained from
the WIT3 parallel corpus. The phrase table sizes and transla-
tion results are listed in Table 2.

Table 2: Forced Alignment results on the IWSLT 2012 and
2013 Chinese-English translation tasks. The translation per-
formances are measured by BLEU and TER.

System tst2012 tst2013 #PhrasesBLEU TER BLEU TER
WIT3 12.5 67.0 14.3 68.4 22.7M

WIT3+FA 12.6 66.7 14.4 67.7 11.4M

The result showed that the total HPB phrase table was re-
duced by 50% and the performances in both translation tasks
are slightly better compared to that of the baseline HPB trans-
lation system. Besides, a large number of phrases have been
dropped out by our forced alignment, speeding up the HPB
decoder.

4. Improvements
4.1. Parallel Sentence Extraction

The MultiUN Chinese-English parallel corpus provided by
the IWSLT2013 Evaluation Campaign is aligned by chapter
instead of sentence. It is difficult to train word alignmen-
t using this corpus. By investigating the MultiUN dataset,
we found two alignment problems. First, instead of one to
one sentence alignment, the sentence on the source side may



align to two or even more sentences on the target side. Sec-
ond, the sentence on the source side may have no aligned
sentences on the target side. The simple introduction of the
MultiUN corpus may not help to improve the translation per-
formance. Therefore, we proposed a method to extract par-
allel sentences from the MutiUN dataset.

Given the source sentence f withmwords and target sen-
tence e with n words, we suppose that words on the source
side can be aligned to any words on the target side. The sim-
ilarity between the two sentences is calculated as

sim(f, e) = λ1P (f |e) + λ2P (e|f)
+λ3L(e) + λ4L(f) + λ5R(f, e)

(1)

where P (f |e) is the average weights of the words in target
sentences that are aligned to those in source sentences. It can
be calculated as

P (f |e) = 1

m

m∑
i=1

(
1

n

n∑
j=1

log(pij)) (2)

where pij is the lexical translation probability and i and j
are the position of words in source and target sentences. If
there is no lexical translation probability between the aligned
words, we set pij to be a minimal probability with e−10.
P (e|f) can be calculated in the similar way.

L(f) and L(e) are used to punish the sentence length,
which can be calculated as:

L(f) = log(m) (3)

L(e) = log(n) (4)

R(f, e) is used to punish the length difference between
the aligned sentences:

R(f, e) = log(max{m,n}/min{m,n}) (5)

In our experiment, we supposed that the source sentence
could align to at most 10 target sentences. All the possible
alignments were scored by Equation 1, and the aligned sen-
tences with the highest score were selected as the parallel
sentence pairs. For the MultiUN parallel data, we finally ob-
tained 7,819K sentence pairs to train our translation model.

4.2. Rule-based Translation of Named Entities

Although some named entities as time and numbers can be
well translated by translation models, a majority of them can-
not be correctly translated. Therefore, we introduced rule-
based translation of named entities toolkit, which identifies
time and number entities from the source sentences, and then
translates it into the target language. We did not treat the
named entities in the post-processing, but introduced them
as normal translation rules. In our translation tasks, we first
built a phrase table containing the named entities along with
the translation results. Then we added it to the hierarchical
translation model with a higher probability during the decod-
ing process.

Take the phrase “26.5 million” in English-Chinese trans-
lation tasks as an example. Our toolkit will give us a parallel
phrase as “26.5 million ||| 2,650 �”. By adding it to the
translation model, the named entity of “26.5 million” can be
translated correctly.

4.3. Translation Model Optimization

In TM training steps, we used the open source toolkit Giza++
[12] to get the bidirectional word alignments and combined
them with grow-diag-final-and method. Then we extract-
ed the initial phrases and hierarchical phrases with heuris-
tic extraction method to generated our original HPB model.
We did forced alignment with the original HPB model on
our training data and re-estimated the translation probabili-
ties with the extracted phrases. At last, we used these refined
phrases to generate our TM model for translation.

4.4. Language Model Interpolation

The language models used in our system are obtained by in-
terpolating individual language models trained on the corpo-
ra of a different domain.

For the English language model, these training data
sources are mentioned in section 2. First, the 5-gram mod-
ified Kneser-Ney discounted LMs are trained by using the
SRILM toolkit [6]. Then the optimal interpolation weights
for each LMs are estimated by using the tst2011 as the per-
plexity calculation text. The perplexities of each individual
LMs and the final English LM are shown in table 3.

Table 3: Perplexity and interpolation weights of the 5-gram
English Language Models.

data tst2011 tst2013 weight
News Com 145.9 143.5 0.127
News Cra 88.8 93.0 0.697
Europarl 291.7 271.0 0.065
LDC Gigaword 403.7 345.7 0.109
UN 114.8 108.9 0.002
interpolate 84.3 84.1 -
prune 103.8 90.1 -

For the Chinese language model, four 4-gram modified
Kneser-Ney discounted LMs are trained firstly. Then the
optimal interpolation weights are estimated by using the
tst2011. During weight estimating, the tst2010-2012 set
dose not include the tst2011. However, during interpolat-
ing, the tst2010-2012 set includes dev2010, tst2010, tst2011
and tst2012, making the final Chinese LM contain the data
of tst2011. Table 4 presents the perplexities of each LM.

4.5. Translated Rule Addition

In our HPB translation system, some of the words in source
language are untranslated as no matched rules are available.
However, these words actually have translations which can-



Table 4: Perplexity and interpolation weights of the 4-gram
Chinese Language Models.

data tst2011 tst2013 weight
WIT3 188.9 217.5 0.630
UN 575.5 595.5 0.119
Google book grams 4553.1 4444.5 0.110
tst2010-2012 48.8 395.9 0.141
interpolate 83.4 205.2 -

not be extracted because of the restriction during phrase ex-
traction. To avoid the non-translated phenomenon, we ex-
tracted word-to-word translation rules for these untranslated
words from the lexical translations from word alignment.

For each untranslated word wf in the source language,
we looked up all of its target word we from the lexical proba-
bility table. The joint probability for each word pair is scored
as:

P (wf , we) =
1

2
(logP (wf |we) + logP (we|wf )) (6)

where P (wf |we) and P (we|wf ) are the bidirectional lexical
probabilities.

We chose 3-best joint probabilities with the correspond-
ing translations and added them to the hierarchical phrase
table by a very lower probability. With the help of these ad-
ditional phrase rules, some of the untranslated words could
be translated correctly.

5. Experimental Results
We first trained our baseline HPB system (WIT3) using the
extracted WIT3 parallel corpus. Then we did forced align-
ment with the baseline HPB model on the WIT3 training da-
ta and obtained the optimized translation model (WIT3+FA).
We added the extracted parallel sentences from UN to WIT3

and trained a larger translation model (WIT3+UN). Consid-
ering the huge amount of parallel sentences in UN, we copied
the WIT3 corpus five times when combining these two types
of parallel sentences. We also used the new translation mod-
el to do forced alignment on WIT3 (WIT3+UN+FA), which
helps to generate more useful translation rules than the s-
maller translation model. At last, we added the translation
rules, which were generated by the named entities toolkit and
untranslated words, to our final HPB model as the translat-
ed template (WIT3+UN+FA+Template). Both of Chinese-
English and English-Chinese translation models are trained
following the same way as described above. The results for
Chinese-English and English-Chinese translation tasks on I-
WSLT 2012 and 2013 test sets are listed in Tables 5 and 6.

In Tables 5 and 6, the first two systems are trained us-
ing only the WIT3 corpus. By adding the UN corpus to
WIT3 corpus, the translation performance was improved on
both of the Chinese-English translation tasks, indicating that
our extraction method can effectively get parallel sentences

from MultiUN training corpus. However, the improvemen-
t on English-Chinese translation tasks is not significant as
that on Chinese-English tasks. The results also show that
our forced alignment can get better performance on the tasks
with much smaller translation models. Moreover, the intro-
duction of translation rules for named entities and untranslat-
ed words gives us the best results on the IWSLT 2013 trans-
lation tasks.

It is noteworthy that the satisfactory English-Chinese
translation results on tst2012 are not attributed to our high
quality translation system, but the incorrectly trained LM in-
terpolated with data from tst2012.

Table 5: Results for the Chinese-English MT task on IWSLT
2012 and 2013 test sets. The primary submission is the sys-
tem combination of all the training methods.

System tst2012 tst2013
BLEU TER BLEU TER

WIT3 12.5 67.0 14.3 68.4
WIT3+FA 12.6 66.7 14.4 67.7
WIT3+UN 12.8 67.4 14.7 68.1
WIT3+UN+FA 12.9 66.0 14.8 66.8
WIT3+UN+FA+Template 13.0 65.8 15.0 66.4

Table 6: Results for the English-Chinese MT task on IWSLT
2012 and 2013 test sets. The primary submission is the sys-
tem combination of all the training methods.

System tst2012 tst2013
BLEU TER BLEU TER

WIT3 12.7 71.2 11.9 70.1
WIT3+FA 12.8 70.6 11.9 69.6
WIT3+UN 12.9 71.3 12.1 69.9
WIT3+UN+FA 12.9 70.9 12.2 69.7
WIT3+UN+FA+Template 13.0 70.7 12.3 69.6

6. Conclusion
In this paper, we presented our submission runs to the I-
WSLT 2013 Evaluation Campaign for the optional MT track
on Chinese-English in both directions. We did our transla-
tion tasks by using the in-house hierarchical phrase-based de-
coder and Chinese word segmentation system as well as other
open source toolkits. In particular, we used the forced align-
ment to optimize the HPB rules, which obtained the same
translation results with a much smaller phrase table. To get
better translation performances, we introduced the template
rules into our decoder to deal with time and number enti-
ties and the words that exist in training data but do not have
translation rules.

In future work, we plan to add some other features to our
log-linear model and use the system combination methods to
modify our system.
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Abstract
Sign language-to-text translation systems are similar to spo-
ken language translation systems in that they consist of a
recognition phase and a translation phase. First, the video
of a person signing is transformed into a transcription of
the signs, which is then translated into the text of a spoken
language. One distinctive feature of sign languages is their
multi-modal nature, as they can express meaning simultane-
ously via hand movements, body posture and facial expres-
sions. In some sign languages, certain signs are accompanied
by mouthings, i.e. the person silently pronounces the word
while signing. In this work, we closely integrate a recog-
nition and translation framework by adding a viseme recog-
nizer (“lip reading system”) based on an active appearance
model and by optimizing the recognition system to improve
the translation output. The system outperforms the standard
approach of separate recognition and translation.

1. Introduction
The aim of a sign language-to-text translation system is to
translate a video of a person signing into a text in a spoken
language. Similar to spoken language translation systems,
such a system consists of a recognition component in which
the individual signs are recognized, and a translation compo-
nent in which the sequence of signs is translated into a text
of the spoken language. The translation step is necessary as
signed languages, if evolved naturally, differ at great length
from spoken languages, having a unique grammar and vo-
cabulary.

Sign languages are multi-modal in the sense that they
express meaning simultaneously via different communica-
tion channels. Besides the manual information such as hand
shape, orientation and movements, non-manual aspects such
as body posture and facial expressions play a vital role in
expressing meaning. In countries which have a strong oral
education tradition, e.g. Germany, some signs are accom-
panied by mouthings, i.e. the signer pronounces the spoken

ALPS (mouthing “Alpen”) MOUNTAIN (mouthing “Berg”)

Figure 1: Two signs with the same manual component, dif-
fering only in the mouthing. At the time of the snapshots, the
underlined letters are pronounced.

language word with his lips while signing with his hands.
These mouthings are particularly used to derive new signs
by using the hand movements of a similar or more general
sign and changing only the mouthing. In the example in Fig-
ure 1, the particular sign for the Alps is derived by depicting
the form of a mountain while silently pronouncing the word
Alps (German: “Alpen”).

In this work, we want to use a mouthing recognition sys-
tem, which is often also referred to as a visual speech recog-
nition system, to improve the quality of the translation sys-
tem by providing the mouthing as an additional input to the
translation system and by exploiting the correspondence be-
tween the mouthings and spoken language words. Moreover,
we achieve a close integration of recognition and transla-
tion by optimizing the recognition system with respect to the
translation output. The approach is depicted in Figure 2.

This paper is structured as follows: First, we present re-
lated work in Section 2. The RWTH-Phoenix-Weather cor-
pus, which is used in our experiments, is described in Section
3. In Section 4, we outline the technique of active appearance
models, which we apply to track the face and the mouth re-
gion. The mouth shape and opening is then used to recognize
viseme sequences in Section 5. We present our experimental
results in Section 6. Conclusions and an outlook are given in



Speech
Recognition

Machine
Translation

source language
text

audio file
target language

text

Sign Language
 Recognition

annotationvideo file
target language

text

Sign Language
 Recognition

annotationvideo file
target language

text

Mouthing
 Recognition mouthing

a)

b)

c)

Machine
Translation

Machine
Translation
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tion, b) sign language translation and c) the system proposed
in this work including a mouthing recognition

Section 7.

2. Related Work
To track the position of the face and the mouth, we apply
an active appearance model. From the resulting locations
of the mouth corners, we calculate high-level features such
as the degree of opening, which we use to train a viseme
recognition system.

[1] and [2] use active appearance models to recognize a
predefined set of facial expressions. [3] and [4] provide fa-
cial features for the use in a sign language recognition frame-
work, i.e. they integrate low-level facial features into their
system to improve the recognition of the signs.

There are several approaches to viseme recognition. We
follow the geometric approach, using distances between lips,
chin and nose to train a recognition system. This approach
is similar to [5], who use active contours (“snakes”) to detect
the lips. Their approach is more sophisticated, as they calcu-
late histograms of the area inside the lips to detect tongues
and teeth, while our approach is more general in that the ac-
tive appearance models which are trained on the whole face
also detect other facial features such as eyebrow raise and
cheek movements.

Sign language machine translation faces the challenge
that corpus resources are particularly sparse. A thorough
overview of sign language translation is given in [6].

3. The RWTH-Phoenix-Weather Corpus
The RWTH-Phoenix-Weather corpus is a video-based, large
vocabulary corpus of German Sign Language recorded and
annotated for the use in statistical pattern recognition and
statistical machine translation. The public TV broadcasting
station Phoenix regularly broadcasts the major public news
programs with an additional interpretation into German Sign
Language using an overlay window which shows the inter-
preter.

The RWTH-Phoenix-Weather corpus contains the
weather forecast portions of these news programs, which
were manually annotated by a deaf expert and revised by a
hard-of-hearing expert. The weather forecasts were chosen
because weather forecasting forms a rather compact domain
with a limited vocabulary. A complex domain such as news
programs would require a much larger corpus to reliably
estimate statistical models, but annotating such a corpus was
infeasible due to time and budget constraints.

Since sign language expresses meaning simultaneously
via hand movements, body posture, facial expressions,
mouthing, etc., one open question in the sign language re-
search community is how to capture this multi-modal nature
of sign languages in a comprehensive annotation system. A
simple annotation method is gloss annotation, where a sign is
annotated by one or several words which roughly correspond
to its meaning, usually written in the stem form in upper case.
Since the same sign can have several meanings in different
contexts, it can be transcribed differently depending on its
context. In contrast to this, the term ID-gloss [7] is used if
one sign is always annotated with the same gloss, indepen-
dent of its meaning in a particular context. In our corpus and
experiments, we use ID-glosses.

The annotation of a sign language video corpus highly
depends on the task at hand. For example, if a linguist wants
to study certain linguistic patterns, the annotation should be
detailed with respect to these patterns. In the same way, an
annotation suitable for an automatic sign language recog-
nition system should be tailored according to the features
which the system can actually recognize. Since the RWTH-
Phoenix-Weather corpus was originally developed for the
recognition of hand-based features, both the time boundaries
of the ID-glosses and their label were mainly based on the
signing hands. This means that signs which are identical in
the hand components but differ in their mouthing received
the same label. For example, the sign of a specific mountain
is formed by mouthing its name and performing the general
sign for mountain with the hands (see Figure 1). In the cor-
pus, both variants were glossed as “MOUNTAIN”, because
they could not be distinguished by the hand features used at
the time.

In addition to the annotation of the ID-glosses, the
RWTH-Phoenix-Weather corpus has been marked with time
boundaries on the sentence as well as the gloss level.
The spoken German weather forecast has been transcribed
semi-automatically using a state-of-the-art automatic speech
recognition system. To train active appearance models on
this corpus, facial landmarks have been manually labeled on
a small set of images.

In the following, we will briefly describe the corpus setup
and statistics. For a more thorough description see [8].
Note that in this setup, we use only the portions of RWTH-
Phoenix-Weather for which time boundaries for individual
glosses are annotated. These are necessary to extract the fea-
tures for the viseme recognizer.



DGS German
# signers 7
# editions 190
duration[h] 3.25
# frames 293,077
# sentences 2,552
# running glosses 14,771 30,860
vocabulary size 911 1,452
# singletons 120 337

Table 1: Statistics of the RWTH-Phoenix-Weather corpus for
DGS and announcements in spoken German

Figure 3: Visualization of facial annotations

The corpus statistics for the RWTH-Phoenix-Weather
corpus with time boundaries for individual glosses can be
found in Table 1. The database features a total of seven in-
terpreters, consists of 2640 sentences and a total of 14,771
running glosses. Baseline translation results both from Ger-
man to German Sign Language and in the opposite direction
can be found in [9]. Sign language corpora are much smaller
than spoken language corpora for two reasons. Since there
is no standard writing system for sign languages, sign lan-
guage corpora containing a written notation do not exist by
themselves but have to be produced by experts who define a
suitable annotation scheme for the task at hand. Moreover,
annotating a video corpus is quite time consuming, because
the annotators have to mark time boundaries of individual
signs and have to use a canonical notation for sign variants
which are frequent.

To train active appearance models on this corpus, 38 fa-
cial landmarks for all seven interpreters have been labeled
in a total of 369 images (that is, about 50 images per inter-
preter). Care was taken in selecting a set of images which
contain many different expressions, including extreme ones,
such that the trained models can approximately represent a
large span of expressions for each interpreter. Two examples
of the facial annotations are shown in Figure 3.

4. Active Appearance Models
The facial features which are used for recognizing the
signer’s mouthing consist of continuous measurements of
some quantities related to mouthing, such as horizontal and
vertical mouth openness, and other facial cues such as eye

Semantic description Related point features #
mouth vertical openness {18, 21, 24, 25, 26, 27}
mouth horizontal openness {18, 21}
lower lip to chin distance {26, 27, 32, 33}
upper lip to nose distance {15, 16, 17, 18, 21, 24, 25}
left eyebrow state {0, 1, 2, 6, 8}
right eyebrow state {3, 4, 5, 10, 12}
gap between eyebrows {2, 3}

Table 2: High-level facial features used in the proposed clus-
tering approach and the related lower-level point features
(Figure 3)

brow raise. As shown in Table 2, these measurements are
based on lower-level facial features which are defined as a set
of consistent, salient point locations on the interpreter’s face.
As illustrated in Figure 3, these fiducial points – also called
landmarks – correspond to key locations on the cheeks and
chin outlines, the nose ridge and nose base, the eyelids and
eye corners, the eyebrow outlines and the lip and mouth cor-
ners. We wish to track those point features accurately in the
sign language videos in order to extract the higher-level facial
features which will in turn be used to recognizing the words
pronounced by the signer. Since the structure of the human
face as described by a set of such point features exhibits a
lot of variability due to changes in pose and expression, we
chose to base our tracking strategy on the deformable model
registration method known as active appearance models.

Active appearance models (AAMs), first proposed in [10]
and notably reformulated in [11], are a popular instance of
the family of deformable model methods for image interpre-
tation. Such model-based methods attempt to recover an ob-
ject’s structure as it appears in an image by registering a de-
formable shape model of the object to the image data. Math-
ematically, the shape s of an object is defined as the vector of
stacked coordinates of its v landmark points:

s = (x1, y1, x2, y2, . . . , xv, yv)ᵀ

assuming here that each landmark is a 2-dimensional point
representing a semantically meaningful part of the object,
such as an eye corner in the human face.

AAMs model shape deformation using a so-called point
density model (PDM), which is a parametric linear subspace
model learned statistically by principal component analysis
(PCA) on a set of training shape examples. These examples
are given as expert annotations of images of the object of
interest, such as shown in Figure 3 for the human face. In
such a representation, any shape s of the deformable object
can be expressed by the generative model as a base shape s0

plus a linear combination of n shape vectors si:

s = s0 +

n∑
i=1

pisi

Registering a PDM to the image data then reduces to finding
the optimal coefficient values pi of this linear combination,



i.e. the optimal PDM’s parameters. AAMs propose to model
the coupling between the PDM and the image data, i.e. the
predictions on the PDM’s landmarks locations given a target
image, via a holistic appearance model of the pixel inten-
sity values of the object’s image. This appearance model is
again a parametric linear subspace model, obtained by ap-
plying PCA to shape-normalized training example images of
the object of interest. This shape normalization involves the
warping of every example image to a reference frame, which
is typically done by piecewise affine warping functions de-
fined between each example shape and the base shape s0 of
the PDM. The generative appearance model is then used to
express any object’s appearance A(x) as a base appearance
A0(x) plus a linear combination of m appearance images
Ai(x):

A(x) = A0(x) +

m∑
i=1

λiAi(x) ∀x ∈ R(s0)

whereR(s0) denotes the set of pixel locations within the re-
gion defined by the base shape s0, i.e. the reference frame
for the object’s appearance.

Given these two generative models and following the
so-called “independent” AAMs formulation proposed in
[11], registration can be seen as an image matching prob-
lem between the synthetic model image and the shape-
normalized target image; the fitting goal can therefore be ex-
pressed as finding the parameters p = (p1, p2, . . . , pn)ᵀ and
λ = (λ1, λ2, . . . , λm)ᵀ that minimize the following sum of
squared differences:

∑
x∈R(s0)

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x;p))

]2

where I is the target image and W(x;p) is a (piecewise
affine) warping function which projects a pixel location x
from the reference frame to the target image frame, de-
pending on the PDM’s parameters p. The minimization of
this quantity is non-linear in the parameters p and must be
solved iteratively by linear approximation, typically using
the Gauss-Newton algorithm.

Variants met in the AAM-related literature mostly dif-
fer in the way they parameterize this linear approximation
to derive the parameters update equation. In this work, we
chose to use the efficient version of the simultaneous inverse-
compositional AAM (SICAAM) proposed in [12]. This vari-
ant is more robust than others to large variations in shape
and appearance, which typically occur when dealing with fa-
cial expressions in the context of sign language. Moreover,
in order to cope with large off-plane head rotations, which
are also common in sign language and can lead a 2D AAM
to failure, we used the refinement proposed in [13]. In this
work, a 3D PDM is estimated using a non-rigid structure-
from-motion algorithm on the training shapes, and is then in-
volved in the optimization process which incorporates a reg-
ularization term encouraging the 2D shape controlled by the

2D PDM to be a valid projection of the 3D PDM. Similar to
the 2D PDM, the 3D PDM expresses any 3D shape S as a
3D base shape S0 plus a linear combination of n̄ 3D shape
vectors Si:

S = S0 +

n̄∑
i=1

p̄iSi

Notice that the 3D PDM is also involved in the calculation of
the high-level facial features described below.

The procedure for the production of the high-level facial
features includes a training stage:

1. Extrude the set of 2D training shape examples to 3D
by means of the 3D PDM.

2. Remove global translations and rotations by aligning
every extruded shape to the base shape S0 of the 3D
PDM.

3. Project the aligned extruded shapes to 2D and, for
each, estimate local area-based measurements corre-
sponding to the point features subsets given in Table 2.

4. For each point features subset, store as the training out-
put the minimum and maximum values of the corre-
sponding local area-based measurements.

Extracting high-level facial features from the tracked
lower-level point features is then done in the following way:

1. Extrude the registered shape and remove its global
translation and rotation by means of the 3D PDM

2. Project the aligned extruded shape to 2D and, for each
point features subset given in Table 2, estimate the cor-
responding local area-based measurement.

3. Normalize each local area-based measurement be-
tween 0 and 1 according to the minimum and max-
imum values obtained during training for the corre-
sponding point features subset.

4. Each registered shape is then associated with a vector
of D (in our work D = 7) continuous values in the
range [0, 1], corresponding to our high-level facial fea-
tures.

Seven SICAAMs specific to the seven interpreters of
RWTH-Phoenix-Weather have been trained for the end pur-
pose of extracting high-level facial features from the gloss-
annotated videos as shown in Figure 4. Training and track-
ing with one single SICAAM for all seven interpreters would
have been a viable choice as well because of the enhanced
robustness of this AAM variant to variability in identity.
However, we wanted to obtain the best possible accuracy in
the tracking of the low-level point features. On the other
hand, the calculation of our high-level features is rather sen-
sitive to identity changes and as such had to be designed
in an identity-dependent fashion. The extraction of reliable



Figure 4: High-level feature extraction
Top left: the grid of fitted AAM points
Top right: rotated and normalized AAM points
Bottom: high-level feature values over time

identity-independent facial features similar to those used in
this work is part of the advanced computer vision research
topic known as “expression transfer” and is beyond the scope
of this paper, where our primary goal is to give a proof
of concept that including the mouthing information from a
viseme-based mouthing recognizer can improve a sign lan-
guage translation system. The mouthing recognizer will be
described in more detail in the next section.

5. Viseme Recognition

Since the RWTH-Phoenix-Weather corpus was mainly an-
notated for the use in sign language recognition of hand-
based features, mouthings have not been annotated for the
whole corpus. To obtain possible candidates for the words
the signer has pronounced while signing, we align the glosses
denoting the signs with their translation in the spoken lan-
guage. We use the open-source toolkit GIZA++ to align each
gloss to at most one word. However, not all signs are accom-
panied by mouthing. We therefore include a silence model
representing no mouth movement and a garbage model
for mouthing gestures not representing specific viseme se-
quences in the viseme recognizer. To train a viseme rec-
ognizer on the videos, we need a viseme transcription of
the spoken words. We first use a lexicon from our speech
recognition system trained on German to lookup each Ger-
man word which is aligned to a gloss and to find its corre-
sponding sequence of phonemes. As many phonemes cannot
be visually distinguished, for example the phonemes P and B
differ only in the aspiration which is not visible, we further
map the set of phonemes to a set of visemes, i.e. visually
distinguishable phonemes. We follow the suggestion of [14]
and map the set of phonemes to a set of 15 visemes. A list of

Phoneme Viseme Examples
p, b P Pause, Bitte

t, d, k, g T Tonne, Dach, König, Gier
n, @n, l, @l N Nadel, raten, Liebe, Igel

m M Mutter
f, v F Finder, Vase
s, z S Fass, Stein

S, Z, tS, dZ Z Schein, Garage, Tscheche
h, r, x, N R Hase, Reden, Dach, Wange

j, C C Junge, Wicht
i:, I, e:, E:, E E Bier, Tisch, Weg, Räte, Menge

a:, a A Wagen, Watte
o:, O O Wolle, Wogen
u:, U U Buch, Runde
@, 6 Q Bitte, Weiher

y:, Y, 2:, 9 Y Tür, Mütter, Goethe, Götter

Table 3: Phoneme-viseme mapping (taken from [14])

the used visemes can be found in Table 3.
Statistics on the aligned gloss translation pairs allow to

exclude noisy alignments. Specifically, this is done by using
an empirically set threshold of at least four occurences per
gloss translation pair and considering only translation align-
ments that represent at least 10% of all translations for a spe-
cific gloss. Gloss translation alignments which do not meet
these requirements are put into the garbage model.

We then train our state-of-the art speech recognition sys-
tem RASR [15] using 15 viseme hidden Markov models
(HMMs) and the garbage model, each containing three states
with single Gaussian densities, a globally pooled covariance
matrix and global time distortion penalties. Silence visemes
are represented by an additional single state HMM. The mod-
els are fed with the seven high-level facial features. A mod-
elling lexicon defining possible pronounciation variants for
each gloss is provided to the system. It is generated based on
the statistics on the aligned gloss translation pairs. The sys-
tem is initialized with a linear segmentation on the RWTH-
Phoenix-Weather data providing gloss time boundaries. The
EM-algorithm with viterbi approximation iteratively accu-
mulates the HMMs and uses them to re-estimate the state-
frame-alignment, while choosing the most likely pronoun-
ciation variants representing different sequences of visemes.
This process can be considered as weakly supervised clus-
tering. After 10 iterations the algorithm converges to a sta-
ble optimum, yielding the hypothesized viseme sequences
for each gloss. In order to remove outliers we chose the
RANSAC algorithm [16] to further refine the state-frame-
alignment and hence the models.

Table 5 shows the achieved performance of the viseme
recognizer after each of its training and refinement steps.
The Character Error Rate (CER) compares the hypothesized
viseme sequence on the character level to 640 manually an-
notated mouthings.

Subsequently, the hypothesized viseme sequences are fil-



CER Recall
initial segmentation 40.5 82.5
10x EM-realignment 35.7 47.5
after RANSAC processing 32.2 45.5

Table 4: Character Error Rate (CER) and recall in [%] of
viseme recognizer measured on 640 manual annotations.

tered by comparing them to the original GIZA++ alignment
and estimating the relative error for a given gloss and viseme
sequence. Viseme sequences that cause a high mismatch to
the GIZA++ alignment are less likely to support the follow-
ing translation step. We tested different error thresholds on
the development set and obtained best results for a threshold
of 30. Translation variants with a relative error higher were
removed, that is, no gloss variant was generated.

6. Experiments
For our experiments, We use the open-source translation sys-
tem JANE [17]. The training corpus is word-aligned us-
ing GIZA++, and phrase pairs consistent with this align-
ment are extracted. Previous experiments on this corpus ([9])
have shown that phrase-based systems outperform hierarchi-
cal systems, and consequently we choose a phrase-based sys-
tem for machine translation. Since the corpus is very small,
regular MERT training on a held-out development set leads
to unstable optimization parameters. We therefore apply a
technique similar to cross-validation where we train five dif-
ferent systems, each with a different portion of the training
data used as the development set. In each optimization itera-
tion, we concatenate the n-best lists of each individual system
and optimize the parameters on this concatenated list.

The baseline system consists of a two-stage approach in
which the glosses with no additional information are trans-
lated. This corresponds to part b) in Figure 2.

In the approach proposed in this work, which is de-
picted in part c) of the same figure, we add the mouthing
information obtained from the viseme recognizer as an ad-
ditional knowledge source to the translation system. This is
done in the following way. In cases in which the viseme
recognizer has a high confidence to recognize a word cor-
rectly, we split up the gloss into several variants. E.g., the
gloss MOUNTAIN(=“BERG”) from Figure 1 could be split
up into two gloss variants MOUNTAIN alps and MOUN-
TAIN mountain. The machine translation system is then
trained on these gloss variants.

Since the mouthing usually corresponds to a word in the
spoken language, we want to increase the probability of the
gloss variants which are translated into their mouthing com-
ponent. This can be done on the word and the phrase level.

On the word level, we increase the probability of the
IBM1-like lexical smoothing of such pairs by a factor α. The

System Dev Test
BLEU TER BLEU TER

Baseline 35.5 58.8 23.8 66.5
Oracle 36.8 53.4 29.8 60.1
+ word level 39.8 45.3 31.7 52.7
+ phrase level 40.8 43.6 32.6 49.9
+ word + phrase level 41.1 44.4 33.6 48.7

Table 5: Oracle machine translation results, assuming all
mouthings were recognized correctly

factor is optimized on the development set.
On the phrase level, we add binary as well as count fea-

tures to the phrase table, indicating whether a gloss with a
certain mouthing is translated into the corresponding spoken
word (boolean feature) or counting the number of glosses in
the phrase for which this is true (count feature).

Thus, the computer would e.g. learn to translate the gloss
variant MOUNTAIN alps (which consists of the manual sign
for mountain, accompanied by the mouthing “Alps”) into
the German word for Alps. We refrained from hard-wiring
these connection for two reasons. First, the viseme recog-
nition also contains errors, which can partly be learnt by
the machine translation system during training. Moreover,
mouthings usually use the base form of the word without in-
flections, and thus the same mouthing can result in different
inflections in the spoken language.

First we examine oracle translation results which assume
that all mouthings have been recognized correctly. These re-
sults form an upper bound on the translation performance
of the actual system and show the potential of adding the
mouthing information to the system. The results can be seen
in Table 5. Training a phrase-based system on the gloss-
variants increases the system performance by 6 BLEU and
6.4 TER. Additional gains can be optained by increasing the
probabilities of matching mouthings and translations on the
word and phrase level. The best performance can be obtained
by combining both of these models.

The translation result of the whole pipeline of viseme
recognition and translation system is given in Table 6. Train-
ing the machine translation system on the gloss variants pro-
duced by the viseme recognizer leads to a degragation in
BLEU, but TER is improved. Increasing the weight of corre-
sponding mouthing and translation pairs either on the word
or the phrase level leads to an improvement. Combining both
models only slightly improves the BLEU score.

7. Conclusions / Outlook
In this paper, we propose the integration of a viseme recog-
nizer into a sign language translation framework. Instead of
using the facial features in the recognition phase, we opt for
using the mouthing information as an additional knowledge
source in the translation system. The system is able to out-



System Dev Test
BLEU TER BLEU TER

Baseline System 35.5 58.8 23.8 66.5
Viseme + MT System 35.2 53.2 23.1 65.4
+ word level 36.1 54.3 24.1 65.5
+ phrase level 36.8 53.5 24.4 64.4
+ word + phrase level 37.5 52.6 24.8 64.4

Table 6: Machine translation results of systems including
viseme recognition input

perform the baseline system which only translates the manual
information of the signs. The use of mouthing information is
especially useful in countries which have an oralist educa-
tion tradition. In other countries, e.g. the US, fingerspelling
is used more heavily.

In the future, we want to improve the quality of the
viseme recognition by including a histogram of the mouth
area. This can lead to improvements for visemes with distinct
tongue or teeth configurations. Moreover, we want to incor-
porate other modalities besides the hands and the mouthing
as well. One problem which we encountered during the ex-
periments is the spreading of the mouthing, i.e. the mouthing
is not synchronous to the hands but starts later. We want to
address this issue using dynamic time alignment.
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Abstract
In this paper, we introduce a new parallel corpus of subtitles
of educational videos: the AMARA corpus for online edu-
cational content. We crawl a multilingual collection com-
munity generated subtitles, and present the results of pro-
cessing the Arabic–English portion of the data, which yields
a parallel corpus of about 2.6M Arabic and 3.9M English
words. We explore different approaches to align the seg-
ments, and extrinsically evaluate the resulting parallel corpus
on the standard TED-talks tst-2010. We observe that the data
can be successfully used for this task, and also observe an
absolute improvement of 1.6 BLEU when it is used in com-
bination with TED data. Finally, we analyze some of the
specific challenges when translating the educational content.

1. Introduction
Lecture Translation has become an active field of research in
the wider area of Speech Translation [1, 2]. This is demon-
strated by large scale projects like the EU-funded translec-
tures [3] and by evaluation campaigns like the one orga-
nized as part of the International Workshop on Spoken Lan-
guage Translation (IWSLT), which introduced the challenge
to translate TED talks [4] for the 2010 competition. How-
ever, the main limitation for the success of these projects
continues to be the access to high quality training data.

With the emergence of Massive Online Open Courses
(MOOCs), thousands of video lectures have already been
generated. Sites like Khan Academy1, Coursera2, Udacity3,
etc., continuously increase their repertoire of lectures, which
range from basic math and science topics, to more advanced
topics like machine learning, also covering history, economy,
psychology, medicine, and more.

Online education has bridged the geographical and finan-
cial gap, enabling students to access high quality content for
free, irrespective of their location. However, the access to
this content is still limited by language barriers. By far the
most content available is in English. This severely limits
access to this high-quality educational material for learners
not being able to read and understand English. To overcome

1https://www.khanacademy.org/
2https://www.coursera.org/
3https://www.udacity.com/

these language barriers, amazing efforts are undertaken by
volunteers, to translate such lectures into many other lan-
guages. One example is the already mentioned TED Talks4,
for which so far more then 9, 000 volunteers have gener-
ated about 40, 000 translations into a total of 101 languages.
While this and similar efforts at Khan Academy or MIT’s
Open Courseware5 are highly commendable, the coverage is
extremely skewed towards a small number of languages. It is
therefore clear that manual translation trails behind, and that
for many languages the small number of volunteers cannot
keep up with the fast pace in which new content is appearing
on these educational platforms.

Statistical machine translation (SMT) can bridge this gap
by automatically translating videos for which subtitles are
not available. It also can support volunteer translators, by
providing an initial translation, which then can be post-edited
[5]. Thus, SMT has the potential to increase the penetra-
tion of educational content, allowing it to reach a wider audi-
ence. To achieve this, an SMT system requires a large quan-
tity of high-quality in-domain training data. Unfortunately,
large data for machine translation has traditionally been con-
strained to domains such as legal documents, parliamentary
proceedings and news. So far, the only openly accessible
corpus for the lecture domain has been the TED talks [6].

In this paper, we introduce a new parallel corpus of sub-
titles of educational videos: the AMARA corpus for online
educational content. We crawl a collection of multilingual
community-generated subtitles6. Furthermore, we explore
the steps necessary to build corpora suitable for Machine
Translation by processing the Arabic-English part of the mul-
tilingual collection. This yields a parallel corpus of about
2.6M Arabic and 3.9M English words. We explore different
approaches to align the subtitles, and verify the quality of the
generated parallel corpus by building translation models, and
extrinsically evaluating them on the standard TED-talks tst-
2010 from IWSLT 2011, and on our proposed AMARA test
set. We show that the AMARA corpus shares similar domain
with TED-talks and leads to an increase of translation quality
on the TED translation task.

4http://www.ted.com/
5http://ocw.mit.edu/index.htm
6Publicly available through the Amara website: http://www.amara.org



In the next section,we describe the related work and
in Section 3 we present crawling, segmentation and statis-
tics of the AMARA corpus. Section 4 shows the usability
of AMARA alone and combined with IWSLT for machine
translation. In Section 5, we present error analysis based on
machine translation output. Section 6 presents our conclu-
sions and future work.

2. Related Work
Several corpora have been developed to support the seminar
and lecture translation efforts. One example is the corpus
form Computers in the Human Interaction Loop (CHIL) [7],
which consists of recordings and transcriptions of technical
seminars and meetings in English. The content of the corpus
includes a variety of topics: from audio and visual technolo-
gies to biology and finance. It is available through ELRA7 to
its members.

More recently, the IWSLT10 [4] evaluation campaign has
turned its attention to the lecture and seminar domain by fo-
cusing on TED talks. To support this task, a collection of
lecture translations has been automatically crawled from the
TED website in a variety of languages and made publicly
available through the WIT3 project [8]. In this paper, we
used such data as a point of comparison. We crawl parallel
subtitles of educational videos and use several measures to
show the quality of the crawled corpus in comparison with
the closely related IWSLT data set.

In the past, multilingual corpora creation from user-
contributed movie subtitles has been addressed by [9]. Re-
cently, a large collection of parallel movie subtitles from the
Opensrt8 community along with tools for alignment of these
has been made available through the Opus project [10].

Combination of corpora to improve the translation model
has been explored with relative success in the past. For the
NewsCommentary and OpenSrt corpora, [11] explore differ-
ent ways to mix the phrase-table to adapt the Europarl cor-
pus. For the Arabic-English IWSLT data, [12] achieve a rel-
ative improvement of 0.7 BLEU by mixing phrases from UN
and IWSLT data using instance weighting with weights com-
ing from the language model perplexity.

In this paper, we present the experimental results from
data gathered from publicly available crowd-generated data,
that has proved to be useful for the lecture domain, but that
poses specific challenges, as it has a special focus on online
education.

3. The AMARA Corpus
Amara is a web-based platform for editing and managing
subtitles of online videos. It provides an easy-to-use inter-
face, which allows users to collaboratively subtitle and trans-
late those videos. The site uses a community-refereed ap-
proach to ensure the quality of the transcriptions and transla-
tions in the spirit of Wikipedia.

7www.elra.org
8www.opensrt.org

Amara works in collaboration with online educational or-
ganizations like KhanAcademy, TED, and Udacity. As a
result, a large body of translations of educational content
is available in multiple languages. For example, for Udac-
ity, more than 25K subtitles for over 10K videos have been
created by a team of 917 volunteers, since December 2012.
These translations are publicly accessible through the Amara
website in the form of downloadable video subtitles.

3.1. Languages

On the Amara website, the number of different languages
into which a video has been subtitled varies from video to
video. In Figure 1 we observe the overall distribution of the
number of available languages per video by the total number
of videos on the Amara website having translations available
in that many languages. A few videos have subtitle transla-
tions in as many as 109 different languages. Furthermore, at
least 1000 videos have translations available in 25 different
languages, and 3000 have translations available in at least 6
different languages. However, the distribution quickly tails
off, as many videos have been translated into only a few lan-
guages.
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Figure 1: Distribution of the number of available languages
per video by the total number of videos in the Amara website.

The most represented languages in the subtitles of this
repository are: English with 90K subtitles, French with 20K
subtitles, Spanish with 20K subtitles, Italian with 8.8K sub-
titles and Arabic with 5.9K subtitles. On the other hand,
the original language of the videos is highly dominated by
English with 135K videos, followed by Spanish with 8.7K
videos, French with 6.1K videos, German with 5.0K videos
and Russian with 4.3K videos.

In Table 1 we present the distribution of videos from dif-
ferent languages that have been translated into English and
Arabic. We observe that English is by far the most subti-
tled language, which should not be a surprise given the large
number of available videos in the platform. Still, only 39%
of all the English videos are subtitled into English. However,
Arabic videos have an unusually high number of translations
into English. In fact, for Arabic videos, there are more En-
glish subtitles than Arabic subtitles, which means that many



Videos Subtitled into
Language Total Arabic English

English 135K 4463 54023
Arabic 3.8K 494 1286
Spanish 8.7K 33 1167
French 6.1K 38 1160
German 5.0K 11 1006

Table 1: Distribution of the number of translations into Ara-
bic and English from the most popular video languages in the
Amara platform. As of December 1st, 2013

videos are translated directly into English, without taking
the route through generating Arabic subtitles first. At this
point, about 33% of all Arabic videos are subtitled into En-
glish, which is a larger proportion when compared to Spanish
(13%), French (19%) and German (20%). Note that this data
could possibly mislabeled and contain wrong language infor-
mation. Noisy data often results in poor word alignments and
weak translation models.

To shed light on how valuable this data can be for ma-
chine translation, we examine the impact of the Arabic-
English collection of subtitles, that we codename the
AMARA Corpus, in a machine translation environment.
These represent only a small fraction of the data available
on the Amara website. In future, we plan to extend our work
to other language pairs.

3.2. Crawling

The Amara site provides a list of videos and the number of
languages the media has been subtitled into. Additionally, it
allows filtering by languages. This resulted in 4338 videos
that have subtitles in both English and Arabic9. In most
cases, the original language of these videos is English. Us-
ing a non-intrusive in-house crawler, and in cooperation with
amara.org, we collected the subtitle files for both Arabic and
English. In the current version of the data, we did not per-
form any additional validation to verify that the documents
are in the language they claim to be. Instead, we perform an
indirect measurement of the quality by using the parallel data
for a standard Machine Translation task.

The subtitle files are in Sub-Rip Text file format (.srt). It
consists of segments that are formed by three components:

Segment ID: A number, in sequence, identifying the seg-
ment.
Time interval: The start and end times of the subtitle, which
represent the timeframe the particular subtitle appears on the
screen.
Content: The text for the subtitle segment, with one or more
lines.

9This quantity includes videos originated in any language pair, not only
Arabic and English. The date of collection was July 1st, 2013.

3.3. Data Filtering

From the crawled data for the Arabic-English language pair,
we obtained subtitles for a total of 4338 videos, which orig-
inated from different organizations. These subtitle files also
included transcriptions for the TED talks. To assess the use-
fulness of this data for translating a standard set for lecture
translation such as the IWSLT-11 dataset, we decided to ex-
clude all possible overlap with the IWSLT talk data to avoid
contamination and thereby overly optimistic results. Unfor-
tunately, the AMARA data does not have extensive meta-data
that can be used for document-level filtering. Furthermore,
the difference in sentence alignments, tokenization between
our data and the IWSLT-talk data also posed a challenge.

To handle tokenization differences, we detokenized
AMARA documents and re-tokenized them using the identi-
cal scheme as used for IWSLT. Furthermore, we calculated
the percentage of overlap between each of the AMARA doc-
uments, and the IWSLT data (train, tune and test); and fil-
tered out the documents ones that presented an overlap of
more than a certain threshold (in this case 1% of the sen-
tences in the document). However, due to the conversa-
tional nature of the data, frequent phrases such as “applause”,
“thank you”, etc., match almost every document. As a con-
sequence, the relative overlap of smaller documents was ar-
tificially inflated and they were filtered out. We fixed this by
applying a strong constraint that prevented duplicated counts.
Therefore, once a sentence from a specific document was
matched with the IWSLT data, it could not be matched to
any other document. Our assumption here is that there are
no redundant documents in the pool of AMARA documents,
so removing previously matched sentences would not cause
any trouble. We tested filtering both with and without de-
duplication. In practice, there were not major differences be-
tween the two generated corpora. Thus, we kept the one with
the strong constraint, which generated 2400 bilingual docu-
ments.

3.4. Segment Alignment

The collected subtitles are for the most part, parallel at the
segment level. About 75% percent of all collected segments
have identical time stamps on both sides. However, there are
two cases, which lead to non-parallel segments:

Incomplete data: When the data in one language (mostly
Arabic) is not complete. This could be the case when the
translation is still in progress.
Different timestamps: When the text of source and target
segment correspond to each other, but the timestamps are
not synchronized across languages. This happens when
the subtitles in the second language are not generated
by translating the subtitles in the original language, but
done directly by listening to the original sound track, and
translating on the fly.



In order to deal with these issues, we used several
algorithms to align the subtitle files. Below, we briefly
summarize them:

Strict synchronization constraint (Baseline)
We only extracted the segments from the parallel files if they
have identical segment IDs and timestamps. This is a strong
constraint, yet gives a good notion of how much data is truly
parallel at the segment level.

Automatic sentence alignment
This approach extends the assumption that translations tend
to be similar in length [13] by using information from a bilin-
gual dictionary to improve the alignment between parallel
files. We used the implementation provided by Hunalign
[14]. It aligns the parallel text in two passes.

First, sentence length and lexicon (if provided) informa-
tion is combined to perform an initial alignment. A new,
corpus specific lexicon is then generated from the resulting
word alignment. A second pass is performed to align the text
with the newly generated dictionary. Note that this approach
allows merging of multiple consecutive segments into one
longer segment.

Subtitle synchronization
This approach, as implemented in the Uplug subtitle align-
ment tool [10], exploits the timing information available in
the subtitles to perform the alignment. It assumes that sen-
tences that appear in close time-frames should be closer to
each other. It can be enhanced by providing anchor-points
from which timing offsets and speed ratios can be resolved
[9].

The alignment can be enhanced by a bilingual dictionary
or by exploiting cognates (LCSR) to establish better anchor
points. To synchronize segments across different time-
frames, this approach can merge several input segments into
one output sentence.

Cascaded synchronization
This approach is a combination of the first two approaches.
We started by enforcing a strict synchronization constraint
on different subtitles. Then we performed word alignment
on the concatenation of all of the strictly aligned data, and
extracted a lexicon from the resulting alignment. This lexi-
con was then used to run the automatic sentence aligner on
the unsynchronized portions of the subtitles. Finally, we con-
catenated both the strictly synchronized with the automati-
cally aligned portions of the subtitles.

3.5. Synchronization Results

Table 2 presents the corpus statistics for the different parallel
corpora resulting from the different alignment approaches.
The strict synchronization loses a significant portion of the
overall data, as shown by the lower total number of words.
The segments are short, with only 9.4 words per segment.

Corpus Statistics
Algorithm pairs tokens types

Strict Sync 306K 2.9M 55.2K
Hunalign 223K 3.9M 58.2K
Uplug+Cog 221K 3.9M 58.2K
Uplug+Dict 221K 3.9M 58.2K
Uplug+Cog+Dict 221K 3.9M 58.2K
Cascaded 382K 3.6M 58.2K

IWSLT11 93K 1.8M 43.1K

Table 2: Corpus statistics and translation results for differ-
ent sentence alignment algorithms: strict synchronization
(Strict Sync), automatic sentence alignment (Hunalign), sub-
title synchronization (Uplug), and cascaded sentence align-
ment. IWSLT11 shows the statistics of the IWSLT 2011 data.

The sentence aligner (Hunalign) and all the variants of
synchronization algorithm (Uplug) yield very similar results
in terms of number of words and vocabulary size. However,
the segments are now much longer, about 17 words per seg-
ment, showing that indeed, Uplug and Hunalign collapse dif-
ferent segments into one sentence pair.

The cascaded alignment preserves the original segment
length (9.4 words), while diminishing the loss of tokens.
Shorter sentence pairs typically yield better word alignment,
which should help to improve the translation quality. On
the other side, segmenting sentences into shorter segments
means that longer phrases cannot be extracted, which would
be extracted from concatenated segments. Segmentation for
speech translation has been studied in the past, with some-
what conflicting results [15, 16] and needs to be revisited.

Despite observing a similar performance between all the
synchronization variants, for the remainder of this paper we
will use the corpus resulting from the cascaded synchroniza-
tion alignment.

4. Experimental Results
In this section, we extrinsically evaluate the usefulness of the
AMARA corpus by training models the data, and observing
its performance on a IWSLT lecture translation task (2011).
We explore different adaptation methods to better utilize the
AMARA data for the IWSLT talk translation task.

4.1. Datasets

To evaluate the usefulness of the crawled data, we experi-
mented with the Arabic-English datasets from the IWSLT
2011 Evaluation Campaign[6]. The IWSLT dataset con-
tained train, dev-2010 and tst2010 sets which consist of
90.5K , 934, 1.6K parallel sentences respectively. In these
experiments, we did not make use of the additional IWSLT
monolingual data, i.e. the language models in most experi-
ments use only the English side of the parallel corpora, but
we also report results using a GigaWord LM.



We used the AMARA corpus resulting from the cascaded
synchronization. We divided this corpus into several datasets
by randomly sampling the available subtitles. This generated
370K, 5K, 3.6K and 4.4K sentences to be used for train, tune,
test and a second test set10, respectively.

We used IWSLT dev-2010 set for tuning and then tested
on two datasets: the IWSLT tst-2010 and AMARA tst-
2013, each with a single reference translation. This allowed
us to benchmark the improvements obtained by using the
AMARA corpus with a standard test set (the former), and
to gain insights about translating online educational data (the
latter).

In Table 3 we present the 5-gram, Kneser-Ney smoothed,
open-vocabulary language-model perplexity for the target
side of the test sets given the training corpora. Observe that
while the IWSLT10 has similar perplexity w.r.t. the AMARA
and IWSLT language models, the reverse relationship does
not hold. The AMARA test data has a broader domain, which
is not fully captured by the IWSLT language model, which is
limited to TED lectures.

testset

training LM AMARA13 IWSLT10
PPL OOV PPL OOV

AMARA 107.5 1.3 116.7 1.6
IWSLT 204.5 2.6 107.7 1.5

Table 3: Target side per word perplexity (PPL) and out-of-
vocabulary rate (OOV %) of the test sets with respect to the
language model built on the training data

4.2. Experimental Setup

Preprocessing: We tokenized the English side of all bi-texts
as well as the monolingual data (GigaWord) for language
modeling using the standard tokenizer of the Moses toolkit
[17]. We further truecased this data by changing the cas-
ing of each sentence-initial word to its most frequent casing
in the training corpus. For the Arabic side, we segmented
the corpus following the ATB segmentation scheme with the
Stanford word segmenter [18].
Training: We built separate directed word alignments for
English→Arabic and for Arabic→English using IBM model
4 [19], and symmetrized them using grow-diag-final-and
heuristic [20]. We extracted phrase pairs of maximum
length seven. We scored these phrase pairs using maxi-
mum likelihood with Kneser-Ney smoothing,as implemented
in the moses toolkit, thus obtaining a phrase table where
each phrase-pair has the standard five translation model fea-
tures. We also built a lexicalized reordering model : msd-
bidirectional-fe. For language modeling, we trained a sepa-
rate 5-gram Kneser-Ney smoothed LM model on each avail-
able corpus (target side of a training bi-text or monolingual
dataset) using KenLM [21]; we then interpolated these mod-

10We did not use the second test set for the experiments in this paper.

els minimizing the perplexity on the target side of the tuning
dataset (IWSLT dev-2010). Finally, we built a large joint
log-linear model, which used standard SMT feature func-
tions: language model probability, word penalty, the param-
eters from the phrase table, and those from the reordering
model.

We used the phrase-based SMT model as implemented
in the Moses toolkit [17] for translation, and reported evalua-
tion results over two datasets. We reported BLEU calculated
with respect of the original reference using NIST v13a, after
detokenization and recasing of the system’s output.
Tuning: We tuned the weights in the log-linear model by
optimizing BLEU [22] on the tuning dataset, using PRO [23]
with the fixed BLEU prosposed by [24]. We allowed the
optimizer to run for up to 10 iterations, and to extract 1000-
best lists for each iteration.
Decoding: On tuning and testing, we used monotone-at-
punctuation decoding (this had no impact on the translation
length). On testing, we further used cube pruning.

4.3. Baseline B1

For the baseline system, we trained the phrase and the re-
ordering models on the IWSLT training dataset. The lan-
guage model was trained on the English side of the IWSLT
training data. We tuned the weights on IWSLT-dev2010.
Below, we present the experimental results when using the
AMARA data for the translation model, the language model
and both.

4.4. AMARA Data and the Translation Model

We investigated several ways to maximize the impact of the
AMARA corpus for translation by building variations of the
translation and reordering models. The systems presented
in this section used the same language model built on the
English side of the IWSLT training data. As for the baseline,
the weights are tuned on the IWSLT-dev2010. Following are
different translation settings that we experimented with.

AMARA only (TM1): Instead of using the IWSLT train-
ing data, we built the translation and reordering models using
only the AMARA corpus.

Concatenation (TM2): In this setting, we concatenated
AMARA with IWSLT for training of the translation and re-
ordering models. This generally improves word alignment,
reduces OOV rate and improves translation quality if two
corpora are from similar domain. However, if the added cor-
pus is noisy or of out-of-domain, (e.g. UN data), we can
observe a degradation in performance.

Phrase table combination (TM3): We applied phrase
table combination as described in [25]. We built two phrase
tables and reordering models separately on the IWSLT and
AMARA data. Then, we merged them by adding three addi-
tional indicator features to each entry to inform the decoder if
the phrase was found in the first, second or both tables. This
can be seen as a form of log-linear interpolation.



SYS TM IW10 OOV AM13 OOV

B1 IWSLT 22.97 1.9 23.26 3.9
TM1 AMARA 22.40 2.4 23.66 1.7
TM2 IW+AM 23.41 1.2 27.63 1.8
TM3 PT(IW,AM) 23.57 1.2 27.65 1.8

Table 4: Results of the translation system tested on IWSLT-
tst2010 and AMARA-tst2013. All systems use identical
language model built on the IWSLT training data and use
IWSLT-dev2010 for tuning.

4.4.1. Results

Table 4 shows the results of using the different translation
models. Using only AMARA for translation model (TM1)
showed competitive results with our baseline B1 that is built
on IWSLT data. The comparable BLEU score on IWSLT10
shows the value of the AMARA corpus as a parallel corpus in
the IWSLT10 translation task. Furthermore, the concatena-
tion and merging of AMARA and IWSLT are able to further
reduce the OOV rate. From these combinations, we observe
a BLEU improvement up to 0.6 for IWSLT10 and 4.4 for
AMARA11.

4.5. AMARA Data and the Language Model

In this section, we explore the usability of the AMARA data
for language modeling. For every system, the translation
and reordering models were trained on the IWSLT data and
tuned on IWSLT-dev2010. We experimented with different
approaches to build the language models:

AMARA only (LM1): used a LM trained exclusively on
the target side of the AMARA corpus.

Concatenation (LM2): used a concatenation of the En-
glish side of both the IWSLT and AMARA corpora.

Interpolation (LM3): used an interpolated from B1 and
LM1. The interpolation weights were set to minimize per-
plexity on the target side of IWSLT-dev2010.

Gigaword (LM4): uses LM built on the English Giga-
Word (v5) corpus. This was only included as a reference.

4.5.1. Results

Table 5 summarizes the results of our experiments. Using
only AMARA for language model slightly hurts the perfor-
mance on IWSLT10 by 0.14 BLEU points. However, it has
better results when tested on AMARA13. Both the concate-
nated and interpolated language models show improvements
in the translation quality of both sets.

4.6. Best Combination

We combined the best translation model and language model
settings from Table 4 and Table 5 respectively and summa-
rize the results in Table 6. From these results we can observe

11The higher gain in BLEU for AMARA13 might be an artifact of using
IWSLT target side for LM and IWSLT-dev for tuning.

SYS LM IW10 AM13

B1 IWSLT 22.97 23.26
LM1 AMARA 22.83 24.05
LM2 IWSLT+AMARA 23.69 25.90
LM3 INTERPOL 23.59 25.62
LM4 GW 24.24 24.79

Table 5: Results of the translation system tested on IWSLT-
tst2010 and AMARA-tst2013. All systems use identical
translation model built on the IWSLT training data and use
IWSLT-dev2010 for tuning.

that using AMARA data with IWSLT gives up to a 1.69 im-
provement in BLEU for the IWSLT-tst2010 and 8.84 BLEU
for the AMARA-tst2013. While the results on the AMARA
set might seem unrealistically high, we need to remember
that the IWSLT baseline is out-of-domain for the AMARA
test set, as explained by the high perplexity in table 3. Im-
proving an out-of-domain baseline with in-domain data with
translation model adaptation has been observed to give such
high jumps in performance [11].

SYS TM LM IW10 AM13

B1 IWSLT IWSLT 22.97 23.26
S1 TM3 LM3 24.66 31.62
S2 TM2 LM2 24.33 32.10

Table 6: Results of the translation system tested on IWSLT-
tst2010 and AMARA-tst2013. S1 uses interpolated language
model and merged phrase table to build translation model.
S2 uses concatenated training data for both translation model
and language model.

In summary, we observed that both in isolation and in
combination, the parallel and monolingual data from the
volunteer-fueled AMARA corpus, is of sufficient quality to
be used for a lecture translation task.

5. Error Analysis
For this section, we analyzed the errors performed during the
translation of the AMARA13 testset. This was done to deter-
mine what are the specific challenges found when translating
this set. We further provide a brief discussion of ways in
which these problems can be fixed in the future. To do so,
we classify the most important errors in two categories:

5.1. Mathematical quantifiers and numbers

One specific case of problem where recall is particularly low,
refers to the translation of certain mathematical forms and
numbers. This phenomenon is observed in instances where
the numbers and operations were spelled out in the English
side while in Arabic they are provided in their mathematical
notation. For instance, the expression “is equal to” had a
recall of 0 out of 41 times. The “the derivative of” was
correctly translated only 6 out of 23 times. These problems



arise from the non-homogeneity with which mathematical
texts are translated. For example:
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En: Once again that’s two plus plus three, so that equals five.
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En: We need to evaluate the limit, as x approaches infinity,
of 4x squared minus 5x, all of that over 1 minus 3x squared .

We observe that on the Arabic side, the mathematical
symbols and digits are preferred, while in English, these are
spelled out. A similar problem is the text-to-number con-
version, which has been previously solved using rule-based
approaches. In this case, a more refined set of rules can be
devised to homogenize mathematical notation on both the
source and target side of the corpus.

5.2. OOVs and transliteration

OOVs from languages with different scripts pose a challenge
for readability. In an educational context, these need to be
minimized and dealt correctly.

In the AMARA set, we observed that English terms are
sometimes used in Arabic to denote English named entities.
Examples of such cases are: Nevis, Yukon, Blanc, which are
names of mountains used for math problems. These words
can be left “untranslated” and the issue will be resolved.

A different problem, specific to Arabic-to-English trans-
lation, particularly for the technical domain, is the occur-
rence of OOVs related to neologisms. Fortunately many of
these can be tackled by simple transliteration. For instance:
�

IK. Qº�A
	
¯Ag. (javascript), 	áÊK. ñ

	
«AK
YJ
Ó (media goblin), �

I
	
¯@Q»Pð

(Warcraft), etc.
Together, these two problems account for 8 of the top 10

most frequent OOVs, this represents at least 12% of all the
OOV words found in the testset.

6. Conclusion and Future Work
In this paper, we used data generated by a community of
volunteers to advance the state-of-art of machine transla-
tion for educational content. This data, available through
the AMARA platform, provides an opportunity to build a
large, multilingual corpus, which can help to provide auto-
matic translations in cases where no manual translation is
available.

At this time, we explored the Arabic-English parallel por-
tion of the data, and we evaluated its usefulness by translat-
ing the TED task of the IWSLT data. We presented different
ways to process the data, especially to deal with problems in
the original segment alignment. We showed that this data can
be successfully used to translate lectures.

In addition, we used a new test set with AMARA specific
data, geared towards educational translation. We observed

that this data covers a broader domain than the IWSLT, and
has specific challenges, some of which we analyzed. For
instance, stylistic preferences when translating mathematical
expressions, are prevalent and crucial for the content to be
translated correctly.

In the future, we plan to extend the processing of the
AMARA corpus to include at least 25 languages. Adding
meta-data, like domain and topic, speaker, transcriber, and
translator IDs, will allow using this corpus for speech trans-
lation research. For example, studying model adaptation or
developing translation strategies to deal with the specific lan-
guage and notation used in mathematics, biology, chemistry,
etc. Finally, we plan to leverage the social graph of volun-
teers to be able to assign confidence to their translations de-
pending on their characteristics (e.g. number of translations
completed, domain of expertise, etc.). In summary, this data
presents many possible lines of research. We are currently
evaluating the different alternatives to make this corpus pub-
licly available, while respecting copyright.
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Abstract
There has been a fair amount of work on automatic speech
translation systems that translate in real-time, serving as a
computerized version of a simultaneous interpreter. It has
been noticed in the field of translation studies that simulta-
neous interpreters perform a number of tricks to make the
content easier to understand in real-time, including dividing
their translations into small chunks, or summarizing less im-
portant content. However, the majority of previous work has
not specifically considered this fact, simply using translation
data (made by translators) for learning of the machine trans-
lation system. In this paper, we examine the possibilities of
additionally incorporating simultaneous interpretation data
(made by simultaneous interpreters) in the learning process.
First we collect simultaneous interpretation data from profes-
sional simultaneous interpreters of three levels, and perform
an analysis of the data. Next, we incorporate the simultane-
ous interpretation data in the learning of the machine trans-
lation system. As a result, the translation style of the system
becomes more similar to that of a highly experienced simul-
taneous interpreter. We also find that according to automatic
evaluation metrics, our system achieves performance similar
to that of a simultaneous interpreter that has 1 year of expe-
rience.

1. Introduction
While the translation performance of automatic speech trans-
lation (ST) has been improving, there are still a number of
areas where ST systems lag behind human interpreters. One
is accuracy of course, but another is with regards to the speed
of translation. When simultaneous interpreters interpret lec-
tures in real time, they perform a variety of tricks to shorten
the delay until starting the interpretation. There are two
main techniques. The first technique, also called the salami
technique, is to divide longer sentences up into a number
of shorter ones, resulting in a lower delay [1]. The second
technique is to adjust the word order of the target language
sentence to more closely match the source language, espe-
cially for language pairs that have very different grammati-

Source (En) A     because     B

Target (Ja) B       dakara A

Translation

Source (En) A     because     B

Target (Ja) A  nazenaraba B

Simultaneous interpretation 

Figure 1: Difference between translation and simultaneous
interpretation word order

cal structure. An example of this that we observed in our data
of English-Japanese translation and simultaneous interpreta-
tion is shown in Figure 1. When looking at the source and
the translation, the word order is quite different, reversing
two long clauses: A and B. In contrast, when looking at the
source and the simultaneous interpretation, the word order is
similar. If a simultaneous ST system attempts to reproduce
the first word order, it will only be able to start translation af-
ter it has received the full “A because B.” On the other hand,
if the system is able to choose the word order closer to hu-
man interpreters, it can begin translation after “A,” resulting
in a lower delay.

There are several related works about simultaneous ST
[2][3][4] that automatically divide longer sentences up into
a number of shorter ones similarly to the salami technique
employed by simultaneous interpreters. While these related
works aim to segment sentences in a similar fashion to si-
multaneous interpreters, all previous works concerned with
sentence segmentation have used translation data (made by
translators) for learning of the machine translation system. In
addition, while there are other related works about collecting
simultaneous interpretation data [5][6][7], all previous works
did not compare simultaneous interpreters of multiple experi-
ence levels and did investigate whether this data can be used
to improve the simultaneity of actual MT systems.

In this work, we examine the potential of simultaneous
interpretation data (made by simultaneous interpreters) to



Table 1: Profile of simultaneous interpreters
Experience Rank Lectures Minutes

15 years S rank 46 558
4 years A rank 34 415
1 year B rank 34 415

learn a simultaneous ST system. This has the potential to
allow our system to learn not only segmentation, but also re-
wordings such as those shown in Figure 1, or other tricks
interpreters use to translate more efficiently.

In this work, we first collect simultaneous interpretation
data from professional simultaneous interpreters of three lev-
els of experience. Next, we use the simultaneous interpreta-
tion data for constructing a simultaneous ST system, examin-
ing the effects of using data from interpreters on the language
model, translation model, and tuning. As a result, the con-
structed system has lower delay, and achieves translation re-
sults closer to a highly experienced simultaneous interpreter
than when translation data alone is used in training. We also
find that according to automatic evaluation metrics, our sys-
tem achieves performance similar to that of a simultaneous
interpreter that has 1 year of experience.

2. Simultaneous interpretation data
As the first step to performing our research, we first must
collect simultaneous interpretation data. In this section, we
describe how we did so with the cooperation of professional
simultaneous interpreters. A fuller description of the corpus
will be published in [8].

2.1. Materials

As materials for the simultaneous interpreters to translate,
we used TED1 talks, and had the interpreters translate in real
time from English to Japanese while watching and listening
to the TED videos. We have several reasons for using TED
talks. The first is that for many of the TED talks there are al-
ready Japanese subtitles available. This makes it possible to
compare data created by translators (i.e. the subtitles) with
simultaneous interpretation data. TED is also an attractive
testbed for machine translation systems, as it covers a wide
variety of topics of interest to a wide variety of listeners. On
the other hand, in discussions with the simultaneous inter-
preters, they also pointed out that the wide variety of topics
and highly prepared and fluid speaking style makes it a par-
ticularly difficult target for simultaneous interpretation.

2.2. Interpreters

Three simultaneous interpreters cooperated with the record-
ing. The profile of interpreters is shown in Table 1. The most
important element of the interpreter’s profile is the length of

1http://www.ted.com

0001 - 00：44：107 - 00：45：043

本日は<H>

0002 - 00：45：552 - 00：49：206

みなさまに(F え)難しい話題についてお話したいと思います。

0003 - 00：49：995 - 00：52：792

(F え)みなさんにとっても意外と身近な話題です。

Figure 2: Example of a transcript in Japanese with annotation
for time, as well as tags for fillers (F) and disfluencies (H)

Table 2: Translation and simultaneous interpretation data
Data Lines Words(EN) Words(JA)

Translation T1

167 3.11k

4.58k
T2 4.64k

Simultaneous
interpretation

I1 4.44k
I2 3.67k

their experience as a professional simultaneous interpreter.
Each rank is decided by the years of experience. By compar-
ing data from simultaneous interpretation of each rank, it is
likely that we will be able to collect a variety of data based
on rank, particularly allowing us to compare better transla-
tion to those that are not as good. Note that all of the inter-
preters work as professionals and have a mother tongue of
Japanese. The number of lectures interpreted is 34 lectures
for the A and B ranked interpreters, and 46 lectures for the S
rank interpreter.

2.3. Transcript

After recording the simultaneous interpretation, a transcript
is made from the recorded data. An example of the transcript
is shown in Figure 2. The utterance is divided into utterances
using pauses of 0.5 seconds or more. The time information
(e.g., start and end time of each utterance) and the linguistic
information (e.g., fillers and disfluencies) are tagged.

3. Difference between translation data and
simultaneous interpretation data

In this section, in order to examine the differences between
data created using simultaneous interpretation and time-
unconstrained translation, we compare the translation data
with the simultaneous interpretation data.

3.1. Setup

To perform the comparison, we prepare two varieties of
translation data, and two varieties of simultaneous interpre-
tation data. The detail about the corpus is shown in Table
2. For the first variety of translation data (T1), we had an
experienced translator translate the TED data from English
to Japanese without time constraints. For the second variety
of translation data (T2), we used the official TED subtitles,



T1

Translator

T2

TED

I2

A rank

I1

S rank

19.18

13.17 6.62

12.02 8.21

10.44

71.39

61.6 49.40

52.51

59.70 49.36

Figure 3: Results of similarity measurements between inter-
preters and translators. The underlined score is BLEU and
the plain score is RIBES

generated and checked by voluntary translators. For the two
varieties of interpretation data, I1 and I2, we used the tran-
scriptions of the interpretations performed by the S rank and
A rank interpreter respectively.

The first motivation for collecting this data is that it may
allow us to quantitatively measure the similarity or difference
between interpretations and translations automatically. In or-
der to calculate the similarity between each of these pieces
of data, we use the automatic similarity measures BLEU [9]
and RIBES [10]. As BLEU and RIBES are not symmetric,
we average BLEU or RIBES in both directions. For example,
we calculate for BLEU using

1

2
{BLEU(R,H) + BLEU(H,R)} (1)

where R and H are the reference and the hypothesis. Based
on this data, if the similarities of T1-T2 and I1-I2 are higher
than T1-I1, T2-I1, T1-I2 and T2-I2, we can find that there
are real differences between the output produced by transla-
tors and interpreters, more so than the superficial differences
produced by varying expressions.

3.2. Result

The result of the similarity is shown in Figure 3. First, we
focus on the relationship between the two varieties of trans-
lation data.

For T1-T2, BLEU is 19.18 and RIBES is 71.39, the high-
est of all in all combinations. Thus, we can say that the two
translators are generating the most similar output. Next, we
focus on the relationship between the translation and the si-
multaneous interpretation data. The similarity of T1-I1, T2-
I1, T1-I2 and T2-I2 are all lower than T1-T2. In other words,
interpreters are generating output that is significantly differ-
ent from the translators, much more so than is explained by
the variation between the translators themselves.

However, we see somewhat unexpected results when ex-
amining the relationship between the data from the two si-
multaneous interpreters. For I1-I2, BLEU is 10.44 and
RIBES is 52.51, much lower than that of T1-T2. One of
the reasons for this is the level of experience. From Table 2,
we can see that the number of words translated by the A rank
interpreter in I2 is almost 20 % less than that of the num-
ber of words translated by the S rank interpreter in I1. This
is due to cases where the S rank interpreter can successfully
interpret the content, but the A rank interpreter cannot. It is
also notable that the S rank interpreter is translating almost
as many words as the translation data, indicating that there is
very little loss of content in the S rank interpreter’s output.

However, it should be noted that I2 is more similar to
I1 than either of the translators. Thus, from the view of the
similarity measures used for automatic evaluation of transla-
tion, translation and simultaneous interpretation are different.
Thus, in the following sections where we attempt to build a
machine translation system that can generate output in a sim-
ilar style to a simultaneous interpreter, we decide to evaluate
our system against not the translation data, but the interpreta-
tion data of S1, which both manages to maintain the majority
of the content, and is translating in the style of simultaneous
interpreters.

4. Using simultaneous interpretation data
We investigate several ways of incorporating the data de-
scribed in Section 2 into the MT training process.

4.1. Learning of the machine translation system

To attempt to learn a system that can generate translations
similar to those of a simultaneous interpreter, we introduced
simultaneous interpretation data into three steps of learning
the MT system.

Tuning (Tu) : Tuning optimizes the parameters of models
in statistical machine translation. The effect we hope
to obtain by tuning towards simultaneous interpre-
tation data is the learning of parameters that more
closely match the translation style of simultaneous in-
terpreters. For example, we could expect the transla-
tion system to learn to generate shorter, more concise
translations, or favor translations with less reordering.
In order to do so, we simply use simultaneous inter-
pretation data instead of translation data for the devel-
opment set used in tuning.

Language model (LM)： The LM has a large effect on
word order and lexical choice of the translation result.
We can thus assume that incorporating simultaneous
interpretation data in the training of the LM will be
effective to make translation results more similar to
simultaneous interpretation. We create the LM using
translation and interpretation data by making use of
linear interpolation, with the interpolation coefficients



tuned on a development set of simultaneous interpreta-
tion data. This helps relieve problems of data sparsity
that would occur if we only used simultaneous inter-
pretation data in LM training.

Translation model (TM)： The TM, like the LM, also has
a large effect on lexical choice, and thus we attempt
to adapt it to simultaneous translation data as well. We
adopt the phrase table by using the fill-up [11] method,
which preserves all the entries and scores coming from
the simultaneous interpretation phrase table, and adds
entries and scores from the phrase table trained with
translation data only if new.

4.2. Learning of translation timing

While in the previous section we proposed methods to mimic
the word ordering of a simultaneous interpreter, our interpre-
tation will not get any faster if we only start translating after
each sentence finishes, regardless of word order. Thus, we
also need a method to choose when we can begin translation
mid-sentence.

In our experiment (Section 5), we use the method of Fu-
jita et al. [4] to decide the translation timing according to
each phrase’s right probability (RP). This method was de-
signed for simultaneous speech translation, and decides in
real time whether or not to start translating based on a thresh-
old for each phrase’s RP, which shows the degree to which
the order of the source and target language can be expected to
be the same. For phrases where the RP is high, it is unlikely
that a reordering will occur, and thus we can start translation,
even mid-sentence, with a relatively low chance of damaging
the final output. On the other hand, if an RP is low, starting
translation of the phrase prematurely may cause un-natural
word ordering in the output. Thus, Fujita et al. choose a
threshold for the RP of each phrase, and when the current
phrase at the end of the input has an RP that exceeds the
threshold, translation is started, but when the current phrase
is under the threshold, the system waits for more words be-
fore starting translation.

While Fujita et al. calculated their RPs from translation
data, there is a possibility that interpreters will use less re-
ordering than translators for many source language phrases.
To take account of this, we simply make the RP table from
translation data and simultaneous interpretation data. Us-
ing this method, we can hope that the system will be able
to choose earlier timing to translate without a degradation in
the translation accuracy. We calculate the RP from transla-
tion and interpretation data by simply concatenating the data
before calculation.

5. Experiment
5.1. Data

In our experiment, the task is translating TED talks from En-
glish to Japanese. We use the translation and the interpreta-

Table 3: The number of words in the data we used for learn-
ing translation model (TM), language model (LM), tuning
(tune) and test set (test). The kinds of data are TED trans-
lation data (TED-T), TED simultaneous interpretation data
(TED-I) and a dictionary with its corresponding example
sentences (DICT)

TED-T TED-I DICT
TM/LM (en) 1.57M 29.7k 13.2M
TM/LM (ja) 2.24M 33.9k 19.1M

tune (en) 12.9k 12.9k —
tune (ja) 19.1k 16.1k —
test (en) — 11.5k —
test (ja) — 14.9k —

tion data from TED as described in Section 2. As this data
is still rather small to train a reasonably accurate machine
translation system, we also use the EIJIRO dictionary and
the accompanying example sentences2 in our training data.
The details of the corpus are shown in Table 3. As simul-

taneous interpretation data for both training and testing, we
use the data from the S rank interpreter. This is because the
S rank interpreter has the longest experience of the three si-
multaneous interpreters, and as shown empirically in Section
3, is able to translate significantly more content than the A
rank interpreter. As it is necessary to create sentence align-
ments between the simultaneous interpretation data and TED
subtitles, we use the Champollion toolkit [12] to create the
alignments for the LM/TM training data, and manually align
the sentences for the tuning and testing data.

5.2. Toolkit and evaluation method

As a machine translation engine, we use the Moses [13]
phrase-based translation toolkit. The tokenization script in
the Moses toolkit is used as an English tokenizer. KyTea [14]
is used as a Japanese tokenizer. GIZA++ [15] is used for
word alignment and SRILM [16] is used to train a Kneser-
Ney smoothed 5-gram LM. Minimum Error Rate Training
[17] is used for tuning to optimize BLEU. The distortion
limit during decoding is set to 12, which gave the best ac-
curacy on the development set.

The system is evaluated by the translation accuracy and
the delay. BLEU [9] and RIBES [10] are used to calculate
translation accuracy. RIBES is an evaluation method that fo-
cuses on word reordering information, and is known to work
well for the language pairs that have very different grammat-
ical structure like English-Japanese. The delay D is calcu-
lated as D = U+T . U is the average amount of time that we
must wait before we can start translating, and T is the time
required for MT decoding. Note that, in this experiment, we
make the simplifying assumption that we have 100% accu-
rate ASR that can recognize each word in exactly real time,

2Available from http://eijiro.jp



Figure 4: Result of machine translation system

and do not consider the time required for speech synthesis.

5.3. Result: Learning of the MT system

Simultaneous interpretation data is used in the three pro-
cesses described in Section 4.1. To compare each variety of
training, we experiment with 4 patterns:

Baseline: only translation data (w/o TED simultaneous in-
terpretation data)

Tu: TED simultaneous interpretation data for tuning

LM+Tu: TED simultaneous interpretation data for LM
training and tuning

TM+LM+Tu: TED simultaneous interpretation data for
TM training, LM training and tuning

We decide the timing for translation according to the
method described in Section 4.2, using a RP threshold of 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0.

The result of BLEU and delay is shown in the upper part
of Figure 4. From these results, we can see that Tu does
not show a significant improvement compared to the base-
line, while LM+Tu and TM+LM+Tu show a significant im-
provement. For example, when the BLEU is 7.813, the de-
lay is 5.23 seconds in the baseline, while in TM+LM+Tu
the BLEU is 8.39, the delay is only 2.08 seconds. On
the other hand, the result of RIBES and delay is shown
in the lower part of Figure 4. In terms of RIBES, Tu,
LM+Tu, and TM+LM+Tu do not show a significant im-
provement compared to the baseline. One of the reasons

for this is tuning. When tuning, the parameters are opti-
mized for BLEU, not RIBES. It should be noted that these
numbers are all calculated using the S Rank interpreter’s
translations as a reference. In contrast, when we use the
TED subtitles as a reference, the results for the baseline
(BLEU=12.79, RIBES=55.36) were higher than those for
TM+LM+Tu (BLEU=10.38, RIBES=53.94). From this ex-
periment, we can see that by introducing simultaneous inter-
pretation data in the training process of our machine trans-
lation system, we are able to create a system that produces
output closer to that of a skilled simultaneous interpreter, al-
though this may result in output that is further from that of
time-unconstrained translators.

An example of results for the simultaneous interpreter,
baseline, and TM+LM+Tu is shown in Table 4. From this ex-
ample, we can see that the length of TM+LM+Tu is shorter
than the baseline and is similar to the reference of simultane-
ous interpretation, as the length is adjusted during tuning. In
this case, the reason for this is because the starting phrase in
the baseline “見てみると” (“looking at”) in baseline changes
“では” (“ok”) in TM+LM+Tu. Both translations are reason-
able in this context, but the adapted system is able to choose
the shorter one to reduce the number of words slightly. An-
other good example of how lexical choice was affected by
adaptation to the simultaneous translations is the use of con-
nectives between utterances. For example, the S rank simul-
taneous interpreter often connected two sentences by start-
ing a sentence with the word “で” (“and”), likely to avoid
long empty pauses while he was waiting for input. This was
observed in 149 sentences out of 590 in the test set (over
25%). Our system was able to learn this distinct feature of
simultaneous interpretation to some extent. In the baseline
there were only 34 sentences starting with this word, while
in TM+LM+Tu there were 81.

5.4. Result: Learning of translation timing

Next, we compare when the translation and the simultane-
ous interpretation data are used for learning of the RP (With
TED-I) with when only translation data is used (W/O TED-
I). The MT system is TM+LM+Tu for both settings.

The result is shown in Figure 5. From these two graphs,
there is no difference in the translation accuracy and delay.
We can hypothesize two reasons for this. First, the size of the
simultaneous interpretation corpus is too small. The num-
ber of English words in the TED translation data is 1.57M,
however, that in the TED simultaneous interpretation data is
29.7k. The second reason lies in the method we adopted for
learning the RP table. In this experiment, the RP table is sim-
ply made by concatenating the translation data and simulta-
neous interpretation data. One potential way of solving this

3We speculate that the reason for these relatively low BLEU scores is
the different grammatical structure between English and Japanese, and the
highly stylized format of TED talks. Due to these factors, there is a lot of
flexibility in choosing a translation, so the difference in lexical choice by
translators might negatively affect the BLEU score.



Table 4: Example of translation results
Sentence

Source if you look at in the context of history you can see what this is doing

S Rank
Reference

過去から /流れを見てみますと /災害は /このように /増えています
from the past / look at the context and / disasters are / like this / increasing

Baseline
(RP 1.0)

見てみると /歴史の中で /見ることができます /これがやっていること
looking at / in the history / you can see / what this is doing

TM+LM+Tu
(RP 1.0)

では /歴史の中で /見ることができます /これがやっていること
ok / in the history / you can see / what this is doing

Figure 5: Result of dividing position

problem is, like we did for the TM, creating the table using
the fill-up method.

5.5. Result: Comparing the system with human simulta-
neous interpreters

Finally, we compare the simultaneous ST system with hu-
man simultaneous interpreters. Simultaneous interpretation
(and particularly that of material like TED talks) is a difficult
task for humans, so it would be interesting to see how close
are automatic systems are to achieving accuracy in compar-
ison to imperfect humans. In the previous experiments, we
assumed an ASR system that made no transcription errors,
but if we are to compare with actual interpreters, this is an
unfair comparison, as interpreters are also required to accu-
rately listen to the speech before they translate. Thus, in this
experiment, we use ASR results as input to the translation
system. The word error rate is 19.36%. We show the results
of our translation systems, as well as the A rank (4 years) and
B rank (1 year) interpreters in Figure 6.

Figure 6: Result of comparing the system with human simul-
taneous interpreters

First, comparing the results of the automatic systems with
Figure 4, we can see that the accuracy is slightly lower in
terms of BLEU and RIBES. However the overall trend is al-
most same. From the view of BLEU, the system achieves
results slightly lower than those of human simultaneous in-
terpreters. However from the view of RIBES, the automatic
system and B rank interpreter achieve similar results. So the
performance of the system is similar, but likely slightly in-
ferior to the B rank interpreter. It is also interesting to note
the delay of the simultaneous interpreters. Around two sec-
onds of delay is the shortest delay with which the system can
translate while maintaining the translation quality. As well,
the simultaneous interpreters begin to interpret two to three
seconds after the utterance starts. We hypothesize that it is
difficult to begin earlier than this timing while maintaining



the translation quality, both for humans and machines.

6. Conclusions
In this paper, we investigated the effects of constructing
simultaneous ST system using simultaneous interpretation
data for learning. As a result, we find the translation system
grows closer to the translation style of a highly experienced
professional interpreter. We also find that the translation ac-
curacy has approached that of a simultaneous interpreter with
1 year of experience according to automatic evaluation mea-
sures. In the future, we are planning to do subjective evalu-
ation, and analyze the differences in the style of translation
between the systems in more detail.
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Abstract

We investigate the problem of combining the outputs
of different translation systems into a minimum Bayes’
risk consensus translation. We explore different risk
formulations based on the BLEU score, and provide a
dynamic programming decoding algorithm for each of
them. In our experiments, these algorithms generated
consensus translations with better risk, and more effi-
ciently, than previous proposals.

1. Introduction

Machine translation (MT) is a fundamental technology
and a core component of language processing systems.
However, MT systems are still far from perfect [1]. The
combination of multiple MT systems is a promising re-
search direction to improve the quality of current MT
technology. The key idea of system combination [2] is
that it is often very difficult to find the real best sys-
tem for the task at hand, while different systems can ex-
hibit complementary strengths and limitations. Thus, a
proper combination of systems could be more effective
than using a single monolithic system.

A simple, yet effective, system combination method
for MT was proposed by González-Rubio et al., [3].
The authors describe minimum Bayes’ risk system
combination (MBRSC), a method to combine the out-
puts of multiple MT systems into a consensus trans-
lation with maximum expected BLEU [4] score. Pre-
vious combination methods either implement sophisti-
cated decision functions to select one of the provided
translations [5, 6, 7], or generate new consensus trans-
lations by combining the best subsequences of the pro-
vided translations by means of a Viterbi-like search
on a confusion network [8, 9, 10]. MBRSC aims at
gathering together the advantages of sentence-selection
and subsequence-combination methods. In compari-
son to sentence-selection methods, MBRSC also im-

plements a sophisticated minimum Bayes’ risk (MBR)
classifier, and additionally, it is able to generate new
consensus translations that include the “best” subse-
quences from different individual translations. Regard-
ing subsequence-combination methods, MBRSC can
also generate new consensus translations different from
the provided translations, and also, the final consensus
translation has the best expected score with respect to
the widespread BLEU score.

Despite these advantages, the original implementa-
tion of MBRSC [3] (§2) presented some flaws, e.g. the
proposed gradient ascent decoding, that, in our opin-
ion, prevents the method from revealing its full poten-
tial. Here, we propose new decoding algorithms for
MBRSC based on the dynamic programming [11] (DP)
paradigm. We study two different approaches to com-
pute the BLEU-based risk. On the one hand, we instan-
tiate DP decoding to use the original BLEU risk over
expected counts (§3) so our results are comparable to
those in [3]. In practice, this approach is implemented
as a beam search [12]. On the other hand, we implement
an actual exact DP decoding using the linear approxi-
mation to the BLEU score proposed in [13] to compute
the risk (§4). Then, we provide an extensive empirical
study (§5) of the proposed decoding algorithms in com-
parison to the original MBRSC proposal. Finally, we
conclude with a summary of our contributions.

2. Minimum Bayes’ Risk System Combination

2.1. MBRSC Model and Decision Function

We now describe the original MBRSC proposal in [3].
Given K MT systems, MBRSC models the probability
of a sentence y to be a translation of a source sentence
x as a weighted ensemble [14]:

P (y | x) =

K∑
k=1

αk ·Pk(y | x) (1)



where Pk(y | x) denotes the probability distribution
over translations modeled by system k. Free param-
eters {α1, . . . , αK} are scaling factors that denote the
relative importance of each system (

∑K
k=1 αk = 1).

Given a loss function L(y,y′) between a candidate
translation y and a reference translation y′, the optimal
decision function for the ensemble model of MBRSC is
an instance of the MBR classifier [15]:

ŷ = arg min
y∈Y

R(y | x)

= arg min
y∈Y

EP (y′|x) [L(y,y′)]

= arg min
y∈Y

∑
y′∈Y

P (y′ | x) · L(y,y′) (2)

where R(y | x) denotes the Bayes’ risk, namely the
expected loss (EP (y′|x) [L(y,y′)]), of translation y, and
Y denotes the whole target language.

MBRSC uses the widespread BLEU [4] metric as
loss function. The BLEU score B(y,y′) between a can-
didate translation y and a reference y′ is given by:

B(y,y′) =

(
4∏

n=1

ρn(y,y′)

) 1
4

· φ(y,y′) (3)

where ρn(y,y′) is the precision of n-grams of size n
between y and y′, and φ(y,y′) is a brevity penalty, that
penalizes short translations:

ρn(y,y′) =

∑
w∈Wn(y) min(#w(y),#w(y′))∑

w∈Wn(y) #w(y)
(4)

φ(y,y′) = min

(
exp

(
1− |y

′ |
|y |

)
, 1

)
(5)

where Wn(y) is the set of n-grams of size n in y,
#w(y) is the count of n-gram w in y, and |y | denotes
the length of translation y.

BLEU is a percentage with a value of one denoting
an exact match between y and y′. Thus, we rewrite the
MBRSC decision function in Equation (2) substituting
the arg miny∈Y operator by an arg maxy∈Y :

ŷ = arg max
y∈Y

K∑
k=1

αk ·

∑
y′∈Y

Pk(y′ | x) · B(y,y′)


︸ ︷︷ ︸

system−specific loss

(6)

This formulation assumes that all systems share the
same domain of translations (Y) which in practice it is
not always true. In practice, MBRSC takes as input
a representation, e.g. an N -best list, of the candidate
translations of each system and assumes that any other

translation not in the provided representation has zero
probability of being generated by that system.

Optimum values for scaling factors αk are esti-
mated by minimum error rate training [16] optimizing
BLEU on a separate development set.

2.2. MBRSC Decoding

The direct implementation of Equation (6) has a high
temporal complexity inO(| Y |2 ·I), where | Y | denotes
the number of candidate translations, and I represents
the maximum translation length given that B(y,y′) can
be computed in O(max(|y |, |y′ |)) time. Since the
number of candidate translations may be quite large, an
exhaustive enumeration of all of them is often unfeasi-
ble. González-Rubio et. al [3] address this challenge by
dividing Equation (6) into two sub-problems: the com-
putation of the risk, namely the expected BLEU score,
of each translation, and the actual search for the optimal
consensus translation (arg maxy∈Y ).

Given that BLEU references the reference transla-
tion y′ only via its n-gram counts (see Equation (3)),
MBRSC follows [17] to formalize an efficient alterna-
tive to the exact risk in Equation (6). Instead of comput-
ing the expected BLEU score of translation y, MBRSC
computes the BLEU score of y with respect to the ex-
pected n-gram counts EP (y′|x)[#w(y′)] in the alterna-
tive candidate translations of x:

R(y | x) = EP (y′|x)[B(y,y′)]

≈ B̃(y,EP (y′|x)[#w(y′)])

=

(
4∏

n=1

ρ̃n(y,EP (y′|x)[#w(y′)])

) 1
4

·

φ̃(y,EP (y′|x)[#w(y′)]) (7)

where P (y′ | x) is the ensemble probability in Equa-
tion (1), and ρn(y,y′) and φ(y,y′) are reformulated as
functions of expected n-gram counts.

Regarding the actual search, MBRSC implements
a two-step algorithm. First, it performs a conventional
MBR sentence-selection decoding [18] to obtain an ini-
tial consensus translation. Then, a gradient ascent al-
gorithm refines that initial solution by the iterative ap-
plication of different edit operations (substitution, in-
sertion, and deletion of single words) searching for an
improvement in risk. Algorithm 1 depicts this gradient
ascent decoding algorithm. Since the risk (R(y | x)
in Equation (7)) can be computed in O(I)1, the com-

1Expected n-gram counts can be computed in advance.



Algorithm 1: MBRSC gradient ascent search [3].
input : y0 (initial solution)

Σ (target language vocabulary)
I (maximum translation length)

output : ŷ,R(ŷ | x) (best translation and its score)
auxiliary : R(y |x) (expected BLEU score of y)

sub(y, y, i) (replaces ith word of y by y)
del(y, i) (deletes the ith word of y)
ins(y, y, i) (inserts y as the ith word of y)

begin1
ŷ← y0;2
repeat3

yc ← ŷ;4
for 1 ≤ i ≤ |yc | do5

ŷs ← yc; ŷi ← yc;6
for y ∈ Σ do7

ys ← sub(yc, y, i);8
if R(ys | x) ≥ R(ŷs | x) then9

ŷs ← ys;10

yi ← ins(yc, y, i);11
if R(yi | x) ≥ R(ŷi | x) then12

ŷi ← yi;13

ŷd ← del(yc, i);14
ŷ← arg maxy′∈{ŷ,ŷs,ŷi,ŷd}R(y′ | x)15

until (R(ŷ | x) ≤ R(yc | x)) || (ŷ ≥ I) ;16
return ŷ,R(ŷ | x);17

end18

plexity of the main loop is O(I2 · |Σ|), and usually only
a moderate number of iterations (< 10) are needed to
converge. Hence, the complete two-step decoding has a
complexity inO(N2 +I2 · |Σ|), whereN is the number
of translations under consideration in the preliminary
sentence-selection decoding.

3. MBRSC Dynamic Programming Decoding

The main drawback of the originally proposed gradient
ascent decoding is that it is sensitive to an initial solu-
tion which makes it prone to get stuck in local optima.
Next, we propose a more sophisticated approach by for-
malizing MBRSC decoding as a DP problem.

Under the DP framework, decoding is interpreted as
a sequence of decisions that incrementally generate new
translation hypotheses. Starting with an empty hypoth-
esis, hypotheses of size i are expanded with one more
target word y ∈ Σ to create new hypotheses of size
i+1. This search space can be represented as a directed
acyclic graph where the states denote partial hypotheses
and the edges are labeled with expansion words.

Among all possible translations, we are interested
in that of the higher expected BLEU score. In this case,
since two hypotheses sharing the same n-gram counts
are indistinguishable, each state of the graph can be rep-
resented by a specific bag (namely a specific multiset)
N of n-grams. We define Q(N ,y) = q where q is the
maximum score of a path leading from the initial state
to the state (N ), and y is the corresponding translation
hypothesis. We also define Q̂ = q̂ as the final state
of the optimal translation ŷ. Finally, the following DP
recursion equations allow us to retrieve the path of max-
imum score in such a search graph:

Q(∅, ””) = 0

Q(N e,ye) = max
y∈Σ∪{$}:

∀(Np,yp), ye=yp y

N e=Np ∪Θ(yp,y)

B̃(ye,EP (y′|x)[#w(y′)])

Q̂ = max
∀(Np,yp)

ŷ=yp $

B̃(ŷ,EP (y′|x)[#w(y′)])

where the end-of-sentence symbol, $, denotes a com-
plete translation, and function Θ(yp, y) returns the new
n-grams generated when expanding hypothesis yp with
word y. For example, given the hypothesis yp=“we
are faced with” and the expansion word y=“enormous”,
the expanded hypothesis ye=“we are faced with enor-
mous” contains four2 n-grams more than yp: “enor-
mous”, “with enormous”, “faced with enormous”, and
“are faced with enormous”.

In the DP recursion equations, all target language
words are considered as potential expansion options for
every hypothesis. However, not all word sequences
form correct natural language sentences. E.g., given the
example above, it is clear that word y=“enormous” can
be a valid expansion option while word y=“with” cannot.
Thus, we consider y ∈ Σ ∪ {$} as a valid expansion
word for hypothesis yp only if at least one of the new
n-grams (w ∈ Θ(yp, y)) in the resulting expanded hy-
pothesis ye = yp y has an expected count above zero:

∆(yp) = {y | ∃w ∈ Θ(yp, y) ∧ EP (y′|x)[#w(y′)] > 0}

Unfortunately, due to the exponential number of
states3, we cannot expect to efficiently implement the
recursion equations above. In practice, we use a beam
search algorithm [12] with pruning. Specifically, for
each size i, we keep only the M best-scoring hypothe-
ses and discard the rest of them. To assure a fair com-
petition between hypotheses, the score of each of them

2BLEU considers n-grams up to size four.
3The number is exponential in the size of the vocabulary [19].



Algorithm 2: Beam search for MBRSC.
input : x (source language sentence),

M (pruning parameter),
I (maximum translation length)

output : ŷ, q̂ (optimal translation and its score)
auxiliary : Θ(y, y) (new n-grams after expanding

hypothesis y with word y),
∆(y) (expansion words for hypothesis y),
R(y | x) (complete score of y),
Π(i,N) (non-pruned states of size i)

begin1

Q(∅, ””)← 0; ŷ← ””; Q̂← 0;2
for i = 0 to I do3

forall (N p,yp) ∈ Π(i,N) do4
forall y ∈ ∆(yp) do5

ye ← yp y; qe ← R(ye | x);6
if y == $ then7

q̂ ← Q̂;8
if qe > q̂ then9

ŷ← ye; Q̂← qe;10

else11
N e ← N p

⋃
Θ(yp, y);12

q ← Q(N e, ·);13
if qe > q then14
Q(N e,ye)← qe;15

return ŷ, Q̂;16
end17

is given by a combination of its score so far, and an esti-
mate of the rest score to complete the translation. Sim-
ilarly as done in [20], we perform a light decoding pro-
cess (considering at each step only the single best ex-
pansion) to estimate the complete translation that can be
obtained from each hypothesis. The score of these com-
plete translations are then used as the complete scores
R(y | x) of the partial hypotheses.

Algorithm 2 shows the proposed beam search algo-
rithm with pruning. It takes as input a source sentence
x, the number of hypotheses to keep after pruning (M ),
and the maximum translation length under considera-
tion (I). We use some auxiliary functions: Θ(y, y) re-
turns the set of new n-grams generated in the expansion
of hypothesis y with word y, ∆(y) returns the valid ex-
pansion words for y, R(y | x) returns the complete
score of y, and Π(i,M) denotes the M best states of
size i; lower-scoring states are pruned out.

To avoid repeated computations, the first loop in
Algorithm 2 performs a breadth-first exploration of the

search graph. Additionally, this loop introduces an up-
per bound to the maximum translation size under con-
sideration, and thus, to the number of iterations of the
algorithm. At each iteration, line 4 loops over the non-
pruned states that remain from the previous iteration.
For each of these predecessor states, line 5 loops over
the corresponding expansion words. Given a predeces-
sor state (N p,yp) and a valid expansion word y, we
compute the complete score qe of the expanded hypoth-
esis ye = yp y (line 6). If the expanded hypothesis is a
complete translation (y == $) and it improves the score
Q̂ of the current best consensus translation, we then up-
date it (lines 7–10). If not, we first compute the bag
of n-grams N e of the expanded hypothesis (line 12).
Then, if the score qe of the expanded hypothesis im-
proves the score stored in the corresponding successor
state (N e, ·) (line 14), we update the state.

The proposed beam search algorithm with prun-
ing has a computational complexity in O(I2 ·M ·D),
where M denotes the pruning parameter that controls
the number of predecessor states in line 4, D denotes
the maximum number of expansion words in line 5, and
I is the maximum translation size in line 3. The extra
O(I) factor is given by the score computation in line 6.

4. MBRSC DP Search for Linear BLEU

A potential drawback of decoding Algorithm 2 is that it
cannot exploit the full potential of the DP framework.
The problem stems in the BLEU based risk proposed
in [3]: the n-gram count clippings in its formulation,
see Equation (4), make impossible to compute it incre-
mentally. To address this problem, we import the lin-
ear approximation to the logarithm of the BLEU scores
proposed in [13]:

log(B(y,y′)) ≈ λ0|y |+
∑

w∈W(y)

λw#w(y)δw(y′) (8)

whereW(y) is the complete set of n-grams (up to size
four) in y, λ0 and λw are free parameters, and δw(y′)
is an indicator feature whose value is equal to one if n-
gram w is present in y′ and zero otherwise. Given this
BLEU approximation, the risk of a candidate transla-
tion y is given by:

R(y | x) = λ0|y |+
∑

w∈W(y)

λw#w(y)EP (y′|x)[δw(y′)] (9)

where EP (y′ |x)[δw(y′)] denotes the expected probabil-
ity of n-gram w to be present. Values λ0, λw can be
computed from the n-gram precision statistics of a sep-
arate development set [13]. Gradient ascent decoding



can also implement this risk formulation by using Equa-
tion (9) as risk function R(y | x) in Algorithm 1.

Note that the BLEU risk over expected counts in
Equation (7) yields a decoding alternative to MBR us-
ing BLEU, while the linear BLEU risk in Equation (9)
results in a MBR decoding for an alternative to BLEU.

Using the linear BLEU risk in Equation (9), two
partial hypotheses that share their last three words are
indistinguishable. Hence, the states in the correspond-
ing DP search graph can be represented by a particular
three-word history σ. To distinguish between hypothe-
ses of different size, we also index the search states by
the size of the best hypothesis that arrives to the state.
We defineQ(i,σ) as the maximum score of a path lead-
ing from the initial state to the state (i,σ), and Q̂ as the
score of the optimal translation ŷ. Finally, we obtain
the following DP recursion equations:

Q(0, ””) = 0

Q(i,σe) = max
y∈Σ:

qp=Q(i−1,σp)
ye=σp y

σe=tail(σp y)

qp+λ0+
∑

w∈Θ(σp,y)

λwEP (y′ |x)[δw(y′)]

Q̂ = max
qp=Q(·,σp)

σe=tail(σp $)

qp+λ0+
∑

w∈Θ(σp,$)

λwEP (y′ |x)[δw(y′)]

where tail(σ y) returns the last three words of word se-
quence σ y, and Θ(σ, y) returns the new n-grams gen-
erated when extending history σ with word y.

Since the number of states is at most cubical with
the target vocabulary, these recursive equations can be
implemented exactly. Algorithm 3 depicts DP decod-
ing using linear BLEU risk. It takes as input the in-
dicator feature expectations (EP (y′|x)[δw(y′)]), the val-
ues for the free parameters of linear BLEU (λ0, λw),
and the maximum translation length under considera-
tion (I). At each iteration the algorithm loops over the
predecessor states (line 4) and the corresponding expan-
sion words (line 5). Given a predecessor state (i,σp),
we compute the score qe of the expanded hypothesis
(line 6), and if qe improves the score in the correspond-
ing successor state (i+ 1,σe) (line 8), we update it and
the corresponding backpointer B(i + 1,σe). Finally,
backpointer variables allow us to retrieve the highest-
scoring consensus translation.

This DP algorithm has a computational complexity
in O(I · |Σ|3 ·D), where I is the maximum translation
length in line 3, |Σ| denotes the size of the target vocab-
ulary that controls the number of predecessor states in
line 4, and D denotes the maximum number of expan-
sion words in line 5.

Algorithm 3: MBRSC DP search for linear
BLEU.

input : EP (y′|x)[δw(y′)] (indicator feature
expectations),

λ0, λw (free parameters of linear BLEU),
I (maximum translation length)

output : Q(·, ·) (search graph),
B(·, ·) (backpointer variables)

auxiliary : tail(y) (returns the last three words of y),
Θ(y, y) (new n-grams after expanding

hypothesis y with word y),
∆(y) (set of expansion words for y)

begin1
Q(·, ·)← 0;2
for i = 0 to I do3

forall σp ∈ Q(i, ·) do4
forall y ∈ ∆(σp) do5
qe ← Q(i,σp) + λ0 +6 ∑

w∈Θ(σp,y) λwEP (y′|x)[δw(y′)];
σe ← tail(σp y);7
if qe > Q(i+ 1,σe) then8
Q(i+ 1,σe)← qe;9
B(i+ 1,σe)← (i,σp);10

end11

5. Experiments

5.1. Experimental Setup

We now describe the experimentation carried out to
evaluate the proposed decoding algorithms. Experi-
ments were performed on the French–English corpus
from the translation task of the 2009 workshop on sta-
tistical MT [21]. The corpus contains a development
and a test partition with 502 and 2525 sentences respec-
tively. We combined the outputs of the five MT systems
that submitted lists of N -best translations. The next ta-
ble displays the average number of translations for each
source sentence, and BLEU scores for the single best
translations of each system.

System #avg trans N BLEU [%]

A 13 24.8
B 9 25.2
C 41 25.8
D 263 25.8
E 126 26.4

Translations were tokenized and lower-cased before
combination. We report case-insensitive results to fac-
tor out the effect of true-casing from the effect of com-
puting the consensus translation.



The separate development set was used to compute
the values of the parameters (λ0, λw) of linear BLEU.
The maximum translation length I was always set equal
to the length of the longest provided translation; a more
sophisticated length model could be devised, but this
is a research direction beyond the scope of this arti-
cle. Except stated otherwise, all experiments were car-
ried out using uniform ensemble weights (αk in Equa-
tion (1)). This approach defines a controlled environ-
ment that assures a fair comparison between the differ-
ent decoding algorithms. For each source sentence, we
combined all the translation provided by the five indi-
vidual systems, on average, about 450 translations. We
used these translations to compute the expected n-gram
counts EP (y′|x)[#w(y′)], and the n-grams expectations
EP (y′|x)[δw(y′)] for each source sentence.

5.2. Assessment Measures

We present translation quality results in terms of
BLEU [4] (see Equation (3)), and TER [22]. TER mea-
sures the number of words that must be edited4 to con-
vert the candidate translation into the reference transla-
tion. Since MBRSC is designed to optimize BLEU, we
expect improvements in BLEU to be particularly impor-
tant. TER scores are reported to independently assess
BLEU results. We also measure the statistical signifi-
cance of the results by bootstrap re-sampling [23].

5.3. Preliminary Experiments

We carried out a preliminary series of experiments to
study how the number of hypotheses kept after pruning
(M ) affects the performance of Algorithm 2 in terms of
translation quality and decoding time5. Figure 1 dis-
plays the quality of the generated consensus transla-
tions (on the left vertical axis) and the total decoding
time (on the right vertical axis) as functions of M . We
observed that decoding time increased linearly with M
(note that M is log-scaled in Figure 1) while the qual-
ity of the consensus translations stayed approximately
constant with slight improvements for larger M values.

Given these results, we considered that a value
M = 10 provided the optimal trade-off between trans-
lation quality and decoding time. Thus, this is the value
used in the following experiments.

4Valid edit operations are: deletion, insertion and substitution of
single words, and shift of word sequences

5In a PC with an Intel Core c© i5-3570K processor (3.40 GHz.).
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Figure 1: BLEU score (on the left vertical axis) and
decoding time (on the right vertical axis) obtained by
the beam search using BLEU risk on expected n-gram
counts (Algorithm 2) as a function of the number of
hypotheses kept after pruning (M ).

5.4. Results

Table 1 displays BLEU and TER scores for the consen-
sus translations generated by MBRSC using different
decoding algorithms and risk formulations. We also re-
port results for the best and worst single systems.

We first present results for sentence-selection de-
coding [18]. The risk of each candidate translation was
computed by exhaustively calculating its BLEU-based
risk with respect to the rest of the provided transla-
tions as in Equation (6). Results for both risk functions
showed a substantial improvement over the best system:
∼+0.9 BLEU. Then, we used these sentence-selection
consensus translations as initial solutions for the gradi-
ent ascent decoding proposed in [3] (Algorithm 1). Re-
sults for BLEU risk on expected n-gram counts slightly
improved results for sentence-selection decoding: +0.3
BLEU and −0.1 TER. In contrast, results for linear
BLEU risk showed an important degradation in perfor-
mance: −0.9 BLEU and +3.4 TER. Finally, we gen-
erated consensus translations using BLEU risk over ex-
pected n-gram counts (Algorithm 2), and linear BLEU
risk (Algorithm 3). Results for BLEU risk on expected
counts slightly improved the results of the gradient as-
cent decoding: +0.1 BLEU and −0.3 TER. Regarding
linear BLEU risk, it again exhibited the same poor per-
formance observed for gradient ascent decoding.

Despite being scarce, the difference in translation
quality between the proposed decoding algorithms and
the original gradient ascent algorithm were statistically
significant: 85% confidence for BLEU risk over ex-
pected counts, and 99% confidence for linear BLEU
risk. Moreover, when we measured the risk scores of
the generated consensus translations, we found that for



System setup BLEU[%] TER[%]

worst single system 24.8 60.4
best single system 26.4 56.0

Sentence-selection EC 27.4 55.5
[18] LB 27.2 56.2

Gradient ascent EC 27.7 55.4
(Algorithm 1) LB 26.3 59.6

BS (Algorithm 2) EC 27.8 55.1
DP (Algorithm 3) LB 26.8 57.8

Table 1: Quality of the consensus translations gener-
ated by different MBRSC setups. BS stands for beam
search, EC for BLEU risk over expected counts (Equa-
tion (7)), and LB for linear BLEU risk (Equation (9)).

53% of the sentences DP-based search found a better-
scoring output than gradient ascent decoding (47%).

We performed additional experiments where the
values of the ensemble weights (αk in Equation (1))
were trained to optimize BLEU in the development
corpus. Results were similar to those in Table 1.
For instance, beam search with risk over expected
counts scored 28.1 BLEU while gradient ascent scored
27.8 BLEU. However, now DP-based search generated
better-scoring consensus translation for 93% of the sen-
tences. The scarce improvement with respect to the use
of uniform values can be explained by the similar qual-
ity of the systems being combined, see §5.1.

We also compared DP search and gradient ascent
search in terms of decoding time. We estimate decod-
ing time by the number of times each algorithm calls
the risk-computation function R(y | x) during the gen-
eration of consensus translations for the whole corpus.
We report this count instead of the actual decoding time
to filter out the potential effects of the particular imple-
mentation of each algorithm. We observed that gradi-
ent ascent made ∼23 millions calls to the risk function,
while DP decoding made ∼ 15 million calls including
those involved in the estimation of the rest score. For
instance, total decoding time for DP using BLEU risk
over expected counts was about 55 minutes (∼1.3 sec-
onds per sentence).

Finally, we conclude that the proposed DP decod-
ing is both more effective and efficient than the original
gradient ascent decoding proposed in [3].

Regarding the low performance of linear BLEU
risk, we consider that it was due to the the lack of
n-gram count clippings in the linear BLEU risk for-

Alg. 2: we have made great progress .
Alg. 3: we have made great progress . we have made

Alg. 2: it seems to be clear that it is better to buy only a
phone .

Alg. 3: to be clear that it seems to be clear that it is better
to buy only a phone .

Alg. 2: i am curious to know if i could see here .
Alg. 3: am curious to know if i am curious to know if i could

see here .

Table 2: Consensus translations generated using BLEU
risk over expected counts (Alg. 2), and using linear
BLEU risk (Alg. 3). The use of linear BLEU risk in Al-
gorithm 3 results in ill-formed consensus translations.

mulation. Consensus translations obtained with linear
BLEU risk tend to contain repeated instances of highly-
probable n-grams which resulted in longer consensus
translations (27.8 words on average) than the ones gen-
erated using BLEU risk over expected counts (26.4
words), and also longer than the average length (26.0
words) of the reference translations. Table 2 shows var-
ious examples of these erroneous consensus translations
generated by Algorithm 3. Given the adequate perfor-
mance of linear BLEU risk in our sentence-selection ex-
periments and in previous works [13, 7], we conclude
that linear BLEU is an effective loss function to be
used in sentence-selection methods, but due to the lack
of n-gram count clippings, it fails at scoring the new
translations explored though decoding by subsequence-
combination algorithms. The inclusion of more fea-
tures, such as a language model, in the formulation of
linear BLEU risk may mitigate this effect.

6. Summary

We have investigated different approaches to improve
the MBRSC method described in [3]. First, we have
proposed a new DP decoding algorithm to obtain the
optimal consensus translation according to the original
BLEU-based risk formulation. Then, we have studied
a more efficient risk formulation based on the linear
BLEU approximation proposed in [13]. Empirical re-
sults showed that the proposed DP decoding was able
to obtain better-scoring higher-quality hypotheses than
original gradient ascent search proposed in [3], and to
do that with less temporal complexity. We have also
shown that linear BLEU is not an adequate risk func-
tion for subsequence-combination methods due to the
lack of n-gram count clippings in its formulation.
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Abstract
We present a method to estimate the quality of auto-
matic translations when reference translations are not
available. Quality estimation is addressed as a two-step
regression problem where multiple features are com-
bined to predict a quality score. Given a set of fea-
tures, we aim at automatically extracting the variables
that better explain translation quality, and use them to
predict the quality score. The soundness of our ap-
proach is assessed by the encouraging results obtained
in an exhaustive experimentation with several feature
sets. Moreover, the studied approach is highly-scalable
allowing us to employ hundreds of features to predict
translation quality.

1. Introduction

Despite an intensive research in the last fifty years, ma-
chine translation (MT) systems are still far from per-
fect [1]. Hence, a desirable feature to improve their
practical deployment is the capability of predicting at
run-time1 the reliability of the generated translations.
This task, referred to as quality estimation [2] (QE),
is becoming a crucial component in practical MT sys-
tems [3, 1]. For instance, to decide if an automatic
translation is worth being supervised by a translator or
it should be translated from scratch. Quality can be es-
timated at the word, sentence, or document level. Here,
we focus on the estimation of sentence-level quality.

Sentence-level QE is typically addressed as a re-
gression problem [4, 2]. Given a translation (and other
sources of information), a set of features is extracted
and used to build a model that predicts a quality score.
This point of view provides a solid framework within
which accurate predictors can be derived. However,
several problems arise when applying this approach to
predict the quality of natural language sentences. For

1That is, in the absence of reference translations.

example, while the concept of translation quality is
quite intuitive, the definition of features that reliably ac-
count for it has proven to be elusive [4, 1]. Thus, in
practice, feature sets contain a large number of noisy,
collinear and ambiguous features that hinder the learn-
ing process of the regression models, e.g., due to the
“curse of dimensionality” [5].

An interesting approach to overcome these prob-
lems is to conceive QE as a two-step problem. In a first
step, a dimensionality reduction (DR) process strips out
the noise present in the original features returning a re-
duced set of (potentially new) features. Then, the actual
quality prediction is made from this reduced set. Typi-
cally, QE systems reduce the dimensionality by simply
selecting a subset of the original features according to
some relevance measure [2, 6, 7]. However, a recent
study [8] have shown that DR methods based on a pro-
jection of the original features may be more effective.
The intuition for this is clear, the new features extracted
by a projection-based DR method summarize the “in-
formation” contained in the all the original features, in
contrast, the information contained in the features dis-
carded by a feature selection method is inevitably lost.

We work on the foundations of [8] and provide an
exhaustive empirical study of the most successful QE
approach described there. This approach (§2) involves
a DR method based on a partial least squares [9] (PLS)
projection of the data and a support vector machine [10]
(SVM) as prediction model. We test this two-step QE
approach in a wide variety of conditions (§3) where we
compare the performance of PLS to the most widely-
used projection-based DR approach, namely principal
component analysis [11] (PCA). Empirical results (§4)
show that PLS consistently outperformed PCA in pre-
diction accuracy and feature reduction ratio. This latter
result is particularly interesting because it allows us to
apply QE in scenarios with strict temporal restrictions,
for instance interactive machine translation tasks.
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Figure 1: Dataflow of the studied two-step QE approach.

2. A Two-Step QE Approach

The method proposed in [8] divide QE (Rm → R) into
two sub-problems. First, the originalm-dimensional set
of features is projected into a new r-dimensional set of
features (Rm → Rr, r < m). Then, this reduced fea-
ture set is used to build a regression model that predicts
the actual quality scores (Rr → R). Figure 1 shows a
diagram of this two-step training methodology. Next
sections describe how to solve these two sub-problems.

2.1. Dimensionality Reduction

Typical approaches to reduce a set of noisy features
involve the use of principal components analysis [11]
(PCA). PCA projects the set of features into a set of
principal components (PCs) where each PC explains the
variability of the features in one principal direction. As
a result, these PCs contain almost no redundancy but,
since the PCA transformation ignore the quality scores
to be predicted, they do not necessarily have to be the
best features to perform the prediction.

Instead, we implement a feature reduction tech-
nique based on partial least squares [9] (PLS). PLS ex-
tracts a ordered set of latent variables (LVs) such that
each of them accounts for the maximum possible co-
variability between the features and the scores to be pre-
dicted under the constraint of being uncorrelated with
previous LVs. That is, LVs are uncorrelated as PCs do,
and additionally, they explain as much as the variability
in the quality scores as possible. As a result, usually few
LVs than PCs are required to reach a certain accuracy.

Let {xi, yi}ni=0 be a corpus with n samples where
xi arem-dimensional feature vectors, and yi are quality
scores. This corpus can be written in matrix form where
symbol ᵀ indicates the transpose of a matrix or vector:

X=

xᵀ
1
...
xᵀ
n

=

x11 · · · x1m...
. . .

...
xn1 · · · xnm

 y=

y1...
yn

 (1)

Then, PLS constructs the following linear model
where b is a vector of regressor coefficients, and f is

a vector of zero-centered Gaussian errors:

y = Xb+ f (2)

PLS also defines two PCA-like transformations (P
for X, and q for y) with E and f being the correspond-
ing errors, and a linear relation R linking both blocks:

X = TPᵀ +E y = Uqᵀ + f U = TR (3)

where matrices T and U are the projections of X and
y respectively. The value of the regression coefficients
b are finally computed as [9]:

b = Rqᵀ where R = W(PᵀW)−1 (4)

where W is a weight matrix that accounts for the cor-
relation between X and U.

The columns in matrix T are the LVs of X. Each of
these LVs accounts for the maximum co-variability be-
tween X and y not explained by previous LVs. There-
fore, similarly as it is usually done with PCA, we can
collect the first r LVs and use them to represent the
original m-dimensional feature set. Given that r <m,
and that the LVs are orthogonal by definition, we are
simultaneously addressing the “curse of dimensional-
ity” and reducing the noise present in the original fea-
tures. Moreover, the reduced set also explains most of
the variability in the quality scores to be predicted.

In the experiments, we used the pls library [12] of
the R toolkit. The dimension of the reduced set r is one
of the meta-parameters of the studied QE approach.

PLS can be directly used as a predictor model (see
Equation (2)). However, its simple linear model is not
adequate to model the nonlinear relation that may exist
between the features and the quality scores. Preliminary
experiments confirmed this intuition.

2.2. Prediction Model

Once the reduced feature set is extracted, a support vec-
tor machine (SVM) is used predict the quality scores
(Rr→R). We choose SVMs because they have shown
good prediction accuracy and robustness when dealing
with noisy data in a number of tasks.



SVMs, first proposed for classification problems by
Cortes and Vapnik [10], are a class of machine learning
models that are able to model nonlinear relations be-
tween the features and the values to be predicted. Prior
to any calculation, SVMs project the data into an al-
ternative space. This projection, defined by a kernel
function, may be nonlinear; thus, though a linear re-
lationship is learned in the projected feature space, this
relationship may be nonlinear in the original space. Fol-
lowing previous works on QE [2], we use SVMs with
a radial basis kernel as implemented in the LibSVM
package [13]. Values γ, ε, and C are additional meta-
parameters to be optimized.

3. Experimental Setup

3.1. Corpus

We computed quality scores for the English-Spanish
news evaluation data used in the QE task of the 2012
workshop on statistical MT [1] (WMT12). The Spanish
translations were generated by a phrase-based MT sys-
tem trained on the Europarl and News Commentaries
corpora as provided for the WMT12 translation task.
Evaluation data contains 1832 translations for training,
and 422 translations for test. The quality score of each
translation {y ∈ R | 1 ≤ y ≤ 5} is computed as the av-
erage of the scores given manually by three different
experts in terms of post-editing effort:
5: The translation requires little editing to be publishable
4: 10%–25% of the translation needs to be edited
3: 25%–50% of the translation needs to be edited
2: 50%–70% of the translation needs to be edited
1: The translation must be translated from scratch

3.2. Feature Sets

We conducted QE experiments with several feature sets
submitted to the WMT12 QE task2. These sets allow
us to test our approach under a wide variety of con-
ditions. Table 1 displays, for each set, the number of
features, whether or not the features are result of a fea-
ture selection process, the percentage of features in the
training partition that are collinear with the rest of fea-
tures (redundancy), and the percentage of features in the
training partition that are constant, and hence, irrelevant
to perform the prediction. We estimated the degree of
collinearity of each feature by its condition number con-
sidering a value above 100 to denote collinearity [14]

2These are available in https://github.com/lspecia/QualityEstimation.

Name #features feature collinear constant
selection? features features

DCU-SYMC 308 no 34.6% 0.7%
LORIA 49 yes 12.2% 0.0%
SDLLW 15 yes 0.0% 0.0%
TCD 43 no 18.6% 0.0%
UEDIN 56 no 5.5% 1.8%
UPV 497 no 54.3% 6.8%
UU 82 no 7.5% 2.5%
WLV-SHEF 147 no 21.0% 2.7%

Table 1: Main properties of the feature sets. We esti-
mated the collinearity with the condition number [14].

We consider the feature sets as independent corpora
provided by an external agent. Hence, and due to space
limitations, we only provide a brief description of each
set; an exhaustive description can be found in the cor-
responding citation. Many of the sets include the 17
baseline features provided by the organizers [1].

DCU-SYMC: [15] 308 features including features
based on latent Dirichlet allocation; source grammati-
cal features from the TreeTagger part-of-speech tagger,
an English grammar, the XLE parser, and the Brown
re-ranking parser; and target TreeTagger features.
LORIA: [6] 66 features including the baseline fea-
tures, and features based on cross-lingual triggers.
SDLLW: [7] 15 features exhaustively selected from an
original set of 45 features: the 17 baseline features, 8
features based on decoder information, and 20 features
based on n-gram precisions and word alignments.
TCD: [16] 43 features including the baseline features,
and features based on similarity measures with respect
to the Google n-grams data set.
UEDIN: [17] 56 features including the baseline fea-
tures and features based on named entities, mor-
phological information, lexicon probabilities, word-
alignments, and sentence and n-grams similarities.
UPV: [18] 497 features including the baseline features
and features based on word-level quality scores.
UU: [19] 82 features computed from syntactic, con-
stituency, and dependency trees.
WLV-SHEF: [20] 147 features based on part-of-
speech information, subject-verb agreement, phrase
constituency and target lexicon analysis.

3.3. Experimental Methodology

For each feature set, a QE system was built following
the two-step methodology described in §2 and depicted



Feature set Baseline PCA Our approach
RMSE #features RMSE #features RMSE #features

DCU-SYMC 0.71±0.02 308 0.70±0.02 82 (26.6%) 0.62±0.02∗ 28 (9.1%)
LORIA 0.72±0.03 49 0.75±0.01 43 (87.7%) 0.72±0.02∗ 10 (20.4%)
SDLLW 0.67±0.02 15 0.67±0.02 15 (100.0%) 0.67±0.02∗ 10 (66.7%)
TCD 0.76±0.01 43 0.74±0.02 24 (55.8%) 0.72±0.02∗ 15 (38.9%)
UEDIN 0.72±0.03 56 0.71±0.02 43 (76.8%) 0.69±0.02∗ 8 (14.3%)
UPV 0.74±0.02 497 0.69±0.02 99 (19.9%) 0.62±0.02∗ 58 (11.7%)
UU 0.72±0.02 82 0.68±0.02 74 (90.2%) 0.67±0.02∗ 29 (35.4%)
WLV-SHEF 0.71±0.02 147 0.71±0.02 91 (61.9%) 0.65±0.02∗ 25 (17.0%)

Table 2: RMSE and number of LVs obtained by cross-validation for the different feature sets. In parenthesis, we show
the number of LVs as a percentage of the original features. Baseline denotes a system trained with the whole feature
set. PCA denotes a system built using PCA instead of PLS. Best mean RMSE values and lowest number of features
are displayed boldface. Asterisks denote a statistically better result than both the other two systems (95% confidence).

in Figure 1. All features were standardized by subtract-
ing the feature mean from the raw values, and dividing
the difference by the corresponding standard deviation.

The number of LVs (r) was optimized by ten-fold
cross-validation using the training partitions (1832 sam-
ples). Each cross-validation experiment took eight folds
for training (dev-train), one held-out fold for develop-
ment and the other held-out fold for test (dev-test). We
used the dev-train folds to estimate a PLS model. Then,
this model was used to extract the r LVs of dev-train,
and of the separated development fold and the dev-test
fold. Next, we used the reduced dev-train folds to es-
timate an SVM model, the reduced development fold
to optimize the SVM meta-parameters (γ, ε, and C),
and the reduced dev-test fold to test the optimized SVM
model. The result of each complete cross-validation ex-
periment was the averaged prediction accuracy on the
ten held-out dev-test folds. The number of LVs was se-
lected to optimize this average accuracy.

Once the number of LVs was fixed, we built a new
prediction model with the whole training partition opti-
mizing the SVM meta-parameters by cross-validation.
Finally, we used this optimized SVM model to predict
the quality scores of the test partitions (422 samples).

3.4. Assessment Criteria

We measure the accuracy of a QE system by the devi-
ation of its predictions ŷ = {ŷ1, . . . , ŷn} respect to the
reference quality scores y = {y1, . . . , yn}. Following
previous QE works [2, 1], we calculate the root-mean-
squared error (RMSE) between them:

RMSE(ŷ,y) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

where n is the number of samples. RMSE quantifies
the average error of the estimation with respect to the
actual quality score. I.e. the lower the value, the better
the performance of the QE system.

Additionally, we perform different significance
tests for the reported RMSE results. On the one hand,
we obtain confidence intervals for the averaged cross-
validation test results with Student’s t-tests [21]. On the
other hand, we use paired bootstrap re-sampling [22] to
measure the significance of the RMSE differences ob-
served between the different methods in the test sets.

4. Results

We now present the results of the empirical evaluation
of the studied QE approach. First, we predicted qual-
ity scores for each of the feature sets described in §3.2.
Then, we took advantage of the scalability of the stud-
ied QE approach using jointly all the features in those
sets to perform the prediction.

4.1. Results for the Individual Feature Sets

Table 2 shows the cross-validation results (RMSE and
number of LVs) obtained for the different feature sets.
As a comparison, we present results for SVMs trained
with all the features in each set (Baseline), and for sys-
tems built using the widespread PCA instead of PLS in
the studied two-step training methodology.

We can observe that the studied approach con-
sistently obtained equal or better prediction accuracy
(RMSE) than the baseline systems. Additionally, the
number of LVs used to build the final SVMs was much
lower than the number of original features. The size of
the reduced sets varied between two thirds and one tenth
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Figure 2: Cross-validation learning curves (RMSE and 95% confidence interval) for two representative feature sets:
the highly-redundant UPV set (left), and the concise SDLLW set (right). Baseline denotes the RMSE of systems
trained with the whole original feature sets: 497 features for UPV set, and 15 features for SDLLW set.

of the original features. This reductions are roughly re-
lated with the percentage of collinear and constant fea-
tures in Table 1. In comparison to PCA, the studied DR
technique, PLS, was able to obtain better prediction ac-
curacy with less features. Usually, the number of LVs
is less than half the number of PCs.

These result indicate that the studied QE approach
was indeed able to strip out the noise present in the
original features. Additionally, the DR technique based
on PLS projections showed a better performance (both
in prediction accuracy and reduction ratio) that the
commonly-used PCA. As a result, even for highly-
engineered features sets such as SDLLW [7] that con-
tain no collinear or redundant features, our approach
was able to obtain a more compact feature set (10 LVs)
that still retained the prediction potential of the whole
original set (15 features).

Next, to better understand the influence of the num-
ber of LVs in the results, Figure 2 displays the predic-
tion accuracy as a function of the number of features
for two prototypical feature sets: the highly noisy and
collinear UPV set, and the low redundant SDLLW set.

The prediction accuracy of our method for the UPV
feature set (left panel in Figure 2) rapidly improved
as more LVs were considered. With only 5 LVs, pre-
diction accuracy already statistically outperformed the
baseline (497 features), and it reached its top perfor-
mance for 58 LVs. As we considered more LVs (for
simplicity the graph only shows up to 100 LVs), pre-
diction error steadily increased which was indicative of
over-training. Thus, we chose 58 as the optimum num-
ber of variables for the UPV set. The quite large RMSE
reduction respect to the baseline can be explained by the
ability of our approach to strip out the great amount of

noise present in the original UPV set, see Table 1. Re-
garding PCA, it was consistently outperformed by our
approach and only slightly improved the RMSE score
of the baseline system.

For the concise SDLLW feature set (right panel in
Figure 2), our system showed approximately the same
behavior: prediction accuracy rapidly improved up to
a point from where the performance remains approxi-
mately stable. In this case, 10 was the optimal number
of LVs. In contrast to the UPV set, our approach could
not improve Baseline performance which is reasonable
since SDLLW is a very clean set with no redundant or
irrelevant features (see Table 1) that could hinder the
learning process. Nevertheless, our method was able to
obtain the same prediction accuracy as Baseline with
only two thirds of the original features.

In a following experiment, we built QE systems
with the whole training partitions and the optimal num-
ber of LVs estimated in the previous cross-validation
experiments. The SVM meta-parameters (γ, ε, and C)
were optimized by standard cross-validation and the op-
timized models were used to predict the quality scores
of the test partitions. Note that due to variations in the
learning procedures, Baseline results may differ from
those reported in the WMT12 QE task [1] .

Table 3 displays, for each feature set, the RMSE
obtained by our approach in the test partition. We
also show baseline results for SVMs built with all the
features in each set, and for systems that used PCA
instead of PLS to reduce the dimensionality. RMSE
confidence intervals for Baseline, PCA and our ap-
proach always overlapped but the observed differences
were still statistically significant for a number of sets:
for DCU-SYMC, Baseline obtained a statistically bet-



Feature set Baseline PCA Our
approach

DCU-SYMC 0.87±0.07∗ 1.01±0.07 0.96±0.08∗

LORIA 0.84±0.06∗ 0.87±0.06 0.85±0.06∗

SDLLW 0.76±0.05∗ 0.77±0.05 0.76±0.05∗
TCD 0.82±0.06∗ 1.00±0.05 0.83±0.06∗

UEDIN 0.86±0.06∗ 0.85±0.05 0.86±0.05∗

UPV 0.82±0.06∗ 0.83±0.05 0.78±0.05∗

UU 0.81±0.05∗ 0.81±0.05 0.82±0.06∗

WLV-SHEF 0.84±0.05∗ 0.84±0.05 0.82±0.05∗

Table 3: RMSE and 95% confidence intervals of the
predictions for the test partitions. Best mean results are
displayed boldface. Asterisks denote a significant dif-
ference in performance (paired re-sampling, 95% con-
fidence) respect to both the other two methods.

ter result than PCA and our approach; for LORIA
and TCD, no statistically significant difference was ob-
served between our approach and Baseline but both sys-
tems obtained a statistically better result than PCA; for
UPV and WLV-SHEF, our approach statistically out-
performed the other two methods; and for SDLLW,
UEDIN and UU, no significant differences were found.

These were quite surprising results. Given the
encouraging RMSE improvements observed in cross-
validation (see Table 2), we expected to obtain similar
differences over Baseline in test. We followed a care-
ful cross-validation training process (see Section 3.3)
where each experiment was evaluated in a held-out test
fold used neither to reduce the dimensionality nor to
estimate the prediction model. Therefore, we hypothe-
sized that the explanation for the results in Table 3 was
that the training partitions were not representative of the
test partitions. We evaluated this hypothesis by means
of a series of multivariate Hotelling’s two-sample T2

tests [23]. The objective of these tests is to determine
if two samples (in our case the values of the features in
the training and test partitions) have been sampled from
the same population or not. The results of the tests in-
dicated that, for all feature sets, the training and test
partitions were indeed statistically different (p< 0.01).
In contrast, no statistical difference was found, for any
of the feature sets, between the dev-train and dev-test
folds used in the cross-validation training process.

In a more fine-grained analysis, we study individ-
ually the features in each set. The results of a series
of Student’s two-sample t-tests [21] indicated that most
of the features did exhibit statistically different values
(p < 0.01) between training and test. E.g., the value

DCU-SYMC 45.1% UEDIN 48.1%
LORIA 24.5% UPV 67.4%

SDLLW 73.3% UU 38.8%
TCD 30.2% WLV-SHEF 28.6%

Table 4: Ratio of the features in each set that have sig-
nificantly different values in the training and test parti-
tions. These ratios reduce to about 1% in the dev-train
and dev-test cross-validation folds. Significance com-
puted by Student’s two-sample t-test (99% confidence).

one of these “mismatched” features in the UPV set was
µ= 1.7 (σ = 1.4) in training, and µ= 0.9 (σ = 0.8) in
test. In contrast, only about 1% of the features exhibit
different values between the cross-validation dev-train
and dev-test folds. Table 4 displays, for each set, the
percentage of “mismatched” features between the train-
ing and test partitions.

This mismatch can be partially explained by the fact
that the training and test partitions contain news texts of
different years [1], but we still consider that the main is-
sue is the size (only 1832 samples) of training partitions
that did not adequately represent test partitions. How-
ever, both our approach and the baseline systems had to
deal with this mismatch, so, why our method and PCA
seemed to be more heavily penalized than Baseline?

The projection of the features is computed based on
the training data. Thus, if the training partition is not
representative of the test partition, the reduced feature
sets will be projected in a “direction” that may penalize
the prediction accuracy for the test set. That is, crucial
information to predict the quality scores of the test par-
tition may be stripped out. This drawback is common to
any dimensionality reduction technique as exemplified
by the also poor test results (Table 3) obtained by PCA.

The conclusion that can be extracted from these re-
sults is that the use of feature reduction implies a greater
risk of over-training the prediction system. This effect
particularly important if training data is scarce but it is
mitigated as more training data is available. Thus, given
the encouraging cross-validation results in Table 2, bet-
ter prediction accuracy could be expected in test when-
ever an adequate training partition is provided.

Under the assumption that the original features can
be computed in advance, a complimentary advantage
of the studied two-step QE approach is that it allows
us to build more time-efficient QE systems. Figure 3
displays the time required to build an SVM model (in-
cluding meta-parameter optimization) and obtain the
test predictions as a function of the number of features
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Figure 3: Operating time (training plus prediction) of
the SVM model as a function of the number of features
used to built the model. Baseline system was trained
with the 147 original features of the WLV-SHEF set.

used to train the model. Specifically, we built QE sys-
tems with an increasing number of LVs extracted from
the WLV-SHEF feature set. Each point in the figure
is the average time of ten experiments. Results show
how operating times increased with the number of LVs.
For instance, the operating time of the baseline model
trained with the original 147 features (0.84 RMSE) was
∼200 seconds, while the operating time of the system
built with the 14 LVs extracted by PLS (0.82 RMSE)
was only ∼15 seconds which represents one order of
magnitude less operating time. Hence, our approach is
well-suited to be applied to scenarios, such as interac-
tive MT [3], with strict temporal restrictions.

4.2. Exploiting the scalability of our approach

Results in the previous section have shown that the stud-
ied QE approach was able to extract the relevant predic-
tion information from different sets of noisy features.
We now take a further step in this direction and present
results where all the features used in the previous exper-
iments are joined together to create an extremely high-
dimensional feature set from which to predict quality
scores. This aggregated set, denoted by ALL, contains
1197 features for each translation; approximately 55%
of them being collinear with the rest.

Figure 4 shows cross-validation prediction accuracy
(RMSE and 95% confidence interval) of the studied QE
approach as a function of the number of LVs. Again,
we also display results for a baseline SVM model built
using all the features, and for a system built using
PCA instead of PLS. Our approach obtained a score of
0.45±0.01 RMSE with only 86 LVs. This result rep-
resents a 30% reduction relative to the baseline RMSE
calculated with 1197 features. Regarding PCA, it barely
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Figure 4: Cross-validation learning curve for the high-
dimensional (1197 features) ALL set.

reached Baseline performance. These results indicate
that our approach was able to exploit the information
contained in the ALL set to improve prediction accu-
racy. In contrast, both Baseline and PCA were unable
to adequately manage the huge number of noisy and
collinear features. Additionally, the operating time of
the Baseline systems was ∼ 23 minutes, while it re-
duced to∼2 minutes when we used the optimal 86 LVs.

Test results were again quite disappointing: 1.4±0.1
RMSE of our approach versus 0.78± 0.06 RMSE of
Baseline and 0.81±0.07 of PCA. We hypothesize that
the clearly worse result of our approach in this case was
due to the larger number features. As more features are
available, our system can generate more “specialized”
LVs. Given that the training data does not adequately
represents the test data (see discussion in §4.1), this bet-
ter projection (as shown in Figure 4) actually hinders
prediction accuracy in the test set.

5. Summary

We have described an empirical study of a two-step
QE approach specifically designed to manage the noisy
features usually derived from natural language sen-
tences. This approach, first described in [8] implements
a method based on PLS to extract, from the original
features, the LVs that actually govern translation qual-
ity, and an SVM model to actually predict the quality
scores from these LVs.

Empirical cross-validation results showed that the
studied QE approach was able to obtain very large fea-
ture reduction ratios, and at the same time, it usually
outperformed systems built with all the original features
and systems that use PCA instead of PLS to reduce the
dimensionality. Unfortunately, results in the held-out
test partitions were disappointing. The results of differ-



ent statistical tests seem to indicate that this was due to
the small size of the training partitions. Hence, larger
RMSE improvements could be expected in test when-
ever a representative training partition is provided.

A complimentary advantage of the studied QE ap-
proach is its time-efficiency. This fact makes our ap-
proach well-suited to be deployed in scenarios with
strict temporal restrictions, such as interactive MT sys-
tems. Alternatively, we could take advantage of this
efficiency to predict translation quality from huge sets
of features. Results in this direction show that our ap-
proach was able to efficiently manage more than a thou-
sand features largely improving prediction accuracy.
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Abstract

This paper describes our Speech-to-Text (STT) system for
French, which was developed as part of our efforts in the
Quaero program for the 2013 evaluation. Our STT system
consists of six subsystems which were created by combin-
ing multiple complementary sources of pronunciation mod-
eling including graphemes with various feature front-ends
based on deep neural networks and tonal features. Both
speaker-independent and speaker adaptively trained versions
of the systems were built. The resulting systems were then
combined via confusion network combination and cross-
adaptation. Through progressive advances and system com-
bination we reach a word error rate (WER) of 16.5% on the
2012 Quaero evaluation data.

1. Introduction
1.1. The Quaero Speech-to-Text Task

Quaero (http://www.quaero.org) is a French research and de-
velopment program with German participation. The focus
is to develop multimedia and multilingual tools with profes-
sional and general public applications in such domains as
automatic extraction, analysis, classification, and exploita-
tion of information. The vision of Quaero is to provide pub-
lic and professional users with the means to access various
information types and sources in digital form. Quaero pro-
poses to achieve this by creating a framework for collabo-
ration between complementary technological ventures such
as businesses, public research institutions, and universities
through competitive evaluations and sharing of the research
thereby created in a process called “coopetition.” Partners
also collaborate on advanced demonstrations and prototypes
and work to develop and commercialise the resulting appli-
cations and services.

One of the technologies researched within Quaero is Au-
tomatic Speech Recognition, i.e. the automatic transcription
of human speech into written form. This is known as the
speech-to-text task. In line with the concept of coopetition,
evaluation of ASR technological development in Quaero is
done once a year. The domain is a mix of broadcast news
and broadcast conversational speech, the latter of which is
more challenging for automatic recognisers than read speech

due to the presence of disfluencies and non-speech events
such as music and spontaneous human noises. The num-
ber of languages included in the program has increased, as
has the expected state-of-the-art recognition system perfor-
mance. Being a French project with European orientation,
French is naturally among the languages evaluated. The fall
2013 evaluation was the fifth and final full-scale evaluation
of ASR within Quaero. The test data for the evaluation con-
sisted of audio from various web sources including broadcast
news, video blogs, and lectures. At the time of this writing
the evaluation was not yet completed. Therefore this paper
reports our results on the 2012 evaluation data, which we
used as our development set.

1.2. Paper Structure

The paper is structured as follows. Section 2 describes the
acoustic data and training techniques of our system. We de-
scribe the front-end processing used, including deep neural
networks and tonal features. Our efforts to develop diversi-
fied pronunciation modeling are the focus of Section 3. We
give special attention to the use of graphemes. Then, we
make a detailed description of our language model and its
development in Section 4. In Section 5 we describe our over-
all recognition setup used in the evaluation and give perfor-
mance figures for the 2012 evaluation data. Section 6 de-
scribes experiments done in the development of our system.
Finally we discuss opportunities for future work and con-
clude the paper in Section 7.

2. Acoustic Modeling

We trained several acoustic models based on different pro-
nunciation dictionaries and feature front-ends. The pronun-
ciation modeling aspect is described in detail in Section 3.
Each pronunciation model (dictionary) was essentially based
on its own phoneme set. The feature front-ends can be gener-
ally described as deep bottlneck features based on either i) 40
log mel filter bank coefficients (lMEL) or ii) a stacked com-
bination of 20 mel-frequency cepstal coefficients (MFCC,)
20 warped minimum variance distortionless response coeffi-
cients (MVDR,) and tonal features (a setup we call M2+T),
described in Section 2.3.



All acoustic models are based on HMMs, whose states
correspond to generalized quinphones with three states per
phoneme, and a left-to-right topology without skip states.
The generalized quinphones were found by clustering the
quinphones in the training data using a decision-tree. We
found 8,000 acoustic models performed best in all subsys-
tems except the grapheme subsystem, for which 12,000 mod-
els performed best. The models were trained using incremen-
tal splitting of Gaussians (also known as merge and split or
MAS training.) For all models we then estimated one global
semi-tied covariance (STC) matrix after LDA [1], and refined
the models with two iterations of viterbi training. All models
use vocal tract length normalization (VTLN.) For a second-
pass decoding (see Section 5) speaker adaptive models are
trained using feature space constrained MLLR [2, 3]. For
certain systems we extended the expected maximisation of
the models with discriminative training based on the boosted
Maximum Mutual Information Estimation (bMMIE) crite-
rion [4], which saw reductions in word error rate (WER) of
between 2-2.5% (relative) compared to the maximum likeli-
hood systems.

2.1. Training Data

Each subsystem was trained on 268 hours of speech com-
ing from the Broadcast News (BN) and Broadcast Conversa-
tion (BC) domain. We used the Quaero training data from
2009-2011 as well as data from the Ester campaign [5]. Both
datasets provide manual transcripts and speaker clustering.
The Quaero data can be divided into portions for which the
transcripts are “fast” or carefully annotated. Those using
careful annotations have speakers identified by name, even
across shows and audio files, whereas “fast” annotated tran-
scripts use automatic speaker annoatations. Also, the care-
fully annotated transcripts have a more comprehensive and
detailed transcription of noises, disfluencies, and hesitations.
We used a technique for filtering this acoustic data by decod-
ing on it, which is described in Section 6.1. Before filtering
we had 194.1 hours of Quaero data and 107.8 hours of Ester
data. After filtering we had 187.7 hours of Quaero data and
80.3 hours of Ester data, which was used for training.

2.2. Deep Neural Networks as Features

Bottleneck features (BNFs) from multilayer perceptrons
have become a staple component in ASR, due to their dis-
criminative power and robustness to speaker and environ-
ment variations. Gehring et. al. recently introduced a deep
bottlneck feature (DBNF) archictecture based on deep neural
networks (DNNs) consisting of many hidden layers, which
was shown to achieve significant reductions in WER. [6, 7]

For our French system we trained deep bottleneck feature
networks for each subsystem from the best existing MFCC
system alignment. Input to the network takes place on an
input layer accepting stacked MFCC, MVDR and Tonal fea-
tures or log mel coefficients. The network consists of five
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Figure 1: Deep bottleneck architecture used for feature ex-
tractation in our systems

fully-connected hidden layers containing 1,200 units each,
followed by the bottleneck layer with 42 units, a further hid-
den layer and the final layer, as can be seen in Figure 1.

Layers prior to the bottleneck are pre-trained in a layer-
wise, unsupervised manner as a stack of denoising auto-
encoders [8]. After the stack of auto-encoders has been pre-
trained, the bottleneck layer, the next hidden layer, and the
classification layer are intialized with random weights and
connected to the hidden representation of the top-most auto-
encoder. The network is then trained with supervision to es-
timate the context-dependent HMM polyphone states. Fine
tuning is performed for 14-18 epochs using the ”newbob”
learning rate schedule which starts with a high learning rate
until the increase in accuracy on a validation set drops be-
low a set threshold. The learning rate is then halved for each
epoch until improvement in validation accuracy drops below
a second threshold, at which point learning is stopped. The
activations of the 42 bottleneck units are stacked over an 11-
to 13-frame context window and reduced to a dimensionality
of 42 using LDA.

Our context-dependent systems were then trained with
these networks using the existing polyphone tree and align-
ment computed without DBNFs. Relative to MFCC, we saw
an average word error rate reduction of approximately 22%
for systems using lMEL DBNFs and 24% for those using
DBNFs based on MFCC and MVDR. This is comparable to
gains we saw in development of recognisers for other lan-
guages, where the same or similar DBNF architecture was
employed.

2.3. Tonal Features

Conventional wisdom in ASR asserts that pitch or “tonal”
information is not helpful in building speech recognisers for



non-tonal languages (such as French.) However it was re-
cently shown that pitch information can be integrated into
an ASR in a manner that improves recognition accuracy for
both tonal and non-tonal languages [9]. Fundamentally dif-
ferent from spectral features, which capture the envelope of
the speech signal, pitch features capture variations in the
fundamental frequency of the speaker’s voice. Our DBNFs
based on a concatenation of MFCC and MVDR coefficients
incorporated two such tonal features derived from the pitch
of the speech signal. These are the pitch and Fundamental
Frequency Variation (FFV.)

We extract pitch features according to the method in [10].
First, a cepstrogram is computed with a window length of
32 ms. We detect the position of the maximum of all cep-
stral coefficients starting with the 30th coefficient. Dynamic
programming is then used to find a path that maximises the
correlation between coefficients subject to constraints such
as the maximum pitch change per unit time. Additionally we
consider the position of the three left and right neighbours,
as well as their first and second derivatives, resulting in seven
pitch coefficients.

FFV features [11], typically used for tasks such as
speaker verification, have the advantage that no explicit seg-
mentation into speech and silence (for which pitch is unde-
fined) is necessary. The change in fundamental frequency
is not computed by tracking a single value of F0 over time.
Rather a “vanishing point product” is computed between two
feature vectors obtained from two asymmetric windows cov-
ering the left-half and right-half portion of the general fea-
ture window. This vanishing point is equivalent to an inner
product between left and right spectrums FL and FR, where
FL or FR are dilated with respect to one another by positive
or negative values of τ , respectively. This vanishing point
product is depicted graphically in Figure 2. Afterwards, a
filterbank is applied which attempts to capture meaningful
prosodic information. The filter bank contains a trapezoidal
filter for perceptually “flat” pitch, two trapezoidal filters for
“slowly changing” (rising and falling) pitch, and two addi-
tional trapezoidal filters for “rapidly changing” pitch. In ad-
dition, the filterbank contains two rectangular extremity fil-
ters, as unvoiced frames have flat rather than decaying tails.
This filterbank reduces the input space to 7 scalars per frame,
which we use as additional “FFV” features in the final input
vector. Previous experiments showed that the best way to in-
tegrate these features is through their concatenation with the
MFCC and MVDR coefficients in the input vector for DBNF
training. [9]

By concatenating tonal features in a 32 millisecond win-
dow with MFCC and MVDR coefficents (M2+T) for the in-
put layer of our DBNFs, we reduced our error rate on the
2011 Quaero evaluation set by an additional 3% relative to
MFCC and MVDR (M2) alone. This is comparable to the
3% relative improvement seen for KIT’s English system de-
veloped for IWSLT. This 3% for non-tonal languages can be
compared with the 5% relative improvement seen for Viet-
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Figure 1. The standard dot-product shown as an orthonormal projection onto a point at infinity (left panel), 
and the proposed vanishing-point product, which generalizes to the former when τ → ±∞ (right panel). 

 
The degree of dilation is controlled by the mag-
nitude of τ. The proposed vector-valued repre-
sentation of pitch variation is the vanishing-
point product, evaluated over a continuum of τ. 
For each analysis window, centered at time t, 
we compute the short-time frequency represen-
tation of the left-half and the right-half portion 
of the window, leading to FL and FR, respec-
tively, using two asymmetrical windows which 
are mirror images of each other, as shown in 
Figure 2. 
 

 
Figure 2. Left and right windows used for the com-
putation of FL and FR, respectively, consisting of 
asymmetrical Hamming and Hann window halves. 
T0 is 4 ms, and T1 is 12 ms, for a full analysis win-
dow width of 32 ms. A 32 ms Hamming window is 
shown for comparison. 

FL and FR are N≡512-point Fourier trans-
forms, computed every 8. The peaks of the two 
windows are 8 ms apart. The FFV spectrum is 
then given by 
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where, in each case, summation is from 
k = -N / 2 +1 to k = N / 2; for convenience, r 
varies over the same range as k. Normalization 
ensures that g[r] is an energy-independent re-
presentation. The frequency-scaled, interpolated 
values 
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A sample FFV spectrum, for a voiced 

frame, is shown in Figure 3; for unvoiced 
frames, the peak tends to be much lower and 
the tails much higher. The position of the peak, 
with respect to r = 0, indicates the current rate 
of fundamental frequency variation. The sam-
ple FFV spectrum shown in Figure 3 thus indi-
cates a single frame with a slightly negative 
slope, that is a slightly falling pitch.  
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Figure 2: Visualization of the vanishing point product em-
ployed in FFV. When τ → ±∞, the vanishing point product
reduces to the standard inner product, shown on the left. On
the right, we see FR dilated by a negive value of τ .

namese, a tonal language.

3. Pronunciation Modeling
In an effort to develop subsystems that produce diverse,
complementary output for system combination and cross
adaptation we employed different pronunciations modelings.
For training and testing, we used pronunciation dictionaries
based on four sources:

1. The popular BDLex lexicon, which gives a wide range
of pronunciation variants

2. The Globalphone dictionary

3. A rule-based pronunciation generation called
text2phone, typically used for TTS applications
[12]

4. A pseudo-grapheme-based approach

After a straightforward mapping, the BDLex and Glob-
alphone dictionaries shared essentially the same phone set.
That of BDLex contains 45 phones, among them five noise
phonemes: hesitation, incomplete words, human noises such
as coughing, non-human noises such as music, and a catch-
all noise. The Globalphone phone set adds a voiceless glottal
fricative h, an additional open-middle vowel, and a breath
noise. It also differs slightly in the classification of phones.
For the text2phone system we used a different, 41-element
set of phones, among them the same noise phones as that of
BDLex.

For the first two sources of pronunciation, missing pro-
nunciations were generated automatically using grapheme-
to-phone models as described in [13]. Acoustic models for
systems using the first two pronunciation sources were ini-
tialized by bootstrapping from German models using a man-
ually created mapping.

While subsystems based on the BDLex dictionary gen-
erally yielded the best performance, we found that the sys-
tem combination benefited from the inclusion of the output
of each additional subsystem in the combination.



3.1. Pseudographeme System

In a traditional grapheme-based system, the symbols of the
written word are used as the sub-units of pronunciation rather
than phonemes. The feasibility of using graphemes instead
of phonemes in ASR has been shown in several different
works [14, 15, 16]. It was also shown that the combination
of a grapheme system with phoneme systems lead to a sig-
nificant reduction in word-error rate [17].

While French orthography is relatively regular vis à vis
a language like English, the mapping between sounds and
graphemes is not bijective, which is to say that the correspon-
dence between graphemes and phonemes can be weak. Of-
ten, clusters of graphemes produce the same sounds as other,
shorter ones, such as “-ai” and “-é”, which both correspond
to the IPA [e]. We handle this weakness by using single or
multiple graphemes as the base units of pronunciation. Our
set of grapheme-phones contained 49 elements, among them
the same five noise phones as in the BDLex system. Using
knowledge of French pronunciation we wrote simple map-
pings determining whether a certain sequence of graphemes
should map to one unit or stand as separate units of pro-
nunciation. These mappings consist of a list of grapheme
sequences to be merged. We scan from left to right in a
word and seek the longest matches possible in the list. The
rules are kept simple in that we do not attempt to merge the
graphemes in a way that each group has a unique pronun-
ciation, nor do we factor in long-range context in the deter-
mination of merging or splitting. Instead, we write the rules
with the expectation that the context-dependent nature of the
acoustic models to learn the difference for grapheme groups
having a context-dependent pronunciation. For example, we
expect the acoustic models to learn from polyphone context
that “ent” is voiced following an “m” and preceding a word
boundary, as in “foncièrement,” but that it is silent following
“gn” as in “joignent.” The following is a selection of some
of these rules and examples of the effects of their use on the
grapheme sequence of words.

é ← { é }, { a i }, { é e }, { u é }
ent ← { e n t }
e ← { e }, { è }, { ê }
au ← { a u }, { e a u }
on ← { o n }
oin ← { o i }
gn ← { g n }

Table 1: Some selected rules for merging graphemes

Because there was no prior (pseudo-)grapheme system,
we trained the system using a flat-start technique based on
six iterations of expectation-maximisation (EM) training and
regeneration of training data alignments. When clustering
quinphone models for the graphemes we used only questions
about the identity of graphemes in the context of the poly-
graphemes, as this is known to perform quite well [15].

délaissées (adj. fem. pl. abandoned) → d é l é s é s
faisceaux (n. m. bundles) → f é s c au x
foncièrement (adv. fundamentally) → f on c i e r e m ent
joignent (v. 3p. pl. join) → j oi gn ent
pointée (adj. fem. pointed) → p oin t é

Table 2: Selected entries from the grapheme dictionary with
accompanying English translations

3.2. Performance Comparison

The following is a comparison of the performance associated
with the use of the various pronunciation models previously
mentioned. The context-dependent system training is identi-
cal in every way, including feature front-end (MFCC). Only
the dictionary or source of pronunciation is varied. The re-
sults are given in Table 3. The relatively higher error rate
of the grapheme system relative to the phoneme systems is
typical of our experience with other ASR languages [17, pg.
202].

Table 3: Case-insensitve WER resulting from the use of var-
ious pronunciation models. The results are from systems us-
ing MFCC features and 8000 acoustic models, and are tested
with the same language model.

Dictionary WER
BDLex 25.4
text2phone 25.6
globalphone 26.6
grapheme 27.0

4. Language Modeling
A 4-gram case-sensitive language model with modified
Kneser-Ney smoothing was built for each of the text sources
listed in Table 4. This was done using the SRI Language
Modeling Toolkit [18]. We cleaned the Quaero acoustic
training transcripts and used half as part of the training set;
the other half was used as a tuning set. The language models
built from these text sources were interpolated using weights
estimated on this tuning set; these weights were estimated
with a tool in the SRILM toolkit which uses an expectation
maximization algorithm with fixed underlying mixture dis-
tributions to minimize the perplexity of the LM mixture on
the tuning set. The result was a language model with 38.34
million 2-grams, 113.2 million 3-grams, and 233.8 million
4-grams.

4.1. Development

Our baseline language model was trained with newswire text
from the Gigaword corpus as well as the Quaero acoustic
training transcripts from all years up to 2012.

1From the Gigaword corpus



Source Type Words Weight
Quaero transcripts BC & BN 1M 0.459
Quaero l’Humanité Newspaper 752M 0.127
AFP, APW, 1 and Ester Newswire, BN 391M 0.121
Quaero Blog Blog 62M 0.111
Quaero News Div Newspaper 150M 0.091
AFP 2000s 1 Newspaper 335M 0.032
CFPP2000 Interviews 417K 0.029
European parliament Debate 100M 0.019
Est Républicain Newspaper 104M 0.011

Table 4: Summary of the cleaned language model (LM) train-
ing texts, including training data, type, word count per cor-
pus, and interpolation weight in the final LM

We achieved improvements in perplexity by including
additional data in our training. In subsequent iterations of the
language model, we added the Quaero 2012 additional lan-
guage model training sources, among which are blog data,
the newspaper l’Humanité, and various other news sources.
We also added the transcripts of the Ester corpus [5] as
well as several other sources of text we found. Among
these are the newspaper Est Républicain, transcriptions of
the European Parliament, and the small conversational cor-
pus CFPP2000 from the University of Paris 3, composed of
a collection of interviews of Parisian residents. [19].

We also reduced perplexity through normalisation of eli-
sions, which is described in section 6.2. Last, further im-
provements were made by normalising the casing of our text
sources using smart case models trained on large corpuses of
text.

We tested the effect of these development steps by mea-
suring the perplexity of the language model on a text set com-
posed of several Quaero acoustic transcripts: development
and evaluation 2009, evaluation 2010, and evaluation 2011.
The results are shown in Table 5.

Improvement Perplexity
Baseline 174.1
+Fast cleaned Quaero 2012 material 153.8+elision normalisation with top 50 list
+Carefully cleaned Quaero 2012 material 136.0+Ester transcripts
+Additional data sources 135.0
+Smart casing 130.3

Table 5: Perplexity scores of successive iterations of lan-
guage model development, measured on the combined 2009-
2011 Quaero dev. and eval. acoustic transcripts.

4.2. Vocabulary Selection

For selection of the search vocabulary we employed the same
tuning set as used for the estimation of the LM interpolation
weights. For each of the aforementioned text sources, we

built a Witten-Bell smoothed unigram language model. The
vocabulary of this LM was taken as the union of the vocab-
ularies of all text sources. Using the maximum likelihood
count estimation described in [20] we found the best mix-
ture weights for representing the tuning set’s vocabulary as
a weighted mixture of the word counts of the sources. This
gave us a ranking of all words in the union vocabulary in
terms of their relevance to the tuning set. We found that a
vocabulary of 250,000 words gave consistently the best per-
formance in terms of word error rate.

5. Recognition Setup
The decoding was performed with the Janus Recognition
Toolkit (JRTk) developed at the Karlsruhe Institute of Tech-
nology and Carnegie Mellon University [21]. Our decoding
strategy is based on the combination and cross-system adap-
tation of many subsystems trained with different dictionar-
ies and feature front-ends. System combination works on
the principle that different systems commit different errors
which cancel each other out. Cross-system adaptation prof-
its from the fact that unsupervised acoustic model adaptation
works better when performed on output that was created with
a different system with comparable performance [22]. By
combining subsystems with several diverse configurations,
we ensure a variety of outputs upon which subsystem com-
bination can work effectively.

5.1. Segmentation

Segmenting the input data into smaller, sentence-like chunks
used for recognition was performed with the help of a fast de-
coding pass on the unsegmented input data in order to deter-
mine speech and non-speech regions [23]. Segmentation was
then done by consecutively splitting segments at the longest
non-speech region that was at least 0.3 seconds long. The
resulting segments had to contain at least eight speech words
and had to have a minimum duration of six seconds and a
maximum length of 30 seconds.

In order to group the resulting segments into several clus-
ters (with each cluster corresponding in the ideal case to one
individual speaker) we used an hierarchical, agglomerative
clustering technique based on TGMM-GLR distance mea-
surement and the Bayesian Information Criterion (BIC) stop-
ping criterion [24]. The resulting speaker labels were used to
perform acoustic model adaptation in the multipass decoding
strategy described below.

5.2. Subsystem Combination and ROVER

We use two passes of decoding. The output lattices of the
subsystems in each stage are used to produce an improved
output through confusion network combination (CNC) [25].
The second pass decodings are performed using SAT mod-
els and unsupervised adaptation. At this stage the subsystem
makes use of the confidences of the CNC from the previous
stage. As a final step we apply a ROVER for further reduc-



Figure 3: Decoding strategy of the KIT 2013 evaluation sys-
tem with WER for each subsystem and step.

tion of error [26].
For each pass of CNC and ROVER we tested several

combinations of subsystems in order to find the best CNC or
ROVER performance on the development (2012 evaluation)
set. Generally speaking, this meant leaving the one or two
subsystems with the highest WER out of the CNC. However,
for the ROVER we found that simply including all subsys-
tems gave the best results. Finally, compared to the best CNC
without the grapheme subsystem, inclusion of this subsystem
consistently improved the CNC by approximately 0.1% ab-
solute WER reduction. Our decoding strategy, along with
WER figures for each subsystem, CNC, and the ROVER, is
shown in Figure 3.

6. System Development and Experiments
In this section we describe two experiments in the develop-
ment of our systems which yielded useful improvements. An
overview of certain steps and their effect on the performance
of the best single system is given in Table 6.

6.1. Filtering of Acoustic Training Material via Decoding

We obtained improvements in WER by undertaking a filter-
ing of the acoustic training material. Rather than using rule-
based methods, such as segment duration or relative phone
duration, we used our single best system to decode on the
training material. We then computed a WER for each utter-
ance in the training database. A new training database was
formed wherein those utterances scored with an error rate
over a certain limit were not included. We then retrained our
system on this slightly smaller, updated training database.
This process was done in an iterative method with regard
to the incorporation of new training material. Our acoustic
training sources were divided into four sets which were each

Development step Improvement
baseline MFCC 27.8
+ various LM improvements 26.5
+ elision normalisation with top50 26.2
+ inclusion of filtered data 25.5
+ 8K models 25.1
lMEL DBNF 19.2
M2 DBNF 19.4
M2+T DBNF 18.7
+ smart casing in LM training 18.6
lMEL DBNF + bMMIE 18.6
lMEL DBNF + SAT 17.7
lMEL DBNF + bMMIE-SAT 17.4

Table 6: Development steps for the best single system and the
resulting reduction in WER (Case Insensitive) relative to the
preceding step. The test set is automatically segmented eval.
2011 data.

filtered separately:

• “Quaero core” : Quaero partial 2010, 2011 training
data

• “Quaero fast” : Quaero 2009, partial 2010 training
data with “fast” transcripts

• “Quaero careful” : Quaero 2009, 2010 training data
with carefully annotated transcripts

• Ester 1

• Ester 2

• Ester 2-dev

Through successive trials of experimentation we devel-
oped the following strategy. First, we adopted a rule to re-
ject those top 10% of utterances having the highest WER.
This corresponded roughly to rejecting utterances with
WER > 75%. As an alternative we tried rejecting the top
25% of utterances, corresponding roughly to 50% WER.
Equivalent systems trained on data filtered with the 50%
threshold (more strict) outperformed those trained on data
filtered with the 75% threshold (less strict), as is shown in
Table 7. As for the Ester data, it differs in that it is solely
broadcast news and contains a good deal of telephone-quality
speech. Thus we decided to apply a stricter rule of thumb that
38% WER would be the maximum for utterances from Ester.

Table 7 shows the results of successive inclusions of
training material, while Table 8 shows the effects of the fil-
tering on the amount of utilised training material.

6.2. Elision normalisation

French contains a phenomenon called elision, wherein the
final vowel of one word immediately before another word
beginning with a vowel is omitted and by convention the



Training material WER
baseline (Quaero core) 27.0
baseline + filt.’d @ 75% additional (fast & careful) Quaero 26.9
baseline + filt.’d @ 50% additional (fast & careful) Quaero 26.5
baseline + filt.’d @ 50% add. Quaero + filt.’d @ 38% Ester 26.3

Table 7: Improvements in system performance with addition
of filtered data. The test set is automatically segmented eval.
2011 data. WER given is Case Insensitive.

Training material Unfilt. utts. % Unfilt. hrs. Filt. hrs. %
Quaero core 32.5K 100 140.0 - 100
Quaero fast 3.17K 73.4 17.5 14.8 84.76
Quaero careful 9.07K 67.9 36.7 32.9 89.6
Ester 1 11.6K 48.5 61.6 48.3 78.3
Ester 2 6.58K 50.4 40.6 28.2 69.6
Ester 2 dev 1.32K 48.6 5.65 3.76 66.7
Total 302 268 88.7

Table 8: Effects of decoding-based filtering on training ma-
terial.

two words are joined with an apostrophe in the written form.
For example “ce est” becomes “c’est” (“this is,”) “la appa-
rance,” becomes “l’apparance” (“the appearance,”) “de être”
becomes “d’être,” (“to be”) and so on. When we consider
these joined words to be one unit for language modeling (a
treatment we call “join”) we are faced with a challenge due
to a large number of out-of-vocabulary (OOV) words which
are simply the elision of two words already in our search vo-
cabulary. The natural solution would then seem to be to con-
sider these units as two separate words (a treatment we call
“separate” or “sep.”) While this reduces OOV frequencies,
it decreases the language model context. We took a compro-
mise approach by treating the fifty most common elided word
combinations in our training transcripts as one word and the
rest as two (a treatment we call “sep. w/ top50.”) This was
reflected in our text normalisation.

We selected three 250,000-word search vocabularies
from the same data, appropriately filtered in each case to treat
elision differenty according to the schemes described above.
Table 9 shows the OOV rate of these vocabularies as tested
on the 2011 evaluation Quaero transcripts (appropriately pro-
cessed to reflect the same treatment of elisions.) We see that
treating elided combinations as two separate words dramati-
cally reduces OOV. As a further experiment, we trained three
otherwise identical recognisers, each reflecting one of these
treatments of elision and tested them with a corresponding
language model. The effects are shown in the same table
(Table 9). The separated approach outperfoms the joined ap-
proach, and joining the fifty most common elisions gives fur-
ther gains.

7. Conclusions

In this paper we presented the KIT French Quaero Speech-
to-Text system. We described details of its development

Elision treatment S. Vocab oov WER
join 5.0% 29.6%
sep. 0.61% 26.7%
sep. w/ top50 0.68% 26.2%

Table 9: OOV rate for 250K-word vocabularies on eval2011
data.

through the integration of enhancements such as deep neural
networks for features, tonal features, multiple pronunciation
models including a modified grapheme scheme, and other de-
velopment techniques used to improve recognition accuracy.
The combination of these techniques was shown to signifi-
cantly reduce error on this task. Future system development
should focus methods on advanced language modeling tech-
niques such as neural networks and techniques developed
for inflectional languages in an effort to reduce homophone
confusability. Further refinements may also be made to our
acoustic neural networks by using multilingual training data
and training from new alignments written with neural net-
work systems.
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[23] S. Stüker, C. Fügen, F. Kraft, and M. Wölfel, “The
isl 2007 english speech transcription system for euro-
pean parliament speeches.” in INTERSPEECH, 2007,
pp. 2609–2612.

[24] Q. Jin and T. Schultz, “Speaker segmentation and clus-
tering in meetings,” in Proceedings of the 8th Interna-
tional Conference on Spoken Language Processing (In-
terspeech 2004 — ICSLP). Jeju Island, Korea: ISCA,
October 2004.

[25] L. Mangu, E. Brill, and A. Stolcke, “Finding consen-
sus in speech recognition: Word error minimization and
other applications of confusion networks,” Computer
Speech and Language, vol. 14, no. 4, pp. 373–400, Oc-
tober 2000.

[26] J. Fiscus, “A post-processing system to yield reduced
word error rates: Recognizer output voting error reduc-
tion (rover),” in Proceedings the IEEE Workshop on Au-
tomatic Speech Recognition and Understanding. Santa
Barbara, CA, USA: IEEE, December 1997, pp. 347–
354.



Improving Bilingual Sub-sentential Alignment by Sampling-based Transpotting
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Abstract
In this article, we present a sampling-based approach to im-
prove bilingual sub-sentential alignment in parallel corpora.
This approach can be used to align parallel sentences on an as
needed basis, and is able to accurately align newly available
sentences. We evaluate the resulting alignments on several
Machine Translation tasks. Results show that for the tasks
considered here, our approach performs on par with the state-
of-the-art statistical alignment pipeline giza++/Moses,
and obtains superior results in a number of configurations,
notably when aligning additional parallel sentence pairs care-
fully selected to match the test input.

1. Introduction
Sub-sentential alignment consists in identifying translation
units from a sentence-aligned parallel corpus, which is a
crucial component of state-of-the-art Statistical Machine
Translation (SMT) technology. One of the most prominent
approaches nowadays is Phrase-based Statistical Machine
Translation, which is built upon the word alignment output.
The problem of learning sub-sentential alignment from par-
allel texts is well-known, and numerous proposals have been
put forward to perform this task. Those methods roughly fall
into two main categories, broadly described here as the prob-
abilistic and the associative approaches.

The probabilistic approach, introduced in [1], considers
the problems of identifying links between words or groups
of words in parallel sentences. This approach consists in
defining a probabilistic model (e.g. IBM models [2]) of the
parallel corpus, the parameters of which are estimated by a
global optimization process which simultaneously considers
all possible associations in the entire corpus. Due to its tight
integration within the SMT framework, this approach is by
far the most widely used. However, it is characterized by a
number of shortcomings, in particular:

• Its parameters have to be estimated and optimized
based on the entire parallel corpus, hence all units in
the parallel corpus have to be aligned simultaneously.
This makes it a time-consuming process, especially
when working on large parallel corpora. In addition,
many aligned parallel sentence pairs are never used to
translate an input text.

• New data are constantly made available. It is a waste
of resource to run the alignment process repeatedly for
the whole corpus when only a proportionally low num-
ber of new sentences are added.

These shortcomings are addressed notably in [3], which uses
the online EM algorithm of [4] to implement online learning
for the HMM alignment model.

Associative approaches were introduced in [5]. They do
not rely on an alignment model, but rather on independence
statistical measures such as the Dice coefficient, mutual in-
formation [5, 6], or likelihood ratio [7]. In this approach, a
local maximization process is used, where each sentence is
processed independently.

An associative sub-sentential alignment method, named
Anymalign, was introduced in [8, 9]. This method relies on
simple comparisons on (source and target) word occurrence
distribution over randomly sampled sub-corpora. Words with
the same occurrence distribution over a particular sub-corpus
are extracted as an association. The more often two words
are associated, the better the association score between them,
and the more likely they are to be mutual translations. This
method was shown to produce better results than state-of-
the-art methods on bilingual lexicon constitution tasks, when
the evaluation is performed by comparing word associations
with reference dictionaries, but failed to perform on par with
state-of-the-art methods for building SMT phrase tables. It
was subsequently improved in [10], in which a recursive bi-
nary segmentation algorithm is used to process the output of
Anymalign so as to obtain better sub-sentential alignments
at the sentence level. While this improvement yields a per-
formance that is comparable with the statistical approach, it
can do so by processing large numbers of randomly sampled
sub-corpora in order to obtain an accurate association mea-
sure and a good coverage for the entire corpus.

In this work, we propose a method to adapt Anymalign
in order to align the parallel sentences on a per-need basis,
meaning that it can also be used to accurately align new
parallel sentences as they become available. The rest of
this paper is organized as follows: Section 2 describes our
sampling-based alignment approach in some detail, Section 3
presents an evaluation on several, complementary Machine
Translation experiments, and Section 4 discusses our main
results and introduces some of our future work.



2. Description of the method
We assume that, given a parallel bilingual corpus C, we wish
to align several sentence pairs in a set S: S can be a part of
the entire parallel bilingual corpus (S ⊆ C), or can corre-
spond to newly available data (S * C).

An association table is first extracted for sentences in S
by a sampling-based transpotting method. This table con-
tains only the source phrases that exist in some sentence(s)
of S. Using this table, a recursive binary segmentation algo-
rithm (as in [10]) is applied to each sentence pair of S so as
to generate the desired sub-sentential alignment.

2.1. Sampling-based transpotting

Our sampling-based transpotting method is inspired by
Anymalign, which aims at extracting sub-sentential asso-
ciations from multilingual, parallel corpora. Anymalign
repeatedly draws random sub-corpora from the full paral-
lel corpus, and extracts associations from each sub-corpora,
which are used to build an association table between phrases.
As each sub-corpora is independent, this process could be
stopped at any time. However, large numbers of sub-corpora
have to be processed in order to achieve a good coverage of
the phrases in the entire corpus.

In our work, Anymalign is adapted in order to extract
an association table for a specific list of sentence pairs S.
Each sentence pair (s, t) in S is processed separately and
a number N of random sub-corpora are sampled from the
full parallel corpus C for each sentence. For each sub-
corpora, the distribution profile is computed only for words
(or phrases) occurring in s and bilingual phrases with the
same profile are extracted as likely associations. The more
sub-corpora are processed for each sentence pair, the more
associations could be extracted, and the more accurate the as-
sociation measures are. The set of all associations extracted
from each sentence pair form the association table of S. In a
nutshell, this procedure performs bi-sentence alignment via
transpotting based on randomly sampled sub-corpora. The
complete process is illustrated on an English-French sen-
tence pair on Figure 1.

There are notable differences between this method and
Anymalign:

• Anymalign draws random sub-corpora from the par-
allel corpus, and computes the occurrence distribution
profile for all words of all sentence pairs in the sub-
corpora, while we need to compute such profiles only
for words in the sentence pair to align.1

• Anymalign is anytime but typically requires a large
number of sub-corpora to achieve a good coverage
over the entire corpus. We draw N sub-corpora for
each given sentence pairs to ensure better coverage for
the contents of each sentence pair to align. This allows

1Note that, when one’s objective is in fact to align a complete parallel
corpus, all counts should be kept.

(1) Given a source-target sentence pair, we need to extract
an association table for it:

one coke , please . ↔ un coca, s’il vous plaı̂t .

⇓

(2) Draw a random sub-corpus from the parallel corpus:

English French
1 one coffee, please . un café, s’il vous plaı̂t .
2 the coffee is not bad . ce café est correct .
3 yes, one tea . oui, un thé .

⇓

(3) Compute occurrence distribution profile for words in the
current sentence pair:

words with same distribution profile profiles
one , ↔ un , [1, 0, 1]
coke ↔ coca [0, 0, 0]

please ↔ s’il vous plaı̂t [1, 0, 0]
. ↔ . [1, 1, 1]

⇓

(4) If the source and target phrases are each contiguous, then
increment the count for the corresponding phrase pair:

1. count of (coke↔coca) plus 1

2. count of (please↔s’il vous plaı̂t) plus 1

3. count of (. ↔ .) plus 1

⇓

(5) Repeat steps (2) and (4) N times, so as to obtain an as-
sociation table for the given sentence pair, e.g.:

source phrase target phrase count
one ↔ un 830
coke ↔ coca 560

one coke ↔ un coca 20
, ↔ , 900

please ↔ s’il vous plaı̂t 160
please ↔ s’il 200
please ↔ plaı̂t 500

. ↔ . 980

Figure 1: Illustration of the sampling-based transpotting
method on an English-French sentence pair.
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pays countries 151,190
pays country 17,717
pays tiers third countries 10,865
les pays countries 6,284
mon pays my country 4,057
ces pays these countries 3,742
pays . country . 2,007
état country 122

w(pays,country) = p(pays|country)⇥p(country|pays)
= 17,717 + 4,057 + 2,007

151,190 + 17,717 + 10,865 + 6,284 + 4,057 + 3,742 + 2,007

⇥ 17,717 + 4,057 + 2,007
17,717 + 4,057 + 2,007 + 122

' 0.121

Figure 1: Computing a score between source word
pays and target word country from a subset of a
translation table produced by Anymalign with the
French and English parts of the Europarl corpus
(Koehn, 2005).

an indicator of the quality of the entry; it is just
the number of times the translation pair has
been produced by Anymalign (see (Lardilleux
et al., 2011a) for details).

This computation is illustrated on Figure 1.
What we do here is tantamount to a very simpli-

fied version of the algorithm that is used to train
standard translation models: starting with lexical
associations, we derive by heuristic means an opti-
mal (Viterbi) alignment, from which the translation
tables are finally computed. Our procedure is much
simpler, though, as we do not iterate the procedure
(like in EM training) and directly manipulate sym-
metric representations at the phrase level.

2.2 Segmentation Criterion
The segmentation criterion described hereafter is
inspired by the work of Zha et al. (2001) on docu-
ment clustering. Their problem consists in comput-
ing the optimal joint clustering of a bipartite graph
representing occurrences of terms inside a set of
documents. We adapt it to the search of the best
alignment between words of a source sentence and
those of a target sentence.

To this end, we consider a pair of sentences (S,T )
from the parallel corpus, where the source sentence
S is made up of I source words and the target sen-
tence T is made up of J target words: S = [s1 . . .sI]
and T = [t1 . . . tJ]. Moreover, we consider “split”
indices x and y which define a binary segmentation
of the source and target sentences (the “.” symbol
refers to the concatenation of word strings):

S = A. Ā with A = [s1 . . .sx�1] and Ā = [sx . . .sI]

T = B. B̄ with B = [t1 . . . ty�1] and B̄ = [ty . . . tJ]

B B̄
t1 . . . ty�1 ty . . . tJ

s1

A
... W (A,B) W (A, B̄)

sx�1
sx

Ā
... W (Ā,B) W (Ā, B̄)
sI

Figure 2: Schematic representation of the segmen-
tation of a pair of sentences S = A. Ā and T = B. B̄.

The choice of x and y will be guided by the sum W
of the association scores between each source and
target words of a block (X ,Y ) 2 {A, Ā}⇥{B, B̄}:

W (X ,Y ) = Â
s2X ,t2Y

w(s, t)

These notations are summarized in Fig. 2.
Then, we define the total score of a segmentation:

cut(X ,Y ) = W (X ,Ȳ )+W (X̄ ,Y )

Note that cut(X ,Y ) = cut(X̄ ,Ȳ ). In our case, a low
value indicates that the association scores between
the words of X and that of Ȳ on the one hand, and
between the words of X̄ and that of Y on the other
hand, are low; in other words, those two blocks are
unlikely to correspond to good translations, con-
trarily to (X ,Y ) and (X̄ ,Ȳ ). We would thus like
to identify the pair (x,y) that leads to the lowest
possible value of cut(X ,Y ).

As pointed out by Zha et al. (2001), this quantity
tends to produce unbalanced segments (document
clusters in their case) because of the absence of
normalisation, which warrants its replacement by:

Ncut(X ,Y ) = cut(X ,Y )
cut(X ,Y )+2⇥W (X ,Y ) + cut(X̄ ,Ȳ )

cut(X̄ ,Ȳ )+2⇥W (X̄ ,Ȳ )

This variant adds a density constraint on (X ,Y ) and
(X̄ ,Ȳ ), which is partially satisfied by the introduc-
tion of the denominators in the above expression.
Its values are in the range [0,2].

Our problem eventually consists in determining
the pair (x,y) that minimizes Ncut. Although effi-
cient search methods exist and are commonly used
in graph theory, our “graphs” (pairs of sentences)
are small in practice: about 30 words per sentence
in average in the Europarl corpus used in the fol-
lowing experiments. We thus content ourselves
with determining the best segmentation through an
exhaustive enumeration.

2.3 Alignment Algorithm
We can now recursively segment and align a pair
of sentences. At each step, we test every pos-
sible pair (x,y) of indices in order to determine
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Figure 2: Schematic representation of the segmentation of a
pair of sentences S = A.Ā and T = B.B̄ (from [10]).

to align sentences on a per-need basis, and furthermore
offers a more interpretable running time, which is now
controlled by the amount of desired sampling for each
sentence pair, which could e.g. depend on its length.

2.2. Sub-sentential alignment extraction

Once the association table for some sentence pairs is ob-
tained, a recursive binary segmentation algorithm, described
in [10], and inspired by the work of [11, 12], is used to gen-
erate a sub-sentential alignment for each sentence pair. Its
purpose is to recursively segment the source and target sen-
tence simultaneously on the basis of local association scores
so as to find the links between the source and target words.
It thus requires some association score w(s, t) between each
source word s and target word t in a sentence pair, which can
be the result of the process described in Section 2.1. Then,
recursive binary segmentation is guided by the sum W of the
association scores between each source and target words of a
block (X,Y ) ∈ {A, Ā} × {B, B̄} (as shown in Figure 2):

W (X,Y ) =
∑

s∈X,t∈Y
w(s, t) (1)

The best segmentation is the one which minimizes the
score defined in Equation 2:

cut(X,Y ) = W (X, Ȳ ) +W (X̄, Y ) (2)

which would indicate that the association between the words
of X and Ȳ on the one hand, and the words of X̄ and Y on
the other hand, have low association scores. Following [10],
we use instead a normalized variant so as to not to encourage
unbalanced segments:

Ncut(X,Y ) = cut(X,Y )
cut(X,Y )+2×W (X,Y ) + cut(X̄,Ȳ )

cut(X̄,Ȳ )+2×W (X̄,Ȳ )

(3)
With this segmentation criterion, the binary segmentation

algorithm tests every possible binary segmentation in order
to find the best segmentation score, and recursively segments
blocks in a greedy fashion. In our current implementation,
the segmentation terminates on blocks with at least one side
of length 1 token. Figure 3 shows an example of segmenta-
tion, where atomic aligned biphrases correspond to framed
rectangles containing values in bold. The words in aligned
biphrases are linked with each other, which forms the word-
to-word alignment of the bisentence.

un coca , s’il vous plaı̂t .
one 0.246 ε ε ε ε ε ε

coke ε 0.138 ε ε ε ε ε
, ε ε 0.624 0.002 ε ε 0.048

please ε ε ε 0.032 0.008 0.128 ε
. ε ε 0.020 ε ε ε 0.873

Figure 3: Example of alignment by recursive segmentation.
The number in each cell corresponds to the value of func-
tion w, with 0 < ε ≤ 0.001.

2.3. Self-convergency normalization

Segmentation scores for each position of token pairs are ini-
tialized by looking up values in the association table ob-
tained by sampling-based transpotting (see Section 2.1). Be-
cause these association scores may sometimes be unreliable
and poor indicators of a translation relationship, the best-first
segmentation algorithm may produce incorrect results, espe-
cially on long sentence pairs. In addition, the bilingual sen-
tence pairs are often in some relation to each other. So, well
aligned sentences can help improve the alignment of more
difficult sentences.

Therefore, we propose to use the previously produced
alignment to extract the source-target phrase pairs to build an
updated association table. This new table can then be used
for another, better informed pass of recursive segmentation.
This can be repeated until the obtained alignments are stable
across iterations. This is described in Algorithm 1, where
distance(A−A′) is the percentage of different links between
A and A′.

Algorithm 1 Self-convergency normalization
Given a parallel corpus C and its alignment A
NumIter=0
while NumIter < MaxIter do

Extract all aligned source-target phrases from C us-
ing A with the same heuristic as Moses
The extracted phrase pairs and their counts are used to
build an association table T (the same kind of table as
the table in step 5 in Figure 1)
Using T as the input of the binary segmentation algo-
rithm (cf. Section 2.2), a new alignment A′ is computed
if distance(A−A′) < ε then

return A
end if
NumIter+=1

end while
return A

3. Experiments
3.1. Experimental settings

In this section, we describe experiments intended to test the
performance of the associative sub-sentential alignment ap-



proach described in Section 2. We will focus on measuring
the impact of several alignment strategies for a phrase-based
SMT system. We will use the Moses toolkit [13], which
can be regarded as state-of-the-art for building SMT systems.
Moses will be used in all configurations to build phrase ta-
bles and reordering tables from alignment matrices, and its
decoder will be used to build candidate translations during
optimization (using standard MERT [14]) and testing.

Translation performance will be measured by classical
corpus-based metrics, BLEU [15] and TER [16]. All results
are average scores computed on the test set for 3 independent
optimization runs on the development set [17].

Experiments will be conducted on three language pairs
and two main corpora, and we will make use of several refer-
ence translations when possible. We will also resort to oracle
decoding using a greedy, approximate local search strategy
and a number of phrase-based operators [18] to get some ac-
count of the best translation score attainable given each spe-
cific phrase table. We will furthermore consider the compact-
ness of the produced phrase tables, as it can be regarded as a
desirable quality of phrase tables licencing works on phrase
table pruning (see e.g. [19]), and anormally large phrase table
may in fact only artificially inflate oracle results.

Two sets of experiments will be carried out in this work.
The first set of experiments is designed to validate the quality
of the alignment generated by our method (henceforth sba,
for sampling-based alignment) on some predefined bilingual
corpus against a state-of-art alignment pipeline, based on
giza++ [20], using default parameters from Moses. This
approach is refered to as giza++ . The second set of exper-
iments aims to assess the ability to align new bilingual data.
For this experiment, we will focus on adding sentence pairs
from a very large (unaligned) bilingual corpus, chosen on
the basis that they contain translations for previously out-of-
vocabulary tokens. Our approach will be compared against
the same alignment pipeline using the augmented parallel
corpus. This strategy is however costly as it requires to re-
train the complete models, so we also performed a compar-
ison with alignments obtained using the orginal alignment
models, without any retraining.

3.2. Data sets

Experiments were performed on two parallel corpora, de-
scribed in Table 1: BTEC is a small English-French sub-
part of the Basic Travel Expression Corpus [21]; and HIT
is a corpus of basic expressions built for the Beijing 2008
Olympics, used here in English, French and Chinese. We
used the BTEC development set of 2003 (devel03) and
BTEC test set of 2009 (test09) as our development and
test set, which are described in Table 2. Note that the for-
mer has 16 reference translations available for English, and
the latter has 7, allowing for a somehow more interpretable
measure of performance for language pairs with English as
the target language.

We will describe in Section 3.4 experiments that make

Corpus # lines #tokenen # tokenfr # tokenzh

BTEC 20K 182K 207K -
HIT 62K 600K 690K 590K
EPPS 1,982K 54,170K 59,702K -
supp 3.3K 111K 121K -
WMT 11,745K 317,688K 383,076K -

Table 1: Training bitext corpora statistics

Corpus #lines Avg(#tokenen) #tokenfr #tokenzh

devel03 506 4,098 (16 refs) 4,220 3,435
test09 469 3,928 (7 refs) 4,023 3,031

Table 2: Tuning and test sets statistics

use of additional data extracted from the large EPPS (Eu-
roparl) English-French parallel corpus of parliamentary de-
bates, as well as a substantially larger corpus from the trans-
lation task of the Workshop on Statistical Machine Transla-
tion (WMT)2: both are described in Table 1. Our develop-
ment and test sets will remain the same for all experiments.

English and French texts are normalized and tokenized
by our in-house tools, and Chinese texts are segmented by a
CRF-based Chinese word segmenter3.

3.3. Basic alignment task

This experiment aims to assess the quality of the sub-
sentential alignment generated by our method on a full bilin-
gual parallel corpus. We use the giza++ implementation
of [22] as a competitive baseline, with default settings : 5 it-
erations of IBM1, HMM, IBM3, and IBM4, in both direc-
tions (source to target and target to source). As for our align-
ment method, its alignment quality depends on the number
of sub-corpora (N ) that are drawn for each sentence pair. In
this work, we choose a constant value of N = 1000 for all
sentence pairs. The self-convergency normalization process
is repeated for a maximum of 10 iterations.

The results for the two alignment methods are reported in
Table 3, where we compare them on 2 parallel corpus (BTEC
and HIT) and their simple concatenation (BTEC+HIT) and
3 translation directions on the same test set.

3.3.1. In-domain evaluation

First, on the in-domain corpus, BTEC, we find that our
approach performs better than giza++, in particular by a
large margin on the single-reference English→French di-
rection (average of +2.13 BLEU). These results are fur-
thermore obtained using a substantially smaller phrase table
(315K vs. 360K entries in the phrase tables). Oracle-BLEU
also indicates a clear advantage for our approach (average

2http://www.statmt.org/wmt12
3http://nlp.stanford.edu/software/segmenter.

shtml



BTEC HIT BTEC+HIT
BLEU oracle-BLEU TER # entries BLEU oracle-BLEU TER # entries BLEU oracle-BLEU TER # entries

English→French (1 reference)
giza++ 45.68 76.26 37.03 360K 39.65 68.20 44.50 1,217K 47.97 83.62 35.45 1,546K
sba 47.81 77.78 36.60 315K 39.70 68.45 43.56 921K 47.55 84.40 37.22 1,241K

French→English (7 references)
giza++ 59.50 77.23 24.59 360K 45.52 68.58 33.99 1,224K 63.69 84.00 21.95 1,551K
sba 59.92 77.50 24.22 315K 45.34 69.59 33.79 937K 64.44 83.57 22.31 1,241K

Chinese→English (7 references)
giza++ - - - - 27.88 51.69 50.76 1,139K - - - -
sba - - - - 27.85 53.05 50.93 655K - - - -

Table 3: Results of experiments where specific bilingual parallel corpora are fully aligned. Values all correspond to average
scores over three decodings of the test file for 3 independent optimization runs.

of +1.52 BLEU). These last two results are possible indi-
cators of the fact that our approach produced a better sub-
sentential alignment of the parallel corpus: better results can
be (and are) obtained although fewer phrase pairs were ex-
tracted from the corpus.

3.3.2. Multiple-reference evaluation

Looking at the opposite translation direction with 7 refer-
ence translations, French→English, we still find that our
technique is superior to the baseline, although to a much
more modest extent (averages of +0.42 BLEU for the one-
best translation and +0.27 BLEU for the oracle). Using sev-
eral reference translations can potentially help us ensure that
measured improvements are more related to actual improve-
ments that e.g. make translation lexically more appropriate,
than to specific choices that would accidentally resemble
some particular reference translation. Again, our three in-
dicators (one-best translation, oracle translation, and phrase
table size) all indicate that our approach is here superior to
the baseline.

3.3.3. Out-of-domain evaluation

Moving to the slightly less in-domain HIT corpus (the
baseline performance drops from 59.50 to 45.52 BLEU on
French→English), we find that the two approaches now per-
form roughly in the same ballpark, with our approach still
producing significantly more compact phrase tables. For the
more interpretable French→English condition with 7 refer-
ence translations, we find that although BLEU cannot be
used to decide between the two, the oracle value still in-
dicates a large advantage for our sampling-based alignment
(average of +1.01 BLEU). This means that it managed to ex-
tract more useful phrase pairs, but that their various scores
could not be used to ensure that those would be used in the
one-best hypotheses of the decoder. Given that HIT is of a
different origin than the test corpus (BTEC), it is well con-
ceivable that translation preferences or even senses can often
differ, resulting in some appropriate translation hypotheses
with low scores that prevent them from appearing in one-best

hypotheses.

3.3.4. Larger, composite training corpus evaluation

The previous hypothesis seems to hold when considering the
larger task corresponding to the concatenation of the two
parallel corpora (BTEC+HIT), where HIT data outnumber
BTEC data by more than 3:1. Results are however less clear-
cut here: for instance, our approach still performs better on
French→English (average of +0.75 BLEU on one-best hy-
potheses), but fares worse in terms of oracle performance
(average of -0.43 BLEU). These results include a reflection
of the fact that giza++ improves its alignment with more
data, even when adding out-of-domain data [23]. At this
stage of our work, we do not control which particular sen-
tence pairs are drawn in our samples, so assessing the impact
of a larger overall sentence pool cannot be done.

3.3.5. Difficult language pair evaluation

Lastly, we turn to the more difficult Chinese→English
condition, which is significantly more difficult than its
French→English counterpart (27.88 BLEU vs. 45.52 BLEU
for the giza++ baselines). A similar pattern emerges for the
two language pairs: one-best translation performance is com-
parable, but oracle results indicate a clear advantage for our
sampling-based alignment (average of +1.36 BLEU). Fur-
thermore, for this language pair, we find that this is obtained
with significantly fewer phrase table entries (almost half as
many). Chinese words may in fact be very difficult to align to
English words, partly for ambiguity reasons, and many noisy
translation candidates may be extracted. Additionally, many
words may be left unaligned by giza++, leading to artifi-
cially large numbers of extracted phrase pairs by the default
grow-diag-final-and heuristic.

3.4. Incremental alignment task

In the previous section, we have shown that our approach
performs on par with the giza++ baseline on the studied
configurations for full corpus alignment. We now turn to the
issue of aligning new data, which in many situations could



Phrase tables HIT
main supplementary

(62K HIT) (3.3K EPPS) # entries # transl. BLEU 1g 2g 3g 4g TER
French→English (7 references)

giza++ none - - 45.52 76.5 52.2 37.8 27.1 33.99
| forced 59 1,993 47.94 76.8 55.4 41.0 29.2 34.62
| concat 60 1,190 48.69 78.4 56.1 41.4 29.8 33.09
| sba 64 681 49.83 80.9 57.3 42.0 30.5 30.61
| concat++ 62 1,218 50.23 81.5 57.8 42.6 31.1 29.81

sba none - - 45.34 77.0 52.1 37.4 26.9 33.79
| sba 64 681 50.45 81.8 58.3 42.5 30.9 29.94

Table 4: Results of experiments where a supplementary corpus is pooled and aligned by several methods.

only be performed on demand. Indeed, considering that all
input sentences in our test set could be translated indepen-
dently at large intervals of time, it would certainly not be
conceivable, time-wise and computation-wise, to perform a
full statistical alignment of the iteratively growing bilingual
corpus. We will nonetheless report evaluation results for this
situation below.

Few works have previously considered the task of in-
cremental alignment of parallel corpora [24, 25]. The fo-
cus in [25] is put on a careful selection of additional data,
a reflection of the fact that not all training data can be ben-
eficial for training and improving SMT systems [26]. For
these experiments, we will concentrate on a very specific
use of additional data with a conservative view4: sentences
will be pooled from a very large, any-domain parallel cor-
pus (EPPS in Table 1) on the basis that they contain at least
one occurrence of a word that is out-of-vocabulary (OOV) in
the baseline parallel corpus5. In order to study a condition
where significant numbers of such OOVs exist, we used the
HIT corpus as our main corpus, relatively to which our test
set contains 79 unique OOVs (436 occurrences). Our addi-
tional training data (EPPS) provided matches for 65 of them.
We retrieved a maximum of 100 sentences pairs for each of
these 65 OOVs, which yielded an additional parallel corpus
of 3,355 sentence pairs (supp in Table 1).

We now describe the configurations that will be com-
pared. A main table will be used for all configurations, corre-
sponding either to the giza++ baseline or to our sampling-
based approach. A supplementary table will be built from
supp by various means:

• forced alignment on supp using the statistical models
(previously) obtained on HIT (forced);

• statistical alignment on the concatenation HIT+supp,
and extraction of the alignments on supp only
(concat);

4We, however, do not have the guarantee that even if translations are
correctly extracted, those will be those found in the reference translations.

5Meaning that the word was not present in the original training data, not
that no translation for it could be extracted by some technique.

• sampling-based alignment on supp, sampling from the
union of HIT and supp (sba);

• statistical alignment on the very large corpus used for
experiments at WMT’12 [27], and extraction of the
alignments on supp only (concat++).

As said previously, the concat variants cannot be con-
sidered as practical solutions for the problem at hand. Once
alignments are obtained for the supp corpus, a separate
phrase table is used by the Moses tools as previously, and
MERT is used with the resulting two tables, where our addi-
tional table is used as backoff, for unigrams only. Therefore,
our additional training data, once aligned, will only be used
in practice for proposing translations for previously unknown
words. Note that in this experiment we do not extract neces-
sary information to update the lexicalized reordering models
used by Moses.

Results for this set of experiments are given in Ta-
ble 4. Using giza++ for building the main translation
table, we find a very clear ranking for all the studied
strategies: concat++ > sba > concat > forced >
none. The only approach that outperforms ours (average
of +0.4 BLEU) is the statistical alignment technique us-
ing more than 11.7M sentence pairs6. sba outperforms
concat (average of +1.14 BLEU) and forced (average
of +1.89 BLEU), the latter being the most practical baseline
to consider. Significant improvements can be observed on
1-gram precision, which percolate nicely to higher-order n-
grams. We note once more that our technique produces much
smaller phrase tables, and further note that the concat vari-
ants already significantly reduce the numerous entries pro-
duced by forced.

Interestingly, we manage to improve this result further
by using also our sampling-based alignment technique for
aligning the main parallel corpus (average of +0.62 BLEU),
which furthermore happens to be even slightly superior to
concat++ (average of +0.22 BLEU, with small improve-
ments on 1-gram and 2-gram precisions). To explain this
fact, we return to our oracle results reported in Table 3 on

6This alignment process took roughly 2 weeks using modern computing
resources.
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(a) giza++ forced alignment (b) giza++ concat (c) sampling-based alignment

Figure 4: Example of matrices on French-English obtained using two giza++ baselines and our sampling-based strategy.

HIT for French-to-English translation. We there found that
one-best translation was slightly superior for the baseline
(average of -0.18 BLEU), but that the oracle for our approach
was superior (average of +1.01 BLEU), indicating that our
approach did extract more useful phrases, but which were
apparently poorly scored, possibly due to domain mismatch
between training and testing. It seems that providing the de-
coder with translation for previously OOV words had an ad-
ditional effect on the configuration where we use the phrase
table obtained using our technique: such translations now
seem to be selected more often, resulting e.g. in a largely
improved 1-gram precision by using our additional phrase
table (+4.8).

4. Discussion and future work
In this work, we have presented an extension of the work
by [10] on sampling-based alignment and a number of ex-
periments that have shown its very competitive performance.
Our approach performed at worse on par with a state-of-the-
art baseline implementing a probabilistic approach, and ob-
tained superior results in a number of configurations. Its
more apparent strength emerged when aligning new data
containing highly useful words (words that were previously
out-of-vocabulary in the available data). While it remains
to be shown more formally, we hypothesize that these im-
provements mainly stem from the improved alignment of rare
words and its cascading effects. Figure 4 illustrates a case
where the rare French word déguisés (here: in costumes) was
only correctly aligned by our technique, and where the nega-
tive consequences for the two giza/moses baselines could
be important (at least, for our experiments, no translation for
déguisés alone could be extracted from this sentence pair by
giza++ here).

The framework that we have described for targeted addi-
tional data selection from parallel corpora will be the basis
for our future work. We can, by principle, work at the level
of tera-scale translation [28], by accessing efficiently (using
suffix arrays) large quantities of unaligned parallel corpora,
and perform transpotting and phrase table construction on a
per-need basis. However, considering the diversity in nature,

origin and quality of all possibly additional training exam-
ples, some adaptation should be performed so as to introduce
preferences for the most promising examples, and hence ex-
tracted translations. In this context, the most realistic sce-
nario will be a follow-up to our previous work on any-text
translation [29], where notably little or no a priori knowl-
edge exists about (additional) training examples, and adap-
tation should be performed on-the-fly. Finally, it seems ob-
vious that the search for new translations, and in particular
for unknown words and phrases as well as poorly adapted
phrases, should also be pursued in less parallel corpora (see
e.g. [30]). It is then an interesting question to consider how
our technique would fare and how it could be adapted to work
indifferently on parallel or reasonably comparable sentence
pairs.
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Abstract

In this paper we describe our work on unsupervised adapta-
tion of the acoustic model of our simultaneous lecture trans-
lation system. We trained a speaker independent acoustic
model, with which we produce automatic transcriptions of
new lectures in order to improve the system for a specific
lecturer. We compare our results against a model that was
trained in a supervised way on an exact manual transcription.

We examine four different ways of processing the de-
coder outputs of the automatic transcription with respect to
the treatment of pronunciation variants and noise words. We
will show that, instead of fixating the latter informations in
the transcriptions, it is of advantage to let the Viterbi al-
gorithm during training decide which pronunciations to use
and where to insert which noise words. Further, we utilize
word level posterior probabilities obtained during decoding
by weighting and thresholding the words of a transcription.
Index Terms: lecture translation, spoken language transla-
tion, simultaneous translation

1. Introduction
Lectures at universities around the world are often given in
the language of the country or region that the respective uni-
versity is located in. At the Karlsruhe Institute of Technology
(KIT), for instance, most lectures are held in German. This
is often a significant obstacle for students from abroad wish-
ing to study at KIT, as they need to learn German first. In
order to be able to truly follow the often complex academic
lectures, the level of proficiency in German that the foreign
students need to reach is quite high.

While, in principal, simultaneous translations by human
interpreters might be a solution to bridge the language bar-
rier in this case, in reality this approach is too expensive. In-
stead, technology in the form of spoken language translation
(SLT) systems can provide a solution, making lectures avail-
able in many languages at affordable costs. Therefore, one
of our current research focuses is the automatic translation
of university lectures [1][2], and thus aiding foreign students,
by bringing simultaneous speech translation technology into
KIT’s lecture halls.

The simultaneous lecture translation system that we use
is a combination of an automatic speech recognition (ASR)
and a statistical machine translation (SMT) system. For the
performance of such a spoken language translation (SLT)
system the word error rate of the ASR system is critical, as
it has an approximately linear influence on the overall trans-
lation performance [3].

Automatic speech recognition for university lectures is
rather challenging. In order to obtain the best possible
ASR performance, the recognition system’s models, includ-
ing acoustic model (AM) and language model, need to be
tailored as closely as possible to the lecturer’s speech and the
topic of the lecture.

In this paper we investigate the unsupervised adaptation
of the acoustic model of our simultaneous lecture translation
to specific speakers. We start with a speaker independent
acoustic model that has only seen very few or no data for the
respective lecturer to which we adapt. With this model we
produce automatic transcriptions of new lectures from one
lecturer which we then exploit in order to improve the sys-
tem for this lecturer. We further examined the impact of vari-
ous ways of treating pronunciation variants and noise models
during model training, as the decoding results on the train-
ing data contain those informations besides the hypothesized
string of words. However, we will show that it is not neces-
sarily the best strategy to directly use these informations as
provided by the recognizer, and rather let the Viterbi algo-
rithm during training decide where to use which pronuncia-
tions and when to insert additional noise words.

Similar to [4] we intended to evaluate the possible im-
provements of a system by unsupervised acoustic model
training in dependency of the amount of training data. We
share the same basic conditions, that no closely related texts
were available for any kind of supervision. Similar to [5, 6],
we made use of state confidence scores on word level. As a
pre-processing step to unsupervised training, automatic tran-
scriptions were filtered by using word posterior confidence
scores for thresholding. Our training conditions can be com-
pared to [7] where new data for retraining comes from the
same speaker, channel and related conversation topics. Fol-
lowing the implications of [8] we add low confidence score



data to the training, but unlike in other work we apply word-
based weighting in order to compensate for errors, as it was
done by [9] for acoustic model adaptation. The assumption
is that erroneous data is helpful to improve system general-
ization. Unlike other work, e.g. [10], we refrained from a
lattice-based approach.

2. Data
The experiments in this paper were conducted with the help
of the KIT Lecture Corpus for Speech Translation [11]. The
corpus consists of recorded scientific lectures that were held
at the Karlsruhe Institute of Technology (KIT). Currently
the corpus mainly contains computer science lectures, and
a small amount of lectures from other departments and cere-
monial talks.

2.1. Training Data

The speaker-independent system that we used in our experi-
ments was trained on about 94 hours of speech from the lec-
ture corpus. Our experiments were constrained to two dis-
tinct speakers. As training data we had 7.4 hours for speaker
A and 8.3 hours for speaker B respectively, which had not
been used for training the speaker independent system (see
also Section 3).

2.2. Test Data

For speaker A we took one, for speaker B two recordings —
0.5h and 0.6h overall length respectively — from the avail-
able data as our test material. These recordings come from
separate lectures than the remaining training data, so that we
can actually simulate the way the training data would be used
during the real operation of the lecture translator.

3. Experimental Set-Up
In our experiments we simulate the way an ASR system
would work when being used in our simultaneous lecture
translation system as it is deployed in KIT’s lecture halls.

When the system starts to translate the lecture series of
a new lecturer, only a generic, mostly speaker independent
acoustic model will be available. With every new lecture
given, new audio recordings of the lecturer become available,
but no manual transcripts. The system will thus only be able
to exploit these audio recordings to incrementally transform
the speaker-independent acoustic model that is available at
the beginning into a speaker-dependent model that fits the
specific lecturer.

3.1. Speaker-Independent System

The speaker independent system used in our experiments was
taken from the inauguration of the lecture translation system
at KIT on June 11th 2012 [12]. For the inauguration, first a
speaker-independent acoustic model system was trained on
all available training data from the KIT lectures corpus, and

then adapted to the individual lecturers.
The ASR system’s pre-processing uses the warped min-

imum variance distortionless response (MVDR) [13] with a
model order of 22 without any filter-bank. Vocal tract length
normalization (VTLN) [14] was applied in the warped fre-
quency domain. The mean and variance of the cepstral coef-
ficients were normalized on a per-utterance basis. The re-
sulting 20 cepstral coefficients were combined with seven
adjacent frames to a single 300 dimensional feature vector
that was reduced to 40 dimensions using linear discriminant
analysis (LDA).

The acoustic model is based on HMMs using con-
text dependent generalized quinphones with three states per
phoneme, and a left-to-right topology without skip states. It
uses a total of 4,000 models that were trained using incre-
mental splitting of Gaussians (MAS) training, followed by
semi-tied covariances training [15] and 2 iterations of Viterbi
training.

The 4-gram language model used in our experiments was
trained on texts from various sources like webdumps, news-
papers and acoustic transcripts. The, in total, 28 text corpora
range in size from about 5 MByte to just over 6 GByte [12].

4. Unsupervised Training Experiments
In order to adapt the speaker independent acoustic models to
our test speakers, we used unsupervised training. For this,
the training data of the respective speaker was automatically
transcribed. With the help of word lattices, every word in
the transcription is annotated with its posterior probability
as a measure of confidence. On the transcriptions obtained
this way we then performed one iteration of Viterbi training,
starting with the speaker independent acoustic model.

In our experiments, described below, we investigated dif-
ferent ways of treating pronunciation variants and noise mod-
els in training, as well as different ways of making use of the
confidence annotations.

We were also interested in the way that increasing
amounts of available training data affect the word error
rate. We therefore divided our training data into five chunks
(2.29h, 3.05h, 3.81h, 4.57h, 6.87h) for speaker A and six
chunks (0.99h, 2.17h, 3.44h, 4.79h, 6.23h, 7.68h) for speaker
B.

We measured the word error rate of the resulting acoustic
models on the test set of our test speaker. We decoded the
speaker specific test sets with an offline set-up in a similar
way decoding is performed in the lecture translation system,
i.e., without lattice rescoring, in real-time, and with incre-
mental VTLN and feature space constrained MLLR [16].

4.1. Baseline

A lower limit for the performance of the speaker dependent
models that were trained on the unsupervised data is given by
the performance of the speaker independent model. It gives
a word error rate of 19.7% on our test speaker A, and 34.8%



on speaker B.
For speaker A we were able to estimate how effective the

unsupervised training is by comparing our results against a
model that was trained in a supervised way on an exact man-
ual transcription of the training data. We expect that this will
give us an upper limit for the results obtained from unsuper-
vised training. Just like it was done for the systems for the
lecture translation inauguration (see Section 3) we applied
one Viterbi training iteration for our test speaker, resulting
in a speaker dependent model. It gives a word error rate of
17.3% on the test speaker’s test set. For speaker B, no ex-
act manual transcriptions were available, rendering these re-
spective tests a case study for the real life application of our
system.

4.2. Treatment of Pronunciation Variants and Noise
Words

In our first set of experiments we examined how to treat pro-
nunciation variants and noise models in training. The in-
tention of these experiments was to elaborate, whether addi-
tional information carried by the transcriptions is beneficial
for the training process.

While the output of the recognition run on the training
data contains pronunciation variants and noise words, we
will see that it is not necessarily the best procedure to use
them as provided by the recognizer. Instead it turns out that
it is of advantage to let the Viterbi algorithm during train-
ing decide which pronunciations to use for the words dur-
ing training, as well as, where to insert which noise words.
This is done by inserting pronunciation variants as alternative
paths to the base form of the words; noise words are inserted
as alternative paths between regular words.

JANUS allows modifications on the generated hypothesis
during label writing. Within the process of writing labels, the
decoder chooses the most probable variant of a recognized
word and autonomously inserts optional words into the cur-
rent hypothesis. We experimented with four different ways
of processing the decoder outputs of the automatic transcrip-
tion with respect to the treatment of pronunciation variants
and noise words:

recognition The annotation of noise words and pronuncia-
tion variants are taken as is from the recognition output
and is not altered by the Viterbi training.

baseAll Pronunciation variants in the recognizer output are
mapped to their base form, and the pronunciation vari-
ants used during training are picked by the Viterbi
alignment in training. Wherever a noised word was
hypothesized, all other noised words are inserted as
alternative paths, and the actual noise word used for
training is again picked by the Viterbi alignment.

baseWords Only regular words are mapped to their base-
form and their pronunciation variants are inserted as

alternative paths. The hypothesized noise words are
left as recognized.

filtered All regular words are mapped to their base form,
their pronunciation variants are inserted as alternative
paths; all recognized noise words are removed, and
instead inserted as alternative paths between regular
words.

Filtering Example
filtered wenn wir hier
baseAll $ wenn wir $ hier
baseWords $(noise) wenn wir $(breath) hier
recognition $(noise) wenn(1) wir(6) $(breath) hier

Table 1: Different filtering methods for pre-processing. fil-
tered corresponds to plain text, baseAll contains general
noise tags, baseWords is enhanced by annotations of pronun-
ciation variants, and recognition resembles the unprocessed
decoder output.
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Figure 1: WER in % for the four different configurations for
treating pronunciation variants and noise words with increas-
ing amounts of training data.

Table 1 illustrates the different filtering methods that are ap-
plied to the automatic transcriptions before training. Figure
1 shows the resulting performance of the four configurations
on the test speakers for increasing amounts of training data.
The observations allow us to conclude that training on the ex-
act transcriptions from the recognition run (recognition) are
not the optimal choice. For speaker A, the improvement is
significantly slower with increasing amounts of training data
than for the other three methods. For speaker B, this type
of transcriptions again does not lead to the optimal training
performance. When using all available training material, dif-
ferences between the filtering methods decrease. However,



recognition type transcriptions can still not keep up with al-
ternatively pre-processed annotations. Categories baseWords
and baseAll perform about equally well, where the latter
might be slightly more robust, as the performance curve as
a function of the amount of training data tends to stay more
stable in comparison to the one of baseWords and the other
modalities’ curves. It is interesting to see that configuration
filtered seems to be beneficial for systems that already per-
form reasonably well, whereas for a weaker baseline perfor-
mance other configurations are preferrable.

The baseline performance seems to have a noticeable
impact on the effect of the adaptive training. For systems
that already perform well, the improvements that can be ex-
pected tend to be lower than for systems that start with poorer
recognition capabilities, according to the observations: For
speaker B, speaker dependent models perform better than
the speaker-independent models when at least 1h of train-
ing data is available, whereas for speaker A about four times
as much data is necessary to see improvements in the same
magnitude. The better the baseline performs, the more data
is needed to observe first improvements. Ultimately and as
expected, training on exact, i.e., manual transcriptions of the
training data outperforms the unsupervised training, as can
be seen for speaker A, where we had manual annotations at
hand.

4.3. Confidence Weighting & Thresholding

The most common methods for processing unreliable, erro-
neous transcriptions in unsupervised acoustic model training
are based on lattice confidence measures at word or state
level [10]. In our experiments we utilized the word level pos-
terior probabilities obtained during decoding. We utilized the
confidences in three ways:

weighted Sets the gamma probabilities of the states of a
word during Viterbi training to the posteriori proba-
bility of the respective word.

thresh Removes words with a confidence below a certain
threshold from training.

weighted+thresh Combines both methods.

Given a Viterbi path through a built up HMM of a train-
ing utterance, a weighting factor gamma can be assigned to
every frame prior to the update step for the model weights.
If gamma is set to 0, parts of a path are effectively excluded
from training. A gamma 6= 0 results in a weighted contribu-
tion of this particular frame to the training. Here, the gamma
value corresponds to the confidence score conf(w), e.g., the
posterior probability of the word w to which a frame frwi
belongs, if weighting is applied. Thresholding with a fac-
tor t is performed by setting gamma to 0 for each frwi with
conf(w) ≤ t.

Figure 2 shows the result of weighting with confidences
and applying a threshold for our test speakers. Of these meth-
ods, the word-based weighting produces the better systems

for both speakers: Weighting with the confidences gives the
best performance, particularly when using all availabe data,
whereas thresholding at least matches the performance of
training on unfiltered data and at best gives slight advantages
over not using confidences at all, in cases where a sufficient
amount of training data is available. We randomly selected a
threshold of 25% as lower limit for our experiments. Further
experiments that are not represented in Figure 2 revealed,
that the threshold should be used with care, as using too high
a threshold discards too much data, and the performance suf-
fers. Combining weighting and a threshold of 25% leads to
the smoothest performance curve and has an effect on perfor-
mance similar to weighting alone.
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Figure 2: WER in % when weighting training data with con-
fidences (weighted), excluding words from training by a pos-
terior probability below a certain threshold (25%) (thresh
25%), and a combination of both (combination), compared
to training without weighting and thresholding (normal).

5. Conclusion
In this paper we have described work on unsupervised adap-
tation of the acoustic model of our simultaneous lecture
translation. We produced automatic transcriptions of new
lectures with a speaker independently trained baseline sys-
tem in order to improve the same for specific lecturers.

Evaluating four different ways of processing the decoder
outputs led to the conclusion that it is of advantage to let
the Viterbi algorithm during training decide which pronunci-
ations to use and where to insert which noise words, instead
of fixating the latter informations. The degree of detail for
the transcriptions correlates with the baseline performance
given a target speaker. baseAll and baseWords are benefi-
cial when the baseline performance is lower, whereas filtered
is better when the system already performs reasonably well,
promoting the expectation that the Viterbi algorithm is able
to make more accurate decisions with a better starting point,



whereas additional information provided with the transcrip-
tions helps when the baseline models show a lower perfor-
mance. Speaker dependent models perform better than the
speaker-independent models when at least 1h of training data
is used. The Viterbi algorithm needs a certain amount of data
so that training will succeed, where the amount required for
performance gains correlates with the baseline performance.

Further, we utilized the word level posterior probabili-
ties obtained during decoding by weighting and thresholding
the words of a transcription. Combining word-based weight-
ing and a threshold of 25% led to the smoothest performance
curve as a function of the amount of training data. Our best
systems in terms of WER reach an error rate of 18% and
30.7% for speakers A and B respectively, being trained on
baseAll (A) and baseWords (B) processed transcriptions and
weighted training. An additional threshold of 25% led to
a competitive WER of 18.2% and 30.9% respectively. Ob-
viously, weighting allows to cushion the influence of erro-
neously annotated training data, which is likely to have a
lower confidence than potentially correct parts. The same
explanation applies for the combination of weighting and
thresholding, which leads to an even smoother convergence,
whereas thresholding alone either excludes only few erro-
neous data, or even lots of correct data, depending on it’s
strictness. The winning techniques represent possible candi-
dates for use in our simultaneous lecture translation systems
as they combine fast convergence with good performance.
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proved method for unsupervised training of lvcsr sys-
tems,” in Proceedings of the INTERSPEECH 2007,
Antwerp, Belgium, August 2007.

[6] T. Kemp and A. Waibel, “Unsupervised training of a
speech recognizer using tv broadcasts,” in Proceed-
ings of the EUROSPEECH 1999, Budapest, Hungary,
September 1999.

[7] G. Zavaliagkos, M.-H. S. abd Thomas Colthurst, and
J. Billa, “Unsupervised acoustic model training,” in
Proceedings of the ICSLP 1998, Sydney, Australia,
November 1998.

[8] H. Li, T. Zhang, and L. Ma, “Confirmation based
self-learning algorithm in lvcsr’s semi-supervised in-
cremental learning,” Procedia Engineering, vol. 29, pp.
754–759, 2012.

[9] C. Gollan and M. Bacchiani, “Unsupervised acoustic
model training,” in Proceedings of the ICASSP 2008,
Las Vegas, NV, USA, March 2008.

[10] T. Fraga-Silva, J.-L. Gauvain, and L. Lamel, “Lattice-
based unsupervised acoustic model training,” in Pro-
ceedings of the ICASSP 2011, Prague, Czech Republic,
May 2011.
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[12] E. Cho, C. Fügen, T. Hermann, K. Kilgour, M. Mediani,
C. Mohr, J. Niehues, K. Rottmann, C. Saam, S. Stüker,
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Abstract

Current ASR and MT systems do not operate on conver-
sational Finnish, because training data for colloquial Finnish
has not been available. Although speech recognition perfor-
mance on literary Finnish is already quite good, those systems
have very poor baseline performance in conversational speech.
Text data for relevant vocabulary and language models can
be collected from the Internet, but web data is very noisy and
most of it is not helpful for learning good models. Finnish
language is highly agglutinative, and written phonetically.
Even phonetic reductions and sandhi are often written down
in informal discussions. This increases vocabulary size dra-
matically and causes word-based selection methods to fail.
Our selection method explicitly optimizes the perplexity of
a subword language model on the development data, and
requires only very limited amount of speech transcripts as de-
velopment data. The language models have been evaluated for
speech recognition using a new data set consisting of generic
colloquial Finnish.

1. Introduction
Finnish language has a colloquial variant that differs from
the formal literary Finnish substantially. While clearly pro-
nounced literary Finnish can already be recognized with high
precision, current ASR systems are unable to recognize con-
versational Finnish, because there has not been any training
or evaluation data available.

With regard to a speech recognizer, the set of phonemes
is the same in both language varieties, but the difference in
vocabulary and grammar is clear [1], so we have started the
research on colloquial Finnish NLP by collecting text data.
The relevance of the collected text for speech recognition has
been evaluated with Aalto speech recognizer. In addition to
speech recognition, the data is valuable for other tasks such as
machine translation as well, because Finnish language com-
munication more and more includes colloquial characteristics
[2].

So far there are no statistical language models that would
cover colloquial Finnish. Finnish conversations in e.g. Inter-
net are written down phonetically, often including phoneme
reductions and compounding, suggesting that on-line discus-

sions would offer useful data for language modeling.1 While
there are huge amounts of data available, it is important to
select only what is useful for the modeling task. The irrelevant
n-grams increase confusability and computational burden in
language models. Irrelevant data also makes analysis such
as discovery of morphemes and word classes error-prone and
computationally more intense. For these reasons we have
evaluated speech recognition errors and language model per-
plexities, as well as the reduction in data size.

Related research has been carried out earlier in the context
of adapting an out-of-domain language model with in-domain
data. A popular approach has been to train an in-domain
language model and select text segments with low perplexity
[3]. Klakow trained language models from out-of-domain
data, computing the change in in-domain perplexity, when a
text segment is removed from the training data [4].

Sethy et al. used relative entropy to match the distribution
of the filtered data with the in-domain distribution [5]. Instead
of scoring and filtering each text segment individually, they
select text segments sequentally, adding a new segment to
the selection if it reduces relative entropy with respect to the
in-domain data. The algorithm was later revised to use a
smoothed version of the Kullback-Leibler distance that uses a
tunable smoothing parameter [6], with improved results.

Moore and Lewis used formal reasoning to show that if
the selection method is based on the probability (in terms of
cross-entropy or perplexity) given by an in-domain language
model to the training text segment, one should compare the
probability to the probability given by an out-of-domain lan-
guage model [7]. They computed the cross-entropy of each
text segment according to an in-domain language model and
an out-of-domain language model, and used the difference
between the two cross-entropies as the selection criterion.

From the above approaches the one proposed by Klakow
requires the least amount of in-domain development data,
since models are estimated only from the out-of-domain data.
At the time we had very little in-domain development data of
conversational Finnish (we used a set of 1047 utterances in
these experiments), so this was the only applicable approach.
The method may become computationally demanding since it

1The most notable difference between transcribed speech and written
conversation is that disfluencies are usually omitted in writing.



requires training as many language models as there are text
segments, but the computation can be done in parallel.

Another line of research has used information retrieval
techniques to select in-domain documents. Term frequency–
inverse document frequency (tf-idf) is a popular measure of
document similarity. After constructing a vector representa-
tion of each document, it is efficient to find documents that
are similar to a query string. Mahajan et al. proposed to use it
for language model adaptation based on current recognition
history [8].

We have collected Internet conversations using Google
search, and by crawling Finnish discussion sites. The obtained
text segments are scored, and the worst scoring segments are
pruned. The threshold score for pruning text segments is
found automatically, so as to minimize the perplexity of the
resulting language model on a held-out data set. The unlim-
ited vocabulary presents challenges in using perplexity for
scoring and for finding the pruning threshold. The perplexity
optimization is possible only with a subword language model.
We have also collected a new set of transcribed Finnish con-
versations for development and evaluation purposes.

The next section discusses the challenges posed by the
unlimited nature of Finnish vocabulary. Section 3 presents
our new development and evaluation data. In Section 4 we ex-
plain how we have collected web data for language modeling.
Section 5 describes how we have performed our evaluations,
and the results are given in Section 6. Finally, Section 7 draws
conclusions.

2. Vocabulary in conversational Finnish
speech recognition and perplexity computation
The highly agglutinative nature of Finnish language makes it
difficult to create an exhaustive vocabulary for speech recog-
nition. Creutz et al. show a comparison of vocabulary growth
across different languages [9]. While conversational speech is
generally thought to be less diverse than planned speech, there
are no less word forms used in conversational Finnish text
than in a similar amount of literary Finnish. The reason is that
the phonetic variation in conversational Finnish is translated
into new vocabulary.

Finnish orthography is very close to phonemic, meaning
that written letters generally correspond to spoken phonemes.
In informal conversations, phonetic variation is also often
reflected in writing, even to the extent that sandhi is expressed
in written form. For example, “en minä tiedä” is literary
Finnish, and can be translated “i don’t know”. Reduced forms
of the same expression are used in spoken conversation, but
often in textual communication as well:

en mä tiedä
en mä tiiä
emmä tiiä

The situation is different from English, where there is gen-
erally only one way to spell each word, even though several

different pronunciations exist. When having a spoken conver-
sation, one could actually utter /aI doUnt noU/, /@d@noU/, or
/d2n@U/, but in any of these cases one would probably write
“i don’t know”, if the conversation was textual.

A comparison of vocabulary growth in Finnish and En-
glish Internet conversations and formal texts is shown in Fig-
ure 1. The formal English plot has been created from news-
paper corpora. The formal Finnish data is literary Finnish
from books and newspapers. The conversational Finnish text
is Internet conversations from Suomi24 discussion site, cov-
ering many different topics. The conversational English is
gathered from the web by searching text related to topics in
meeting transcripts from CMU, ICSI, and NIST [10]. Web
texts were processed using normalization scripts. It should be
noted that the quality of text normalization may vary, as well
as the degree to which the web data sets are spontaneous and
colloquial.
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Figure 1: Vocabulary growth, when all the encountered words
are added to the vocabulary, on newspaper-style formal text
and Internet conversations

The curves show that, as expected, vocabulary growth in
formal English is clearly faster than that in English conversa-
tions. However, in Finnish Internet conversations vocabulary
grows at a similar pace to, and eventually exceeds that of
formal Finnish.

Another comparison was made to see how the vocabulary
growth affects OOV rates, by using an independent test set
from each category. Figure 2 illustrates the percentage of
words in the corresponding test set that are missing from
the training set, for growing amounts of training data. The
training data is the data used to plot Figure 1. The formal
English test data was transcribed broadcast news speech, and
the formal Finnish was planned literary Finnish from the
SPEECON [11] corpus. The conversational test data sets



were transcribed conversations, omitting hesitations. The
high OOV rates on transcribed Finnish conversations suggest
that the vocabulary growth in Finnish Internet conversations
is not just a result of poor text normalization or clean up.
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Figure 2: Development of OOV rate, when all the encountered
words are added to the vocabulary, on newspaper-style formal
text and Internet conversations

The standard approach for unlimited vocabulary Finnish
language speech recognition has been to use statistical morphs
as the basic language modeling unit, instead of words [12]. It
seems that statistical morphs obtained by direct application of
Morfessor Baseline [13] to the word list do not model conver-
sational Finnish well. The reason may be insufficient quality
or quantity of training data, or the pronunciation variation
behind new word forms. Factored language models [14] is
one way to alleviate the vocabulary size issue, but at the mo-
ment there are no tools for extracting meaningful factors from
colloquial Finnish word forms. Development of such tools
would be extremely difficult because of the numerous ways
in which phonetic variation can alter the words.

We tried conversational speech recognition with morph-
based models, but so far there was no improvement over word
models in terms of word error rate. However, the perplexity
computations in the text selection algorithm have been per-
formed using morph models. The reason is that there are so
many OOV words that we need reliable estimates also for n-
grams containing OOV words. Even though the initial morph
models are not yet sufficiently good for ASR, they seem to
offer a reasonable approximation for perplexity computation.

Language model perplexity is generally computed either
including only those words that occurred in the training data,
or using an open-vocabulary language model, i.e. one that
contains the unknown word token <UNK>. The probability for
unknown words is obtained by replacing the most infrequent

words in the training data with <UNK>, or by discounting the
observed unigram probabilities.

If one chooses to use a closed vocabulary, and compute
perplexity only on in-vocabulary n-grams, the perplexity value
will increase when the number of OOV words decreases. This
makes perplexity optimization in Finnish difficult, since we do
not know if we should prefer low perplexity or low OOV rate.
This problem is easily overlooked with English language data,
because the percentage of OOV words stays constant enough
not to play a significant role in determining the perplexity
value.

We did not find open-vocabulary language models to be
a suitable solution either. The problem is that the selection
algorithm is significantly affected by how the <UNK> proba-
bility is determined. The collected conversational Finnish text
contains so many word forms that occur only once, that their
probability mass alone gives a too high estimate for the OOV
probability. Selection of text segments based on perplexity of
such a model would prefer segments with high OOV rate.

3. Transcribed Finnish conversations
For development and evaluation data, we have transcribed
Finnish conversations: five radio conversations from 13 dif-
ferent speakers, three podcast conversations from 5 different
speakers, and recordings of 67 students discussing in pairs
with headsets on. These conversations encompass a diverse set
of speaking styles and topics, as the intention of this research
is not to adapt statistical models to a specific topic or domain,
but to collect generic colloquial Finnish data. The students
were encouraged to discuss from any topic they could think
of, although they were given 16 example topics. They could
also use a web browser to find conversation topics from news
sites. Only a portion of each conversation containing fluent
conversation was selected for transcription. The discussions
were entirely colloquial and very natural.

The conversations were divided into development and
evaluation sets so that the same radio programs or speakers do
not appear in both development and evaluation set. In total the
evaluation set contains 44 minutes of audio, 541 utterances,
and 17 different speakers. DEVEL1 development set contains
1047 utterances from 49 speakers, and DEVEL2 contains 445
utterances from 19 speakers.

Development data is required for filtering out irrelevant
text. It may be used for both scoring text segments, and
optimizing the rejection threshold, as explained in the next
section. It is essential that in such case, different development
data is used for text scoring and for finding the threshold
score. Otherwise filtering will be too intense because of
overfitting. When development data is not needed for text
scoring, we have used the entire DEVEL1 and DEVEL2
data sets for optimizing the rejection threshold. Otherwise
DEVEL1 has been used for scoring, and DEVEL2 has been
held out for optimizing the filtering threshold. Both DEVEL1
and DEVEL2 sets were also included as training data for the
acoustic model used in the speech recognition experiments.



4. Collecting and filtering web text for
modeling Finnish language

4.1. Collected web corpora

Internet search engines are commonly used to query text for
language modeling [10]. We collected several text corpora
from the Internet, first using a script that extracts results from
Google queries. The data set WEB1 was retrieved using de-
vised 2-grams, 3-grams and 4-grams as query strings. The
query n-grams were constructed from colloquial word forms,
intentionally forming expressions that are used only in con-
versational Finnish.

A more systematic way to gather data set WEB2 was
used. We extracted all the 3-grams from a transcribed radio
conversation, and those that exist in a literary Finnish corpus
were removed. The remaining 667 3-grams were used as
search queries. We did not try other n-gram lengths, but
4-grams rarely return more than a few search results, and 2-
grams are often too generic, returning even other than Finnish
text. Surprisingly, WEB2 data did not improve recognition
performance. Also, without a substantial amount of existing
in-domain text, the amount of data obtained with this method
was still small.

Data set WEB3 was extracted by copying the entire con-
tents of a web site containing Internet Relay Chat (IRC) con-
versations. Data sets WEB4 and WEB5 were each collected
by crawling a Finnish discussion site using Python libraries
Scrapy and Selenium, and extracting every conversation. This
turned out to be a fast method for obtaining large amounts of
structured data.

4.2. Preprocessing web text

Extensive preprocessing was needed, before the web data
could be used for language modeling. This included

• removal of non-textual items, such as hyperlinks, mes-
sage board markup code, usernames, and smileys,

• expansion of abbreviations, numbers, punctuation
marks, and such, and

• deletion of words that contain phoneme sequences that
do not pertain to Finnish phonological rules.

Numbers do not carry information about pronunciation.
We have simply expanded them as they are pronounced in
literary Finnish. The sizes of the data sets after preprocessing

Data set Number of words
WEB1 767,669
WEB2 1,067,993
WEB3 562,426
WEB4 25,131,015
WEB5 46,258,268
DEVEL1 17,209
DEVEL2 8,755

Table 1: Data sets and their sizes after preprocessing

are shown in Table 1.

4.3. Text segment scoring

Data filtering starts by giving a numeric score to each text
segment. Then segments whose score is below a threshold
will be rejected from the training data. A shortcoming of this
one-pass scheme is that every example of a common, short
sentence receives the same high score, which may skew the
distribution of the selected data too much towards frequent
utterances such as “okay” [5, 6]. For this reason, the segments
that we score are web pages and discussion site messages,
rather than sentences.

Among colloquial Finnish, the collected corpora con-
tained literary Finnish, foreign language, and even garbage
such as HTML code that had slipped through the preprocess-
ing scripts. The following scoring methods were targeted to
separate such noise from the relevant text segments.

• avg-unigram-count. Word unigram counts are cal-
culated from the entire text data. The score of a text
segment is the average of the counts of the words in the
segment.

• median-unigram-count. The score of a text segment
is the median of the counts of the words in the segment.
The reasoning is that garbage segments often contain
short words that by chance are very common in Finnish
language, and increase average unigram count.

• devel-lp-ngram. An n-gram model is estimated from
the entire training data, and with a segment removed.
The decrease in development data log probability when
a segment is removed, is the score of the segment. This
is the selection criterion used by Klakow [4].

• devel-lp-ngram-topic. As devel-lp-ngram, but filter-
ing is applied per discussion site conversation instead
of per discussion site message. Longer text segments
allow more reliable probability estimates, but less fine-
grained filtering.

4.4. Finding optimal filtering threshold

After every text segment has been assigned a score, those
that have a score below a filtering threshold, will be excluded
from the training data. We optimize a different threshold for
every corpus, using the following method: The segments are
sorted from the highest scoring to the lowest scoring. The
training set is grown by gradually including more and more
text, starting from the highest scoring segment. A bigram
morph model is estimated from the training set, and develop-
ment set perplexity is computed, at frequent intervals. Then
we find the threshold score that minimizes perplexity.

It would be computationally too expensive to resegment
the vocabulary into morphs every time training data is in-
creased. We found it adequate to segment each corpus once,
even though this means that with less training data, not all the
morphs necessarily occur in the language model. The number
of OOV morphs is significant only with very little training
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Figure 3: Perplexity and the number of OOV morphs on a
held-out data set, with a growing amount of training data
included in the order of devel-lp-1gram score

data. Figure 3 shows how perplexity and OOV rate behave
as a function of included training data, with a fixed morph
segmentation.

5. Experimental setup for language model
evaluation

5.1. Speech recognizer

The speech recognition experiments were carried out using
Aalto ASR system [15]. Our baseline model for recognizing
standard Finnish has been trained on planned speech from the
SPEECON [11] corpus. The model used in these experiments
was trained on the SPEECON data, augmented with 176 min-
utes of our new development data, and 622 minutes of audio
from FinDialogue, the conversational part of the FinINTAS
corpus [16].

5.2. Error measure

Phonetic variation also creates challenges when measuring
recognition accuracy. As most of the words can be pro-
nounced in several slightly different ways, and the words
are written out as they are pronounced, it would be harsh to
compare recognition against the verbatim phonetic transcrip-
tion. Thus word forms that are simply phonetic variation were
added as alternatives in the reference transcriptions. This
caused a large amount of manual work in top of transcription,
since the added alternative pronunciations depend also on the
meaning of the word, i.e. the context needs to be considered
when adding alternations.

It has been customary in Finnish language speech recog-
nitions to use letter error rate (LER) as the measure of speech

recognition accuracy. We are not yet sure how to implement
LER in the presence of a large number of alternative hy-
potheses of varying length, so this paper uses word error rate
(WER).

5.3. Language models

Simply concatenating the data sets to estimate a language
model would result in a model that is dominated by the biggest
corpora, and performs poorly. A popular approach to combin-
ing different corpora is by linear interpolation of the language
model probabilities. With many corpora, this becomes in-
efficient, requiring the decoder to evaluate every model for
each possible word expansion. We used an approximative
approach, where the probabilities of all observed n-grams
are obtained by interpolating component model probabilities,
and the remaining probabilities are computed to normalize
the model [17]. The component weights are computed by
optimizing development data (DEVEL1 + DEVEL2) perplex-
ity. All the language models used in these experiments were
pruned by removing n-grams whose removal caused less than
5× 10−10 increase in training data perplexity.

We wanted to eliminate the effect of vocabulary selection
from the data selection experiments, so all the word models
were trained with the same 87,971 word vocabulary consisting
of the words that occur at least 40 times in data sets WEB1
to WEB5. This left 8.4 % of word tokens in the verbatim
evaluation set transcriptions out of vocabulary. However,
since the reference transcriptions include alternative word
forms, the recognizer may occasionally recognize a word
correctly, even if the exact word form is not included in the
vocabulary. Taking the alternatives into account, 6.0 % of the
evaluation set word tokens could not be recognized with this
vocabulary.

6. Results
6.1. Filtering evaluation

Table 2 shows the total size of data sets WEB1 to WEB5
before and after filtering, and error rates given by 4-gram
language models on the evaluation data. devel-lp-1gram was
the most effective filtering method. It resulted in a small data
set (23 % of the original word tokens), and 1.0 % reduction
in WER. In line with Klakow’s results [4] filtering worked
slightly better with unigram than bigram log probability.

avg-unigram-count filtering did not improve error rates,
on contrary to median-unigram-count. Performing filter-
ing only on conversations was too coarse-grained. devel-
lp-1gram-topic reduced the amount of text and recognition
errors minimally.

6.2. Comparison against existing corpora

Our current baseline language models have been created using
143 million words from the Finnish Language Text Collection
(FTC), an electronic collection of Finnish text from newspa-



Filtering algorithm WEB1 WEB2 WEB3 WEB4 WEB5 Interp. Words
unfiltered 63.6 66.4 65.9 60.4 60.6 59.2 73,787,371
avg-unigram-count 63.5 66.5 65.8 59.8 60.9 59.6 35,426,285
median-unigram-count 63.5 66.1 65.9 59.6 59.9 58.6 37,637,867
devel-lp-1gram 63.4 65.2 65.5 59.5 58.5 57.5 16,936,104
devel-lp-2gram 63.5 65.7 65.3 58.9 59.1 57.7 19,059,831
devel-lp-1gram-topic 63.3 66.0 65.6 60.4 60.3 59.1 69,710,151
devel-lp-2gram-topic 63.5 65.7 65.3 60.4 60.3 59.5 69,708,077

Table 2: Recognition results from language models trained on filtered and unfiltered web data sets and an interpolated language
model, and remaining total training data sizes in words

pers, journals, and books from the 1990’s. Word error rates
around 10 % on literary Finnish can be achieved with lan-
guage models estimated from this corpus alone. Recently
we have acquired two new corpora: 442,000 word “Helsin-
gin puhekielen korpus” (HPK), a collection of interviews in
dialectal language from the 1970’s [18], and FinDialogue
(FD), 81,000 words of conversational Finnish from FinINTAS
corpus [16]. We have evaluated the web data in a speech
recognition experiment against these corpora. All these cor-
pora are either available or becoming available from CSC—IT
Center for Science in Finland.

The comparison in Table 3 shows how poorly the existing
corpora match colloquial Finnish speech. The collected web
data alone performs better than the previous corpora combined
with interpolation. WEBfilt is the web data after devel-lp-
1gram filtering. It outperforms the previous corpora by 3.8 %
in terms of word error rate. When the web data is combined
with the previous corpora, WER is reduced by 7.0 %. This
is a clear improvement in performance, given the amount of
evaluation data, 44 minutes of speech from 17 speakers.

While filtering improved WER significantly when using
only web data, when interpolating with the other corpora, it
reduced model size, but did not improve WER. This result
suggests that the interpolation may not be optimal. It might
be beneficial to filter also the literary Finnish corpora, or try
different adaptation techniques.

Training set N-grams WER PPL
FTC 20,780,423 72.2 6364
FTC+HPK+FD 8,772,995 59.8 674
WEB 15,803,759 59.2 652
WEBfilt 3,694,060 57.5 589
FTC+HPK+FD+WEB 14,884,046 55.6 493
FTC+HPK+FD+WEBfilt 5,429,240 55.7 496

Table 3: Language model sizes, recognition results, and per-
plexities from models interpolated from existing corpora and
the collected web data

By combining the web data with existing corpora, we
obtained 55.6 % WER. This can be compared to 61.9 % WER
we obtained with acoustic model trained only on SPEECON
corpus, using the same language model. The improvement
is significant, although we still have only little colloquial

Finnish speech data for acoustic model training.
Perplexity can be used to evaluate how well a language

model alone performs on colloquial Finnish text. The perplex-
ities in Table 3 were computed on the verbatim transcripts
of the evaluation data, i.e. considering only the exact word
forms as they were pronounced. They show even greater im-
provement than the speech recognition experiments, in how
well the data sets match the evaluation data, indicating that
the poor recognition results may partly be due to the acoustic
model trained on mostly literary Finnish matching poorly with
conversational speech.

For comparison, we have included some results from
morph models in Table 4, although so far we have not been
able to get morph-based recognition on par with word-based
recognition on colloquial Finnish. The morph results are from
interpolated 5-gram morph models. Morph segmentations
were computed using Morfessor Baseline (MDL) algorithm
[13] from words that occur at least three times in the train-
ing data, with equal weight on each word. Resulting morph
vocabularies ranged from 107,000 to 130,000 morphs.

Training set N-grams WER
FTC+HPK+FD 11,374,836 63.9
FTC+HPK+FD+WEB 10,558,474 58.8
FTC+HPK+FD+WEBfilt 5,385,316 59.4

Table 4: Language model sizes and recognition results from
morph-based models interpolated from existing corpora and
the collected web data

There was no clear difference in the recognition results
between the radio conversations and the student conversations.
The podcast conversations gave highest error rates, presum-
ably because they contain some uncommon technological
jargon.

7. Conclusions
We have collected large amounts of language model training
material for colloquial Finnish from the Internet, and pruned it
effectively, reducing the data size, language model perplexity,
and speech recognition error rates, with very limited devel-
opment data available. We have also described why the un-
limited nature of the vocabulary and pronunciation variation



makes this task, as well as speech recognition, particularly
difficult on colloquial Finnish. The standard approach to un-
limited vocabulary in Finnish is language models based on
subword units. We have found morph-based language models
useful in filtering text of a highly agglutinative language, but
so far traditional word-based language models have worked
best for the recognition task, at least in terms of word error
rate. We hope the new cleaned-up data sets will help us col-
lect even more data and address modeling the lexicon and
the pronunciation variation of colloquial Finnish in our future
research to develop effective statistical models for ASR and
MT.
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Abstract
The ability to quickly incorporate incoming training data into
a running translation system is critical in a number of ap-
plications. Mechanisms based on incremental model update
and the online EM algorithm hold the promise of achieving
this objective in a principled way. Still, efficient tools for
incremental training are yet to be available. In this paper
we experiment with simple alternative solutions for interim
model updates, within the popular Moses system. Short of
updating the model in real time, such updates can execute in
short timeframes even when operating on large models, and
achieve a performance level close to, and in some cases ex-
ceeding, that of batch retraining.

1. Introduction
Statistical Machine Translation (SMT) systems largely de-
pend on the availability of parallel corpora for training and
tuning. Even more crucial is the availability of sufficient in-
domain training data. That is, parallel corpora from the same
domain the system will be used for. Methods for dealing with
insufficient in-domain data typically fall within the domain
adaptation line of research. Such methods strive to make the
best possible use of the in-domain data or to obtain additional
bilingual data that is similar to the target domain. Generally
speaking, the more in-domain data is available, the better is
the translation.

New training data can become available as more trans-
lations are being produced (e.g. in the case of the Euro-
pean Parliament proceedings), through focused data collec-
tion, or as the result of user feedback to the translation sys-
tem. Specifically, post-editing, i.e. manual correction of au-
tomatic translations, is a useful source for training data.

An additional challenge beyond obtaining sufficient in-
domain training data (or any training data), is feeding the
new data into an existing up-and-running translation system.
A standard way to comprehensively update an SMT model
based on new data is to re-train the model with the entire data
that is available at a given time. This kind of training is often
referred to as batch (re-)training. Such a process is time con-
suming and intensive in computational resources, especially
when large datasets are involved. In consequence, it may not
be feasible to run it often enough, resulting with long lags be-
tween two model batch updates, in which the running system
is not up-to-date with the newest possible model.

Incremental training algorithms address this issue by en-
abling an SMT model update based on the new data rather
than retraining the model from scratch. This is performed,
for instance, by using online versions of the Expectation
Maximization algorithm, that is employed in the alignment
step of the SMT model construction. Incremental training
for SMT models is a relatively new line of research, and ma-
ture tools to perform the required updates efficiently are still
largely missing.

Still, as we show in this paper, other configurations of the
SMT system are also providing means for utilizing new data
in between batch updates. We compare several such config-
urations, where in-domain data is based on spoken language
transcriptions, to assess which methods are practically useful
for quickly updating the model, especially when the new data
belongs to the target domain.

Consider the following setting of an automatic translation
system that is either a standalone translator or as part of a
larger software system. The system is deployed and is being
used, as more training data is becoming available constantly,
e.g. through users who provide corrections to the system’s
translations. To use this data, two kinds of update cycles are
employed: (i) a long cycle (e.g., a week), at which end we
can perform a slow update, that can include re-training, tun-
ing and any other time-consuming tasks; (ii) a short cycle
(a day, for instance) in which we wish to carry out a quick
update consisting of only light-weight tasks that are guaran-
teed to complete in a timely manner. In these short cycles the
model is updated with the newly obtained data. The goal is
to improve the model with respect to the previous slow up-
date, and reflect the received feedback; we do not necessar-
ily expect to obtain as good a performance as the following
slow update, but hope to be in the same ballpark. The fo-
cus of this work is in identifying the most appropriate setting
for quick updates, both in terms of translation quality and of
time. That, with tools that are currently available.

In the remaining sections we provide (Section 2) a short
background about incremental training and domain adapta-
tion techniques, and discuss the effort of each of the steps
in building a phrase-based SMT model; we present the con-
figurations for quick updates that we assessed (Section 3),
and describe the experimental setting (Section 4). Section 5
presents the experiments we conducted and their results, and
Section 6 summarizes the practical takeaways of this study.



2. Background
2.1. Incremental training for SMT

Incremental training methods provide a principled way for
updating an SMT model when more data is received, with-
out re-generating the model from scratch. In addition to ef-
ficiency, such methods hold the promise to reflect updates
immediately, without work interruption, and are therefore of
major importance in many scenarios.

Incremental training for MT often makes use of an online
version of the Expectation Maximization (EM) algorithm [1].
EM is used for the purpose of aligning the bilingual corpus
while computing translation probabilities [2]. In Online EM,
the model parameters are updated after each example or a
small set of examples (mini-batch), and not for the entire
dataset at once. Naturally, online EM is faster than batch
EM, but may be less stable.1

Ortiz-Matrínez et al. [4] use incremental online EM [5] to
update a standard log-linear model. They apply it in the con-
text of Interactive Machine Translation, where conveying to
the user the impression of a highly adaptive system is partic-
ularly important. A method for incrementally updating SMT
models was also proposed within the SMART project [6]. A
large set of features, on top of the standard translation fea-
tures, is extracted from (simulated) post-edited translations.
While the weights of the standard features are tuned offline
and remain stable, the weights of the new ones are updated
after each source-translation pair. Levenberg et al. [7, 8] use
stepwise EM for updating the translation model parameters.
They use IBM Model 1 [2] with HMM alignments [9], col-
lecting counts for translations and alignments and updating
them by interpolating the statistics of the old and the new
data. We employ and assess an implementation of this algo-
rithm within Moses (see Section 5.7).

2.2. Domain adaptation

Domain adaptation is the task of adapting a statistical model
that was trained on a certain domain to perform well on an-
other domain. Generally, domain refers to the distribution of
the (training or test) instances; in language-based tasks this
term may refer to any of topic, style, dialect, genre or a com-
bination of thereof [10].

Domain adaptation is of major importance for SMT, and
in particular for spoken language translation, where bilingual
training data is often scarce, and models are thus heavily re-
lying on out-of-domain corpora for training. Some methods
aim to optimize the use of available corpora through data se-
lection – using only the part of the training data that is more
similar to the target domain, or by instance-weighting, i.e.
giving each example a weight that corresponds to its similar-
ity to the target domain [11, 12, 13]. In [14], such adaptation
in performed on-the-fly without assuming the target domain
is known in advance. Other methods apply focused domain-

1See [3] for a detailed discussion about the variants of online EM.

specific data acquisition, e.g. by web crawling [15].
In many scenarios, though, little or no in-domain data is

accessible in advance. It may be attained at a later stage,
e.g. via user feedback to the translation, in the form of post-
editing. When such data becomes available, it is desirable to
update the model with this data without much delay.

[16] start with an in-domain phrase table, which is then
filled-up with new entries from other corpora. In- and out-
of-domain entries are distinguished with an additional fea-
ture. A more explicit separation of domains is found in the
mixture models approach. Training data is divided into com-
ponents according to the different domains. A model (either
a translation model or a language model) is trained for each
component separately and the models are then weighted and
combined to form a complete model [17, 18]. We use this
approach in some of the configurations we assess. However,
our goal is different: we focus on the capability to perform
the updates quickly. Fortunately, as our results show, these
considerations often go hand in hand, and methods that work
well for domain adaptation are useful also for quick updates.

2.3. SMT model generation

For completeness, we briefly describe the main steps in gen-
erating a basic phrase-based SMT model, from a parallel cor-
pus to a tuned model. Our description corresponds to the
steps as done in Moses [19], but is typical to most phrase-
based SMT systems.

• Preprocessing: The model generation process starts
with preprocessing of the bilingual parallel (sentence-
aligned) corpus, including tokenization, lower-casing,
and removal of sentences that are, e.g., very long.

• Alignment: Following some file preparation steps,
GIZA++ [20], an implementation of the IBM Models,
is applied in two directions (source-target and target-
source) to produce word alignment within each source-
target sentence pair. A symmetrization of the GIZA
bi-directional word alignments follows.

• Phrase table construction: Based on word align-
ments, a translation model is generated: lexical (word)
translation probabilities are computed and phrases are
extracted, scored and stored in a phrase table (PT).

• A reordering table is constructed to model position
change of phrases between the source and the target.2

• A language model (LM) is generated from the target
side of the parallel corpus and possibly additional tar-
get language monolingual data.

• Lastly, tuning takes place in order to optimize the
weights of individual scores (features) within the com-
plete model.

2The abovementioned phrase extraction is also needed for this step; we
chose to include it within the translation model generation step since, as
explained later, we do not update the reordering model in this work.



Large phrase tables, reordering tables and language mod-
els that cannot fit into memory are often binarized for quick
loading and access at translation time. Yet, binarization is
not feasible when very large tables are concerned. Reducing
the size of the tables through filtering based on a given test
dataset is not practical in real world scenarios, and is slow to
process as well, as it also depends on the size of the tables.

Of the above, alignment is the most time-consuming step;
phrase table construction may also requires a substantial
amount of time, especially when binarization is performed;
tuning involves multiple iterations (typically over 20) in
which a development set is translated and evaluated, and is
therefore a highly time-consuming task. Indeed, some of the
steps can be parallelized, yet not all. For instance, in MGIZA
[21], a multi-threaded version of GIZA++, sentences-pairs
are aligned in parallel, saving a substantial amount of time;
still, parameter estimation is based on counts that are accu-
mulated from all aligned sentences, and is not parallelized.
What is often referred to as batch training consists of all the
above steps applied to the entire data.

Figure 1 shows the relative time required to complete
each task, based on an experiment we conducted, with 1 mil-
lion sentence-pairs for training and 1,000 sentence-pairs for
tuning. Both datasets were taken from the Italian-English
corpus of Europarl version 7 [22]. As elapsed time depends
on the specific machine and its load at the time of measure-
ment, we use the Unix time command for obtaining du-
ration information. We look at the accumulated CPU time,
which is roughly equivalent to running on a single CPU. For
intuition, the alignment task used up approximately 21 CPU
hours, which corresponded to about 6 actual hours when run-
ning MGIZA with 4 cores. For comparison, under the same
machine configuration, alignment of 2,000 sentences took
2.5 CPU minutes, and 10,000 sentences required less than 13
minutes. This experiment was performed on a 64 bit Linux
machine, with four 2.67GHz cores and 50GB of RAM.
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Figure 1: Percentage of the time required by each task of the
phrase-based model generation. The times shown here include the
binarization of the corresponding model.

3. Quick update configurations
Let’s recall the scenario we take interest in: An SMT sys-
tem is trained based on a large out-of-domain corpus and
is meant to be used on a different type of dataset, namely
spoken-language texts. The translation service is made avail-
able and gradually in-domain data is flowing in. With this
data we wish to update the system in the most efficient and
effective way. We expect best translations to be produced
when we use all the data we have at our disposal; at the same
time, we do not wish to carry out intensive processes unnec-
essarily. We therefore carry out batch updates periodically
(long-cycles), and in the interim perform quick, short-cycle
updates using the newly obtained data. We wish to identify
the most useful configuration – in terms of time and transla-
tion quality – for performing such short cycle updates. For
that purpose, we examined the following configurations for
quick model updates. Each has its pros and cons, as dis-
cussed below. Figure 2 depicts their phrase table settings.

1. OLD-NEW: In this configuration we use two phrase
tables. We maintain all previously obtained (“old”)
training data, both in-domain and out-of-domain, in
one phrase table and the newly obtained data (“new”)
in a second table. To update the model, we only need
to preprocess and align the new data on its own and
generate a phrase table from it. This is therefore a very
quick way to perform updates.

2. IN-OUT: This setting uses two phrase tables as well,
but now the out-of-domain data is maintained in one
table and the in-domain data in another table. The idea
is to allow better model tuning by letting the tuning
algorithm give preference to the in-domain table. The
drawback is that all in-domain data needs to be pro-
cessed at every short-cycle update, implying a longer
process. As long as in-domain data is limited, this is
not an issue. On the contrary, it can contribute to im-
proved alignment quality and phrase table statistics.

3. 3-TABLES: When in-domain data accumulates, the
IN-OUT setting may become too slow. We therefore
assess another setting that can potentially combine the
benefits of the two above configurations. Here, we use
three phrase tables: one for out-of-domain data and
two for in-domain. The first among the in-domain ta-
bles is used for all previously obtained in-domain data,
and the second for the newly obtained data. This way
we achieve both separation of in- and out-of-domain
data and a quick processing of the new data.

4. BATCH: This is a standard setting for phrase-based
SMT model generation, used for comparison. The en-
tire training data is concatenated and used together,
and a single phrase table is produced. One potential
advantage is, as above, an improved alignment quality.
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Figure 2: Phrase tables in the different configurations. OUT de-
notes out-of-domain data; IN1 is in-domain data previously ob-
tained, and IN2 is the in-domain data we have just received and
wish to use to update the system with. The dashed lines designate
the data that needs to be processed in each update cycle.

In addition to the above, we have experimented with in-
cremental updates via Moses’ dynamic suffix array. We de-
scribe that in Section 5.7.

Required effort Table 1 details which task needs to be per-
formed in each configuration, and the amount of work that
has to be done. We explain the required effort of each con-
figuration through an example, whose timeline is presented
in Figure 3: We consider a specific point in time of an op-
erational translation system. This system was trained with
1 million out-of-domain sentence-pairs before any in-domain
data was available (S1 in the figure); over time, 30,000 in-
domain bi-sentences were received and the system has been
already updated with them in a slow update cycle (S2). Be-
tween the previous slow update and the current point in time,
10,000 in-domain sentences have been obtained, and fed into
the system (q21); now we receive 5,000 more, and wish to
carry out quick update q22.

1M 

S1 S2 S3 

5K 

q22 q21 q23 

10K 30K 

Figure 3: Updates timeline, as described in the example in Sec-
tion 3. Si denotes a slow update and qij a quick update. Boxes
represent the available data: dark-shading for out-of-domain and
light-shading for in-domain.

Config./ Task Prep. Alignment PT LM

OLD-NEW 5K 15K 15K 15K
IN-OUT 5K 45K 45K 45K
3-TABLES 5K 15K 15K 15K
BATCH 5K 1,045K 1,045K 1,045K

Table 1: An example of the required effort of each configuration.
We consider as “new” all data received since the last slow update.

Here we assume that all data received in between slow
updates is small and can be processed together. Preprocess-
ing need not be repeated, but the other steps may perform bet-
ter given more data. As seen in the table, both OLD-NEW and
3-TABLES require minimal processing. The difference be-

tween them is the way the previously-obtained data is stored;
IN-OUT requires a more substantial amount of processing,
and BATCH requires all the data to be processed from scratch.

So far, our discussion focused on phrase tables. Con-
cerning the LM, Table 1 assumes a setting where the LMs
configuration is equivalent to that of the phrase tables. Our
experiments showed that – at least for the language pairs we
assessed – the reordering model does not significantly affect
translation performance; thus, we do not update it in any of
the quick update settings. Tuning is discussed in Section 5.6.

4. Setting
4.1. Datasets

We used three datasets in our experiment, two spoken-
language parallel corpora, transLectures (TL) and WIT3

(WIT3 below), and Europarl that represents a large out-of-
domain corpus, of non-spoken-language.

transLectures
The first spoken-language dataset was obtained via the
transLectures project that is addressing the transcription and
translation of scientific video lectures.3 Translating from En-
glish to French, we used the entire datasets that were avail-
able at the time of the experiments. These consisted of
merely several thousand sentence pairs, that were produced
through manual post-editing of the automatic transcription,
followed by post-edition of the automatic translation of the
transcriptions. The continuous text of the lectures was split
into sentences based on long silences in the speech and with a
maximal sentence-length constraint. This dataset and its pro-
duction represent a typical scenario were in-domain spoken
language data is scarce, hard to collect and slow to arrive.

• Training set: ∼4,000 English-French sentence pairs.
• Development set: 1,000 bi-sentences, used for tuning.
• Test set: 1,360 sentences-pairs.

WIT3
Our first round of experiments was conducted on the TL data.
To confirm the validity of the results across datasets and lan-
guage pairs, and to allow reproducing our results through a
freely available resource, we used another spoken-language
dataset, WIT3 [23]. WIT3 (Web Inventory of Transcribed
and Translated Talks) is a parallel corpus created from tran-
scription and translation of TED talks.4 We used a different
language pair, Italian to English, and 10-times as much train-
ing data as available in the TL dataset.

• Training set: 40,000 sentence-pairs from the Italian-
English WIT3 corpus.5

• Development set: 1,000 bi-sentences of that corpus.
• Test set: 1,000 bi-sentences from the above corpus.

3http://www.translectures.eu/
4http://www.ted.com
5Downloaded from https://wit3.fbk.eu

http://www.translectures.eu/
http://www.ted.com
https://wit3.fbk.eu


Europarl
For each language-pair we used, as part of the training set of
most configurations, 1 million Europarl v. 7 bi-sentences.

4.2. Experimental setup

Phrase-based SMT Moses [19] was the translation system
used for our experiments. When more than one phrase ta-
ble was employed, we used the either option, meaning that
translation options are searched for in either table with no
preference to one table over the other, and while not expect-
ing every translation option to be present in both tables.

Alignment Some experiments assessed the use of incre-
mental training and of dynamic suffix arrays. For fair com-
parison, we used Incremental GIZA [7] in all our experi-
ments rather than GIZA++. However (with the exception of
the experiments described in Section 5.7), we did not use its
incremental capability.

Language Model We trained 5-gram language models on
the target side of the training set(s) using SRILM [24], with
modified Kneser-Ney discounting [25].

Tuning Model weights were tuned with batch MIRA [26].

Evaluation We use Smooth (sentence-level) BLEU [27],
and report the average score over the test set sentences. All
our evaluations were performed on lower case, tokenized
texts, using the standard Moses tools for preprocessing.

5. Experiments and results
In this section we present experiments conducted with the
TL and WIT3 datasets, and their results.

5.1. Batch updates

We start by providing the results of “regular” batch updates,
where the entire training set is used as a single corpus. The
first row of each dataset in Table 2 shows the baseline, when
no new data is used. This is the starting point of a system
that was trained on a large amount of out-of-domain data; in
the second row we show the result when 4K (TL) or 40K
(WIT3) bi-sentence are used to update the phrase table (i.e.
the translation model), but not the LM or the reordering table;
the third row shows results of updating all three.

Dataset Configuration BLEU

transLectures
Baseline 23.9
BATCH, PT only 27.9
BATCH, complete 28.3

WIT3
Baseline 29.4
BATCH, PT only 30.9
BATCH, complete 30.7

Table 2: Results of batch updates.

Unsurprisingly, the addition of the new in-domain data to
the phrase table greatly improves the translation quality; up-

dating the LM and reordering tables adds a bit more on top
of that for transLectures. As mentioned, initial experiments
showed that reordering had insignificant impact on results,
and improvements may thus be mostly attributed to the LM
update; we therefore assessed the performance of all follow-
ing models without updating the reordering table.

5.2. Quick updates

We now evaluate the performance of quick update models.
In these experiments we assume we are about to perform an
update equivalent to q21 in Figure 3. That is, we have re-
ceived some in-domain data earlier, performed a slow update
since, and now receive additional in-domain data, which we
use to quickly update the model. Table 3 shows the results
of the three configurations where only the phrase table is be-
ing updated with the new data, i.e. the language model and
the reordering model are not updated at all. While using the
same amount of data as for the batch updates in Table 2, and
even with this partial model update, each of these configu-
rations outperforms the batch update, over the two datasets.
This result is consistent with prior work on domain adap-
tation (e.g. [17, 18]), but the important aspect that we are
concerned with is that this update is much faster. Instead of
processing over a million sentence pairs, only up to 4,000
(TL) or 40,000 (WIT3) need to be handled.

Dataset Configuration BLEU

transLectures
OLD-NEW 29.4
IN-OUT 29.7
3-TABLES 30.2

WIT3
OLD-NEW 31.2
IN-OUT 31.7
3-TABLES 31.2

Table 3: Quick updates, where only phrase tables are updated.

5.3. Quick updates of the language model

Next, we evaluate the performance when the LM is also up-
dated. We use multiple LMs, separated the same way as the
phrase tables: OLD-NEW and IN-OUT use two LMs, and 3-
TABLES, uses three. This allows quick update of this model
as well. Table 4 shows the results of this set of experiments.

Dataset Configuration BLEU

transLectures
OLD-NEW 31.2
IN-OUT 31.8
3-TABLES 31.6

WIT3
OLD-NEW 32.3
IN-OUT 33.1
3-TABLES 32.3

Table 4: Quick update results, with matching LM and phrase table
configurations.

In all cases, results are improved relative to updating only



the phrase-table (Table 3). Updating the LM was expected to
help, yet here we experimentally see that even a quick LM
update achieves significant improvements, and is useful for
our goal. The best configuration is IN-OUT for both datasets.
This is the slowest of the three configurations; hence, de-
pending on the data size, the other options may also be con-
sidered, and in particular the 3-TABLES option.

We have seen that quick LM update on top of the phrase
table helps; we now wish to verify that updating the LM
alone is not sufficient. Table 5 shows two such experiments
on the WIT3 dataset. In the first, the target side of the WIT3
training corpus was added to the Europarl corpus to generate
a single LM; in the second, the same WIT3 data was used
to produce a separate LM. Note that the first among these is
not a quick update per-se. Yet, LM generation is much faster
than phrase table construction; if the performance is compet-
itive, this can also be an option to consider.

As it turns out, training of a single LM with the addi-
tional data did not improve results relative to the baseline.
Possibly, in-domain data (consisting of less than 4% or the
training data in this case) is diluted in the entire set. More
importantly, we see that the quicker update where the LMs
are separated, is better. The performance is similar to the
configuration where only the phrase table is updated but is
inferior to all configurations where both models are updated.

Configuration BLEU
Single LM 29.4
Separate LMs 31.4

Table 5: WIT3, updating only the language model.

5.4. Separating the LMs for batch training

Following the above results where LM separation helps, we
assess this option with batch updates as well. Here we main-
tain a single phrase table, and separate only the LMs. This
setting is still slow, yet somewhat quicker than a complete
batch update since the previous LM need not be generated,
just the new one. The more time-consuming steps of align-
ment and phrase table construction are still necessary.

Dataset Configuration BLEU

TL
BATCH, single LM 28.3
BATCH, separate LMs 31.6

WIT3
BATCH, single LM 30.7
BATCH, separate LMs 32.6

Table 6: Comparison of batch configurations, with and without sep-
arating the LMs for in/out-of domain data. The single-LM configu-
rations are the same ones shown in Table 2.

Table 6 shows that LM separation significantly improves
results also when the PT is batch-trained, and while not con-
sidered quick, it is useful to separate the LMs between do-
mains also in this case. The results are still inferior to those

obtained by a complete (quick) in-out separation, and are just
slightly better than other quick configurations in Table 4.

5.5. No-adaptation

So far our results included two types of datasets. We also
wish to understand the effect of the different configurations
when only a single domain is concerned. In this setting, IN-
OUT and 3-TABLES are not relevant, only OLD-NEW is, with
or without phrase table and LM separation. The TL data is
too small for this experiment, and we use only WIT3, train-
ing a model with 30K sentence-pairs and updating it with
additional 10K. The results are shown in Table 7. The first
row shows the baseline result before the 10K dataset is used,
and the second shows the result where all data is trained to-
gether in a batch setting. The next two rows show quicker
updates: the first – and the quickest – where both phrase ta-
ble and LMs are separated between old and new data, and the
second, where only the phrase tables are separated.

Configuration BLEU

Baseline 28.2
BATCH 29.2
OLD-NEW 28.5
OLD-NEW, single LM 28.9

Table 7: WIT3 results, where only in-domain data is used.

Now that domain adaptation is no longer a factor, BATCH
achieves the best result. Here, we can see the benefit of gen-
erating models using the entire data. Quick updates are not
far behind, and are faster to carry out. In this setting, sep-
arating LMs of the same domain is not useful, and a better
model is obtained when more data is used. Notice, though,
that these scores are inferior to those obtained in the previous
experiments. Out-of-domain data is very useful, and as this
is case, quick update methods should still be considered.

5.6. Tuning

Each of the above models was tuned individually before be-
ing evaluated. Still, separate experiments show that tuning is
not strictly required for every update. Tuning is likely nec-
essary when a configuration is changing, e.g. in terms of
components, the data split between them, or the balance be-
tween the datasets. When these remain relatively fixed, and a
small amount of data is added, tuning may be skipped. Two
examples are shown in Table 8. In each, the first row shows
the result of a model trained with the Europarl corpus and
with partial TL data. The next two models (rows 2 & 3 for
each experiment) use additional 1,000 bi-sentences and differ
only in the tuning – while the first was re-tuned, the second
was not, and used instead the tuned weights of the baseline
model. We see that by re-tuning we obtain a small gain in
performance; yet, we greatly lose in terms of time. In many
cases, then, tuning can be skipped for intermediate updates,
and reserved only for slow updates.



Setting Configuration BLEU

TL, 2K; IN-OUT

Baseline 27.76
Re-tuned 28.45
Not re-tuned 28.31

TL, 4K; OLD-NEW

Baseline 28.51
Re-tuned 29.37
Not re-tuned 29.19

Table 8: Tuning with all available data vs. using a model with the
same configuration tuned with a smaller amount of data.

So far we have seen several options for model updates
that can be applied very quickly. Using the Moses server,
once an updated model is ready, it can be loaded into memory
practically instantaneously, replacing a previous instance of
the server that was loaded with a previous model. That is,
as long as all large models are binarized. We can assume
binarizing is done during slow updates, and that small models
can be loaded quickly and fit into memory easily. With IN-
OUT we run into the risk that in-domain data also becomes
large; this is not an issue for the 3-TABLES configuration,
where the processed data always remains small.

5.7. Incremental training and dynamic suffix arrays

We have extensively experimented with incremental GIZA,
and with updates through the dynamic suffix array in Moses.6

Suffix arrays constitute an alternative to phrase tables, where
the entire training data is maintained in memory rather than
in a phrase table [28]. Dynamic suffix arrays [7] further en-
able inserting or deleting training instances, thus updating the
translation model without retraining. Although very efficient
in comparison to batch training, the process of incrementally
updating a model with these tools is not as fast as one would
expect. Apart from preprocessing and alignment of the new
data (which are required in any case), it requires, prior to the
alignment, updating the vocabulary and cooccurrence files,
as well as the HMM probabilities. These statistic updates,
which operate over the respective files of the entire data, need
to be done independently of the size of the new data. It is
therefore not efficient to run it per sentence, but rather per
mini-batch. Once the new data has been aligned, inserting
each bi-sentence into the suffix array is needed to have the
translation system updated. Apparently, this is a time con-
suming process and cannot be considered a real-time update.
Creating a phrase table for the new data, and loading another
instance of the Moses server, is significantly faster.

We have run multiple comparative experiments with
phrase tables vs. suffix arrays, and with combinations of
them both, and observed a significant drop in results when-
ever the suffix array was used, with or without Incremental
GIZA. For instance, for the same setting in Table 2, row 1,
the BLEU score dropped from 23.9 to 20.8 when the phrase
table was replaced with a suffix array. A possible reason is

6We thank Abby Levenberg for his support at this part of the study.

the fact that the inverse translation probabilities are missing
in this data structure. Moreover, when an update takes place,
the translation server becomes unusable, maintaining the suf-
fix array in memory takes up a large amount of memory and
the updated model cannot be saved into disk, but needs to be
reconstructed later. Further, updates to the LM are not sup-
ported, although this issue was addressed in [8]. All these
make this data-structure currently difficult to use or rely on.7

The potential advantage of principled incremental train-
ing is obvious. Taking into account the previously accumu-
lated data is expected to produce better statistics; doing so
while maintaining the system live and constantly updated is
a highly sought-after goal. Yet, aligning all data, regardless
of the domain, is not always beneficial. Thus, once such
tools are stable and efficient, quick updates may be used in
conjunction with incremental training and suffix arrays. For
instance, out-of-domain data can be maintained in a phrase
table, while in-domain data that needs updating is loaded into
a suffix array. Preparations for alignment are longer, but the
advantage in comparison to IN-OUT is that only alignment of
the new data is necessary, but not phrase-table generation.

6. Conclusions

This work focused on identifying simple configurations of
phrase-based SMT systems, which allow updating the under-
lying model quickly when new training data becomes avail-
able. We have emphasized the applicability to domain adap-
tion, which is particularly relevant for spoken language ap-
plications, where seed in-domain parallel resources are typ-
ically scarce or altogether absent. Still, we have shown that
this type of updates is suitable also for single-domain set-
tings. We assessed multiple configurations, some of which
are based on proven methods from domain adaptation re-
search, to highlight the preferred ones both in terms of trans-
lation quality and of processing speed. We described how
quick updates can be integrated into the lifecycle of an oper-
ational SMT system, enabling efficiently maintaining trans-
lation quality while keeping the system up and up-to-date.

Our results show that quick updates are competitive with
batch retraining on corpus concatenation, a strong baseline,
while being orders of magnitude faster. We have seen that
a complete separation of in- and out-of-domain data usually
results with best translation quality; yet, this option may be-
come slow over time. The 3-TABLES configuration we pro-
posed solves this issue, albeit at the price of some drop in per-
formance. A potential improvement for this configuration,
that we intend to investigate, is to reserve some, moderate
size in-domain data for training together with the new data,
benefiting from the potential improved alignment, while still
keeping the update fast.

7In summer 2013, a new implementation of the dynamic suffix array has
been introduced in Moses, where all standard 5 features are computed. Some
of the above issues may have been handled. To the best of our knowledge
this is still work-in-progress and we have not experimented with it so far.
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Abstract

We analyze the performance of source sentence reordering,
a common reordering approach, using oracle experiments on
German-English and English-German translation. First, we
show that the potential of this approach is very promising.
Compared to a monotone translation, the optimally reordered
source sentence leads to improvements of up to 4.6 and 6.2
BLEU points, depending on the language. Furthermore, we
perform a detailed evaluation of the different aspects of the
approach. We analyze the impact of the restriction of the
search space by reordering lattices and we can show that us-
ing more complex rule types for reordering results in better
approximation of the optimally reordered source. However,
a gap of about 3 to 3.8 BLEU points remains, presenting a
promising perspective for research on extending the search
space through better reordering rules. When evaluating the
ranking of different reordering variants, the results reveal
that the search for the best path in the lattice performs very
well for German-English translation. For English-German
translation there is potential for an improvement of up to
1.4 BLEU points through a better ranking of the different
reordering possibilities in the reordering lattice.

1. Introduction
The reordering problem is commonly acknowledged to be
one of the main difficulties in machine translation. One
widely used approach is to perform reordering as a prepro-
cessing step before translation. The idea is to synthesize a
sentence in the source language that simulates the word or-
der of the target language. Reordering the source text re-
sults either in a deterministically reordered sentence or mul-
tiple reordering variants are generated and stored in a lattice.
Then monotone translation can be performed either on the re-
ordered source sentence or the machine translation decoder
searches for the best sequence of words in the reordering lat-
tice.

We want to assess the benefits of this common approach
of reordering the source before translation and investigate
whether it really helps improve the translation quality. For
one, we want to determine lower and upper bounds for the
translation quality that can be reached by this approach and

to identify potential of further development. Furthermore,
we want to assess the performance of the reordering model
on two levels: The restriction of the search space of possible
reorderings and the ranking of different reordering variants.

We designed oracle experiments that address the follow-
ing questions:

• How good is the translation of the optimally reordered
source sentence?

• How beneficial is the restriction of the search space
through reordering lattices for translation quality?

• How accurate is the search for the best path in the re-
ordering lattice?

The paper is structured as follows: First, we present re-
lated work dealing with the reordering problem, mainly fo-
cussing on reordering as preprocessing and the judgement of
reordering quality. In Section 3 we explain the reordering
approaches applied in this work in detail. Then we describe
the setup for the oracle experiments, which include an ora-
cle reordering of the source sentence and the oracle path in
the input lattices which is closest to the oracle reordering.
We show the results of the experiments in Section 5 and then
draw conclusions about future development of the reordering
approach in the final section.

2. Related Work
In our work we investigate the benefits of a pre-reordering
approach for machine translation by performing oracle ex-
periments. We first present related work regarding reordering
methods in machine translation and reference work on judg-
ing the quality of a given reordering. Then we mention work
using oracles for the analysis of machine translation systems.

Word reordering has been addressed by many approaches
in statistical systems. In a state-of-the-art phrase-based ma-
chine translation system, the decoder processes the source
sentence left to right, but allows changes in the order of
source words while the translation hypothesis is generated.
Many phrase-based systems also include a lexicalized re-
ordering model [1] which provides additional reordering in-
formation for phrase pairs. It stores statistics on the orienta-
tion of adjacent phrase pairs on the lexical level.



A very popular approach is to detach the reordering from
the decoding procedure and to perform the reordering on the
source sentence before translation. Such pre-reordering ap-
proaches use linguistic information about the source and or
target language, such as parts-of-speech, dependency or con-
stituency tree structure. They apply hand-crafted rules or au-
tomatically learn rules that change the order of the source
sentence. Then monotone translation is performed.

In the first pre-reordering approach, reordering rules for
English-French translation are automatically learned from
source and target language dependency trees [2]. Since
then many adopted this method. In the beginning manu-
ally crafted reordering rules based on syntactic or depen-
dency parse trees or part-of-speech tags were designed for
particular languages [3, 4, 5, 6]. Later data-driven meth-
ods followed, learning reordering rules automatically based
on part-of-speech tags or syntactic chunks [7, 8, 9, 10].
Alternatively, word class information may be used to per-
form a translation of the original source sentence into a re-
ordered source sentence [11]. More recent work includes
reordering rules learned from source and target side syntax
trees [12], automatically learned reordering rules from IBM1
alignments and source side dependency trees [13] and using
a classifier to predict source-sentence reordering [14]. An
approach presenting automatically learned reordering rules
based on syntactic parse tree constituents [15] further com-
bines the tree-based rules with two types of part-of-speech-
based rules [7, 10]. This produces complementary reorder-
ing variants which result in an improved translation quality.
While some of the presented approaches perform a determin-
istic reordering of the source sentence, others store reorder-
ing variants in a word lattice leaving the selection of the re-
ordering path to the decoder.

Related work regarding reordering metrics and reorder-
ing quality includes the first description of reorderings as
permutations [16]. Later, the use of permutation distance
metrics to measure reordering quality [17] leveraged research
into distance functions for ordered encodings. An approach
to transform alignments into permutations [18] takes the par-
ticular characteristics of alignment functions into account.

Oracle experiments have shown to be a valuable method
for analyzing different aspects of machine translation. While
an oracle BLEU score may serve for identifying translation
errors in the phrase table [19], another approach uses oracles
for punctuation and segmentation prediction in speech trans-
lation [20]. Efficient methods for finding the best translation
hypothesis in a decoding lattice have been proposed [21].
Furthermore, research on oracles regarding the reordering
problem have been conducted [22, 23]. The first uses linear
programming to compare the best achievable BLEU scores
when using different reordering constraints [22]. The latter
presents a reordering method for translations from English to
Spanish, Dutch and Chinese where deterministic reordering
decisions are conditioned on source tree features and com-
pared to several oracles [23].

Rule Type Example Rule
Short VVIMP VMFIN PPER → 2 1 0
Long VAFIN * VVPP → 0 2 1
Tree VP PTNEG NP VVPP → 0 2 1

Figure 1: Rule Types

Our work differs in three ways: First, we investigate a re-
ordering approach where reordering decisions are not deter-
ministic. Instead, reordering variants produced by both part-
of-speech-based and tree-based reordering rules are stored in
a lattice and the final order of the source sentence is decided
during decoding. Second, we perform a separate analysis
of two different aspects: the quality of the restriction of the
search space through reordering lattices and the accuracy of
the search. Third, we perform translations from English to
German and German to English for 2 different translation
tasks.

3. Reordering Approach

We first describe the reordering methods applied in the sys-
tems used in our oracle experiments. We use two approaches
based on continuous and discontinuous sequences of parts-
of-speech of the words in the sentence [7, 10]. In addition we
perform reordering based on constituents of syntactic parse
trees [15] and we combine the different types of rules. Thus,
we cover both short-range and long-range reordering phe-
nomena between source and target language.

3.1. Rule Types

In our experiments we distinguish between short-range, long-
range and tree-based rules. Examples for each of the rule
types are presented in Figure 1.

3.1.1. Short-range Rules

Short-range rules consist of a sequence of part-of-speech
(POS) tags on the left hand side and an indexed represen-
tation of the target order of those POS tags on the right hand
side of the rule. Each rule comes with an associated prob-
ability which is the relative frequency of the occurrence of
this reordering in the training corpus.

3.1.2. Long-range Rules

A long-range rule consists of a sequence of POS tags with
placeholders on the left hand side. Placeholders can match
arbitrary types and numbers of POS tags. The right hand
side of the rule contains the reordered indices where the
tags matched by the placeholder are assigned one index as
a whole. Again, a probability is assigned to each rule.



3.1.3. Tree-based Rules

The tree-based rules address reordering within one con-
stituent of a syntactic tree. The rule consists of the head cat-
egory as well as the the child categories of the constituent on
the left hand side of the rule. The right hand side represents
the reordered sequence of the children where each child con-
stituent is assigned one index and the words covered by it are
moved as a whole. An additional type of rules called partial
rules need not cover all the children in the constituent, but
consecutive sequences of children.

3.2. Learning Reordering Rules

For the training of the reordering rules a parallel corpus and
a word alignment is required. In addition, we need the POS
tags for the source side of the corpus for training the POS-
based reordering rules. For the tree-based rules we need syn-
tactic parse trees for the source side. For each sentence in the
training corpus we search for changes of word order between
the source and target language sentence. When we find a
crossing alignment indicating a different order of source and
target language words, we monotonize the alignment and ex-
tract a rule that rearranges the source words in the order of the
aligned target words. For more details refer to the descrip-
tions of POS-based rules [7, 10] and tree-based rules [15].

3.3. Applying Reordering Rules

Before translation, a word lattice is created that includes the
original source sentence as the monotone translation path.
Initially all edges of the monotone path are assigned a transi-
tion probability of 1. Then the reordering rules are applied to
the source text. For each sentence all applicable rules are ap-
plied where the tree rules might be applied recursively to re-
ordered paths. The resulting reordering variants are stored in
the word lattice. The edges of the reordered path are assigned
transition probabilities according to the probability of the ap-
plied reordering rule. An edge branching from the monotone
path receives the probability of the rule. The following edges
in the reordered path are assigned a probability of 1. The
edge on the monotone path where the branching started re-
ceives an update such that the probability of the applied rule
is subtracted from the current transition probability of this
edge. Finally, the word lattice including all reordering vari-
ants is used as input to the decoder.

3.4. Judging Reordered Paths

The probability of a given path in a reordering lattice is cal-
culated as the product of the individual transition probabili-
ties of the traversed edges. Since the transition probabilities
are based on the occurrences of the reordering in the training
data, the highest scoring path in the lattice should represent
the best reordering for the sentence. The reordering lattice is
one model in the log-linear model combination of the trans-
lation system. Its weight is set during optimization of the

whole system together with the weights of the other models
in the translation system.

4. Oracle Reordering
We want to investigate the impact of the reordering on the
translation quality. We compare the actual system perfor-
mance against two different oracle reorderings of the input
sentence. With these experiments we want to address the
questions raised in the introduction.

The first oracle is the optimally reordered source sentence
which presents the source words according to the target lan-
guage word order. With this experiment we analyze the use-
fulness of the pre-reordering approach. By reordering the
source sentence according to the target language word order
we estimate an upper bound for translation quality using this
strategy.

Then we investigate how the reordering lattices produced
by our reordering model restrict the search space for trans-
lation. Therefore, we compare the aforementioned oracle
translation with the translation of the oracle path. It corre-
sponds to the path in the lattice that is closest to the oracle
reordering of the source sentence. We perform this experi-
ment for each of the different rule types.

In a third experiment we evaluate how good our models
are at determining the best path in the lattice. In order to
evaluate this aspect, we compare the translation of the oracle
path with the actual translation.

4.1. Optimally Reordered Sentence

In order to measure the oracle performance of the pre-
reordering approach, we use an optimally reordered sentence
as input to the translation system and do not allow additional
reordering during decoding. In order to create this oracle
reordering for the source sentence, we make use of the word
alignment between source sentence and reference translation.
This alignment is generated by applying the alignment model
trained during system development to the test data and its
reference translation. After source and reference are aligned,
we create a permutation of the source sentence [17].

In the permutation, words are generally assigned the po-
sition of word they are aligned with. However, permuta-
tions are one-to-one alignments, while word alignments may
also contain unaligned words, many-to-one alignments and
one-to-many alignments. Therefore, some simplifying as-
sumptions have to be made when transforming alignments
to permutations [18]: unaligned source words are aligned to
the word after its predecessor or to the first word if it has
no predecessor; unaligned target words are irrelevant to the
source sentence order and are therefore ignored; for many-
to-one source-to-target alignments the ordering is assumed
to be monotone; in one-to-many source-to-target alignments
the word is assumed to be aligned to the first target word.
We will refer to this reordered source sentence as the oracle
reordering of the input sentence.



4.2. Oracle Path

With our reordering model we generate many reordering
variants by applying reordering rules to the source sentence
and store these variants in a lattice. In order to know the up-
per bound of the restriction of the search space by the lattice
we want to identify the best reordering variant in the reorder-
ing lattice. We define it as the path in the lattice which has the
smallest distance to the oracle reordering as described above.

Among Hamming distance, Ulam’s Distance and
Kendall’s tau distance, a version of Kendall’s tau resulted to
be the best distance, being the most reliable and correlating
strongly with human fluency judgement [17]. Hence, we cal-
culate the Kendall’s tau distance [24] in order to find the path
that is closest to the oracle reordering. The Kendall’s tau dis-
tance is the minimum number of swaps between two adjacent
symbols that transforms a permutation σ into another permu-
tation π. This metric measures relative differences and takes
both the number and the size of reorderings into account. We
use the square root version [18] which corresponds closely
with human perception of word order quality:

d(π, σ) = 1−

√∑n
i=1

∑n
j=i xij

Z

where xij =

{
1 if π(i) < π(j) and σ(i) > σ(j)

0 otherwise

and Z =
n · (n− 1)

2

If a path with the oracle reordering is in the lattice, this path
is the closest path. However, if the oracle reordering is not in
the lattice, several paths can have the smallest distance to the
oracle reordering. Then we create lattices containing only the
best paths and use these as input to the translation system.

Note that the best path or even the oracle reordering need
not result in the best possible translation quality for two rea-
sons. First, we rely on the alignment between source and
reference for generating the oracle reordering. Errors in the
alignment can introduce errors into the oracle reordering and
the closest path. Another reason is that we generate an ar-
tificial word order which does not match the word order as
seen in the training data. Therefore, we might not have well
matching phrase pairs for generating the best possible trans-
lation.

5. Experiments
In this section we present three experiments designed to ad-
dress the three questions raised in the introduction. First,
we will briefly describe the systems we used to generate the
translations. Afterwards, we will analyze the potential of the
pre-reordering approach. Then we investigate how the re-
ordering lattices produced by our reordering model restrict
the search space for translation. In a third experiment we
compare the oracles with the actual performance of a system

using the reordering lattices to see how good our models are
at ranking different word orders.

5.1. System Description

We perform experiments with four different systems cover-
ing two translation directions and two different translation
tasks. We translate between German and English in both di-
rections. For each direction we use competitive systems used
in WMT and IWSLT evaluations to translate News texts and
TED talks in order to cover different domains. For the News
systems, the training data includes the European Parliamen-
tary Proceedings and the News Commentary data. The test
data is news2011. For details of the WMT system refer to
the WMT system description [25]. The systems are opti-
mized once on news2010, but in the experiments described
in this paper, no new optimizations were run between sys-
tem variants using different rule types to reduce the noise
to a minimum. The system translating TED talks is trained
on European Parliamentary Proceedings, News Commentary
data, the Common Crawl corpus and TED talks, while devel-
opment and test data consist of TED talks only. Again, the
systems are only optimized once. A detailed system descrip-
tion can be referred to in [26]. All translations are produced
using the input sentence with a word order stated in the given
experiment description. No additional reordering in the de-
coder is allowed.

5.2. Potential of Reordering the Source Sentence

When applying reordering as preprocessing, it is commonly
assumed that arranging the source sentence according to tar-
get language word order should result in better translation
quality. We want to question this assumption and investigate
the benefits of the pre-reordering approach in this first experi-
ment that identifies the lower and upper bounds of translation
quality with respect to word order. We consider the lower
bound of translation quality to be the performance that is ob-
tained by translating the monotone source sentence without
allowing any additional reordering. Since the objective of
the pre-reordering approach is to obtain the source words in
the order of the target language words, we regard the trans-
lation of the optimally reordered path to be the upper bound
for translation quality. We generate the optimally reordered
path using the reference translation and the alignment be-
tween source and reference as described in Section 4.1.

5.2.1. German-English

Table 1 presents the results for the translation from German
to English in two different domains. The difference between
monotone translation and the translation of the oracle re-
ordering is 5.2 and 6.2 BLEU points, respectively. With a
system using our lattice-based reordering approach that does
not have any oracle information, but the decoder chooses the
path, we achieve a performance that is approximately in the
middle of that range.



Reordering Type News TED
Monotone 20.23 27.18
Lattice Reordering 22.45 30.87
Oracle 25.42 33.39

Table 1: Oracle Reordering: German-English

5.2.2. English-German

For the other translation direction, we can see lower absolute
BLEU scores, since translation into German is more difficult
due to the highly inflective morphology of the German lan-
guage. Compared to German-English translation, the differ-
ence between monotone and oracle translation is smaller, 2.9
and 4.6 BLEU points, respectively. The decoder using lattice
reordering performs better than the monotone translation, but
the gap towards the oracle translation is bigger. That means
that for English to German translation, there is even more
potential for improvement through better reordering lattices.

Reordering Type News TED
Monotone 15.91 24.22
Lattice Reordering 16.34 24.95
Oracle 18.84 28.77

Table 2: Oracle Reordering: English-German

From this experiment we can draw the conclusion that
reordering the source text prior to translation indeed holds
promising results. Our system using reordering lattices as
translation input outperforms the monotone translation in all
four translation tasks, and the oracle reordering shows that
there is still potential for improvement through better re-
ordering methods. In the following we will investigate how
we can best address this potential by analyzing different as-
pects of the reordering approach in detail.

5.3. Lattice-based Restriction of the Search Space

In the previous experiment we have identified a gap between
the actual performance of the system using reordering lat-
tices and the oracle reordered translation. In our reordering
approach we restrict the search space of possible reorderings
by the reordering lattice. In this second experiment we want
to investigate how much this restriction influences the drop
in performance. Therefore, we evaluate how much better we
could get, if the decoder found the best path in the given re-
ordering lattices. As described in Section 4.2 we define the
best path as the one that is closest to the oracle reordered
sentence used in the previous experiment.

In order to compare the benefits of individual reordering
rule types we apply all the different types of reordering rules
and identify the oracle path within the lattices produced by
those rules. Then we perform translation of the oracle path
and compare the translation quality.

All results tables repeat the scores for the monotone and

oracle translation presented above. In addition, they show
the translation results for systems using first short and long-
range rules based on POS tags. Afterwards follow the tree-
based rules, first the plain tree rules, then the tree-based rules
with recursive rule application and the third tree rule option
includes partial rules. More details on recursive rule appli-
cation and partial rules are described in [15]. The three final
systems combine all rule types.

5.3.1. German-English

Table 3 shows the results for German-to-English translation
and the size of the search space by indicating the number of
edges in the lattices. As can be seen, the more complex the
rule types that are used to generate the reordering lattice and
the larger the search space gets, the better the translation of
the oracle path in that lattice. Hence, we are able to improve
the word order by increasing the search space. The oracle
path that is closest to the oracle reordering stems from the
lattice produced by applying all rule types.

Reordering Type News TED
BLEU Size BLEU Size

Monotone 20.23 27.18
Short 21.37 193K 29.98 68K
Short+Long 21.41 255K 30.66 163K
Tree 21.88 140K 29.74 51K
Tree-rec 22.17 244K 30.11 81K
Tree-rec-partial 22.28 249K 30.22 82K
Short+Long+Tree 22.49 429K 30.97 182K
Short+Long+Tree-rec 22.64 534K 31.10 212K
Short+Long+Tree-rec-part. 22.65 538K 31.12 213K
Oracle 25.42 33.39

Table 3: Oracle Path: German-English

5.3.2. English-German

Table 4 presents the same experiments for English-to-
German translation. Again, the more complex rules and big-
ger search spaces lead to better oracle paths.

Thus, we can confirm the findings in [15], namely that the
different rule types produce complementary reordering pos-
sibilities which result in the best translation quality if com-
bined in one lattice. We can also see that the translation of
the best oracle path is still far from the oracle reordered trans-
lation. The lattices generated with the help of our reordering
rules restrict the search space in a sensible way to allow for
reorderings that are getting closer to the oracle reordered sen-
tence. However, some reordering possibilities are still miss-
ing from our lattices. Therefore, research in the area of ex-
tending the search space by better rules seems to be promis-
ing.



News TED
Reordering Type DecoderPath OraclePath DecoderPath OraclePath

BLEU Distance BLEU Distance BLEU Distance BLEU Distance
Monotone 20.23 27.18
Short 21.59 0.290 21.37 0.250 30.00 0.179 29.98 0.124
Long 21.35 0.286 21.41 0.259 30.73 0.181 30.66 0.112
Tree 21.78 0.286 21.88 0.250 29.60 0.180 29.74 0.140
Tree-rec 22.01 0.284 22.17 0.243 29.88 0.179 30.11 0.135
Tree-rec-partial 22.10 0.284 22.28 0.241 29.96 0.179 30.22 0.133
Short+Long+Tree 22.33 0.289 22.49 0.224 30.82 0.182 30.97 0.106
Short+Long+Tree-rec 22.44 0.288 22.64 0.220 30.86 0.182 31.10 0.104
Short+Long+Tree-rec-partial 22.45 0.288 22.65 0.220 30.87 0.182 31.12 0.104
Oracle 25.42 33.39

Table 5: Oracle vs. Real: German-English

Reordering Type News TED
BLEU Size BLEU Size

Monotone 15.91 24.22
Short 16.31 186K 25.83 76K
Short+Long 16.70 383K 25.99 170K
Tree 16.48 189K 25.31 71K
Tree-rec 16.60 726K 25.49 237K
Tree-rec-partial 16.60 727K 25.49 237K
Short+Long+Tree 17.00 496K 26.28 208K
Short+Long+Tree-rec 17.07 1M 26.38 373K
Short+Long+Tree-rec-part. 17.07 1M 26.38 373K
Oracle 18.84 28.77

Table 4: Oracle Path: English-German

5.4. Ranking different word orders

The experiments above revealed the best translation that can
be produced by using the individual rule types and combina-
tions thereof. Now we want to examine how well we actu-
ally perform in finding the best path in the lattices. Again,
we tested on all the different rule types, but let the decoder
find the best path for translation. It is worth mentioning that
the decoder does not only utilize the reordering model de-
scribed in Section 3 to find the path, but all the models in
the log-linear model of the translation system. For reference
we include the scores achieved with the oracle paths from the
previous experiment. In addition, we present the average dis-
tances between the decoder path used for translation and the
optimally reordered sentence both for the decoder translation
and for the translation of the oracle path. The distances are
calculated using the Kendall’s tau metric.

5.4.1. German-English

We present the results for German-to-English translation in
Table 5. The differences between the oracle path scores and
the real performance of the system (decoder path) with the

reordering lattices are actually very small. This means that
the decoder is already quite good at finding the best path in
the reordering lattice. To reach the translation quality of the
oracle path, a further increase of 0.2 and 0.3 BLEU points
would be possible for the News and the TED task, respec-
tively.

The distances between decoder translation path and ora-
cle reordering are shown in the column to the right of the de-
coder path, while the distances between the oracle path and
the oracle reordering are shown in the column to the right of
the scores reached by the oracle path translations. We can
see that both the distances and the translation quality for the
oracle path systems converge nicely for the News task. The
closer the translation quality comes to the translation qual-
ity of the oracle reordering, the smaller the distance to the
oracle reordering. In the TED task we also observe a good
correspondence between translation quality and reordering
distance for the oracle path results. The drop in BLEU score
when using only tree rules is also obvious in the distance
scores, which raise for those systems. For the decoder trans-
lation path, the distance to the oracle reordering seems to be
not converging at all, it stays about the same both for News
and TED translations.

5.4.2. English-German

The results for English-to-German translation are presented
in Table 6. For this translation direction, the path in the re-
ordering lattices chosen by the decoder is not very close to
the optimal one yet. The decoder performance is 0.7 BLEU
points worse than the translation of the oracle path in the best
rule type of the News task. For the TED task, the difference
between oracle path translation and decoder performance is
even 1.4 BLEU points.

The distance scores show a similar behavior as observed
in the other translation direction. The distances from oracle
path to oracle reordering get smaller as the translation qual-
ity increases. The distances from decoder translation path to
oracle reordering do not converge. Compared to the other



News TED
Reordering Type DecoderPath OraclePath DecoderPath OraclePath

BLEU Distance BLEU Distance BLEU Distance BLEU Distance
Monotone 15.91 24.22
Short 16.27 0.297 16.31 0.249 24.83 0.200 25.83 0.141
Long 16.31 0.311 16.70 0.236 24.87 0.214 25.99 0.129
Tree 16.21 0.306 16.48 0.252 24.47 0.206 25.31 0.163
Tree-rec 16.18 0.312 16.60 0.244 24.51 0.207 25.49 0.158
Tree-rec-partial 16.18 0.312 16.60 0.244 24.50 0.207 25.49 0.158
Short+Long+Tree 16.32 0.318 17.00 0.227 24.94 0.217 26.28 0.123
Short+Long+Tree-rec 16.34 0.321 17.07 0.222 24.95 0.218 26.38 0.120
Short+Long+Tree-rec-partial 16.34 0.321 17.07 0.222 24.95 0.218 26.38 0.120
Oracle 18.84 28.77

Table 6: Oracle vs. Real: English-German

direction they vary even more. It is possible that this is due
to the smaller differences in translation quality. In addition,
outliers in the paths chosen by the decoder could cause the
variations in the distance scores.

From these results on the translation quality we can draw
the conclusion that there still lies some potential in the re-
ordering rules and consequently in the reordering lattices that
the decoder is not yet able to make use of. The differences
in the decoder path translation scores and oracle path trans-
lation scores suggest that more complex scoring models for
better assessing the quality of different reordering possibil-
ities seem to be a promising research direction for English-
German translation.

6. Conclusion

We have analyzed the performance of an approach to reorder-
ing as a preprocessing step using oracle experiments. We
conducted experiments on German-to-English and English-
to-German translation of News texts and TED talks.

In a first series of experiments we could show that source
sentence reordering is a very promising approach. By trans-
lating an optimally reordered source sentence, we could im-
prove the translation performance by up to 6.2 BLEU points.

Then we translated the optimally reordered source sen-
tence and compared it with the oracle path in reordering lat-
tices produced by different types of reordering rules. This
led to the conclusion that the restriction of the search space
using our reordering lattices approximates the oracle reorder-
ing better when more complex and complementary reorder-
ing rules are used. However, the best oracle path and the
oracle reordering are still far apart, leaving a lot of poten-
tial for finding better reordering rules that approximate the
oracle reordering even better. While for German-to-English
translation the distance between actual performance and the
best possible translation is 2.5 to 3 BLEU points, the gap for
English-German is a little bigger. An additional 2.5 to 3.8
BLEU points are missing until the best possible translation

result can be reached. As a consequence, one direction of
promising research is to extend the search space further to
include reordering variants that better approximate the opti-
mally reordered source sentence.

Comparing the decoder path translation with the oracle
path showed that the path chosen by the decoder is quite
close to the oracle path, both in terms of translation qual-
ity and reordering distance for German-to-English transla-
tion. The decoder translation path and the oracle path are
only 0.2 and 0.3 BLEU points apart. Consequently, the cur-
rent models used in the machine translation system are able
to find almost the best source word order that is in the search
space. For English-to-German translation, however, finding
the best path in the reordering lattice seems to be more dif-
ficult. A gap of 0.7 and 1.4 BLEU remains until the oracle
path performance is reached. We can conclude that at least
for English-to-German translation a better ranking of the dif-
ferent reordering possibilities in the search space seems to
hold a promising perspective for future research.

All in all, our experiments confirmed the usefulness of
reordering the source sentence before translation. The ap-
proach displayed a good performance with potential for im-
provement by extending the search space of reordering pos-
sibilities. For English-to-German the ranking of reordering
quality for finding a better path in the reordering lattice is an-
other promising research direction. In total, the approach has
a potential for a further 3 and 3.8 BLEU points of improve-
ments, depending on the language. This potential could be
reached by improving the restriction of the search space with
better rules and a better ranking of reordering quality.
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Abstract
Disfluencies in speech pose severe difficulties in machine

translation of spontaneous speech. This paper presents our
conditional random field (CRF)-based speech disfluency de-
tection system developed on German to improve spoken lan-
guage translation performance.

In order to detect speech disfluencies considering syn-
tactics and semantics of speech utterances, we carried out
a CRF-based approach using information learned from the
word representation and the phrase table used for machine
translation. The word representation is gained using recur-
rent neural networks and projected words are clustered using
the k-means algorithm. Using the output from the model
trained with the word representations and phrase table infor-
mation, we achieve an improvement of 1.96 BLEU points
on the lecture test set. By keeping or removing human-
annotated disfluencies, we show an upper bound and lower
bound of translation quality. In an oracle experiment we gain
3.16 BLEU points of improvement on the lecture test set,
compared to the same set with all disfluencies.

1. Introduction
Natural language processing (NLP) tasks often suffer from
disfluencies in spontaneous speech. In spontaneous speech,
speakers occasionally talk with disfluencies such as repeti-
tions, stuttering, or filler words. These speech disfluencies
inhibit proper processing for other subsequent applications,
for example machine translation (MT) systems.

MT systems are generally trained using well-structured,
cleanly written texts. The mismatch between this training
data and the actual test data, in this case spontaneous speech,
causes a performance drop. A system which reconstructs
the non-fluent output from an automatic speech recognition
(ASR) system into the proper form for subsequent applica-
tions will increase the performance of the application.

A considerable number of works on this task such as [1]
and [2] focus on English, from the point of view of the ASR
systems. One of our goals is to extend this work to German,
and also apply it to the MT task, in order to analyze the effect
of speech disfluencies on MT.

1.1. Disfluencies in Spontaneous Speech

Filler words (e.g. “uh”, “uhm”) are a common disfluencies
in spontaneous speech. Discourse markers (e.g. “you know”,
“well” in English) are considered filler words as well. An-
other common disfluency is repetition, where speakers repeat
their words. A repetition can either be an identical repeti-
tion, where speakers exactly repeat a word or phrase, or a
rough repetition, where they correct themselves using simi-
lar words. Simplified examples of such repetitions from our
disfluency annotated lecture data with English gloss transla-
tion are shown in Table 1, in which the identical repetition
is on the upper part, and the rough repetition is on the lower
part.

Table 1: Repetitions in spontaneous speech

Source Das sind die Vorteile, die Sie die Sie haben.
En.gls These are the advantages, that you that you have.
Source Da gibt es da gab es nur eins.
En.gls There is there was only one.

Another type of speech disfluency, where several speech
fragments are dropped and new fragments are introduced, is
restart fragments. As presented in Table 2, the speaker starts
a new way of forming the sentence after aborting the first
several utterances. Although the example shown in this ta-
ble depicts a case where the context is still kept in the fol-
lowing new utterances, occasionally we confront other cases
where the previous context is abandoned and a new topic is
discussed in spontaneous speech.

Table 2: Restart fragment in spontaneous speech

Source Das ist alles, was Sie das haben Sie
alles gelernt, und jetzt können Sie...

Engl. gloss That is all, what you you have
learned all of this, and now can you...



1.2. Motivation

Detecting obvious filler words and simple repetitions can be
more feasible than other sorts of disfluencies for automatic
modeling techniques, using lexical patterns such as typical
filler word tokens and repetitive part-of-speech (POS) tokens
as in previous work [2, 3]. Although it is the case for ob-
vious disfluencies (i.e. “uh”, “uhm”, same repetitive tokens,
and so on), we are confronted with many other cases where
it is hard to recognize or decide whether the token is a dis-
fluency or not via automatic means. This issue can be con-
sistent even when the disfluency is filler words or repetitive
tokens. Table 3 contains a sentence from the annotated data,
which depicts this issue for repetition. In the German source
sentence, the word üblicherweise, meaning ‘customarily’ is
annotated as a disfluency, as it was the speaker’s intention to
change the utterance into the next word traditionell, which
means ‘traditionally’.

Table 3: Difficulty in detecting repetitions

Source
Die Kommunikation zwischen Mensch
und Maschine, die wir so üblicherweise
traditionell immer sehen, ist die...

Engl. gloss
The communication between man
and machine, which we customarily
traditionally always see, is the...

Discourse markers can be hard to capture, as they occa-
sionally convey meanings in a sentence. In the same way as
it is with English discourse markers such as “I mean”, “ac-
tually”, and “like”, for example, German discourse markers,
as shown in Table 4, can sometimes be used as a discourse
marker and sometimes as normal tokens. In this table it is
shown that a German word nun means ‘now’ as shown in
the upper part, but occasionally is used as a discourse marker
like in the lower part and does not need to be translated. In
the lower row, the word nun appears with another discourse
marker ja, which can also mean ‘yes’ in English, depending
on the context.

Table 4: Difficulty in detecting discourse markers

Source Sie sehen hier unseren Simultanübersetzer,
der nun meinen Vortrag transkribiert.

Reference Here you see our simultaneous translator,
which now transcribes my presentation.

Source An einer Universität haben wir ja nun
viele Vorlesungen.

Reference In a university, we have many lectures.

These examples suggest that disfluency detection re-
quires an analysis of syntactics as well as semantics. Detect-
ing restarted fragments especially requires semantic labeling,
as in some cases the restarted new fragment does not contain
the same content as the aborted utterances.

In this work we aim to analyze and improve machine
translation performance by detecting and removing the dis-
fluencies in a preprocessing step before translation. For this
we adopt a conditional random field (CRF)-based approach,
in which the characteristics of disfluencies can be modeled
using various features. In order to consider the issues dis-
cussed previously, we devised features learned from word
representations and phrase tables used for the MT process
in addition to lexical and language model features. The MT
performance of CRF-detected output is evaluated and com-
pared to the result of an oracle experiment, where the test
data without all annotated disfluencies is translated.

This paper is organized as follows. In Section 2, a brief
overview of past research on speech disfluency detection is
given. The annotated data used in this work is described in
Section 3, followed by Section 4 which contains the CRF
modeling technique with extended features from word repre-
sentation and phrase table information. Section 5 describes
our experiment setups and their results along with an analy-
sis. Finally, Section 6 concludes our discussions.

2. Related Work
In previous work, the disfluency detection problem has been
addressed using a noisy channel approach [4]. In this work
it is assumed that fluent text, free of any disfluencies passed
a noisy channel which adds disfluencies to the clean string.
The authors use language model scores and five different
models to retrieve the string, where the two factors are con-
trolled by weight. An in-depth analysis on disfluency re-
moval using this system and its effect are provided in [5].
They find that for the given news test set, an 8% improvement
in BLEU [6] is achieved when the disfluencies are removed.

In another noisy channel approach [7], the disfluency de-
tection problem is reformulated as a phrase-level statistical
machine translation problem. Trained on 142K words of
data, the translation system translates noisy tokens with dis-
fluencies into clean tokens. The clean data contains new tags
of classes such as repair, repeat, and filled pauses. Using this
translation model based technique, they achieve their highest
F-score of 97.6 for filled pauses and lowest F-score of 40.1
for repairs.

The noisy channel approach is combined with a tree-
adjoining grammar to model speech repairs in [1]. A syntac-
tic parser is used for building a language model to improve
the accuracy of repair detection. Same or similar words in
roughly the same order, defined rough copy, are modeled us-
ing crossed word dependencies. Trained on the annotated
Switchboard corpus, they achieve an F-score up to 79.7.

The automatic annotation generated in [1] is one of the
features used for modeling disfluencies in [2], where they
train a CRF model to detect speech disfluencies. In addition
to the automatic identification by [1], they use lexical, lan-
guage model, and parser information as features. The CRF
model is trained, optimized and tested on around 150K words
of annotated data, where disfluencies are to be classified into



three different classes. Following this work, the authors offer
an insightful analysis on syntactics and semantics of manu-
ally reconstructed spontaneous speech [8].

Though most of the progress has been focused on en-
hancing the performance of speech recognition via disflu-
ency detection, authors of the work [3] employ disfluency de-
tection to achieve improved machine translation. They train
three different systems. The first system combines hidden-
event language models and knowledge-based rules. The sec-
ond system is a CRF model, which combines lexical features
and shallow syntactic features. The final system is a rule-
based filler-detecting system. Five classes are used in this
task. The test sets for testing MT performance are generated
by manually pulling out sentences with disfluencies from all
sentences available. Thus, only the sentences containing dis-
fluencies are selected and evaluated. There are two test sets
built in this way, which are 339 sentences and 242 sentences
out of 1,134 sentences and 937 sentences respectively. Ab-
solute improvements of 0.8 and 0.7 BLEU points are gained
on the two selected test sets.

There are several notable differences between our disflu-
ency detection system and previous work. Unlike [2], we
deploy extended features from neural networks and a phrase
table in order to capture more semantic aspects. Furthermore,
in our work the CRF detection result is further processed and
evaluated in an MT system. In the work in [3], three sys-
tems are combined to detect disfluencies and evaluated in an
MT system. Contrary to their systems, we did not deploy
any rule-based detection. Moreover, in our work the CRF-
based disfluency detection is extended further using semantic
features. Finally, in contrast to using only the affected 28%
portion of their test data to evaluate the MT performance,
we use all our available data for evaluation, including unaf-
fected, originally clean sentences. This aims at evaluating
the performance in a more fair condition.

3. Data
For training and testing our CRF model for disfluency de-
tection, we use in-house German lecture data from different
speakers, which is transcribed, annotated, and translated into
English.

Disfluencies are annotated manually on a word or phrase
level. There are subcategories of annotation such as filler
words, repetitions, deletions, partial words, and so on. These
subcategories are very fine-grained, so we later re-classify
them for the CRF tagging task according to our aims. In-
spired by the classes defined in previous works [1, 2], we
classified these annotations into three categories; filler,
(rough)copy, and non-copy.

The class filler includes simple disfluencies such as
uhm, uh, like, you know in English. If source words are
discourse words or do not necessarily convey meaning and
are not required for correct grammar, they are also clas-
sified as filler words. Words or phrases are grouped into
(rough)copy when the same or similar tokens reoccur, as

shown in Table 1 and 3 with bold letters. Words are tagged
as non-copy when the speaker changes their mind about
how or what to say, as shown in Table 2 with bold letters.
Contrary to previous work [2], extreme cases of non-copy,
in which the restarted fragments are considered to have new
contexts after aborted utterances, are not excluded from the
modeling target but are also taken into account.

Compared to other works on English, we have a consid-
erably lower amount of annotated data in German. We gath-
ered 61K manually-annotated words from lecture data, with
roughly 9% marked as disfluencies. Detailed statistics of the
annotated data is given in Table 5.

Table 5: Data statistics on classes of the annotation

Tokens Percentage in the corpus
Filler 3,304 5.35%
(rough)Copy 1,518 2.46%
Non-copy 620 1.00%
Non-disfluency 56,264 91.18%

In order to make use of all annotated data and to enable
cross validation, we divided the 61K words of annotated data
as well as its translation in English into three parts, such
that each part has around 20K words in the German source.
For testing one corpus part out of three, the other two parts,
which are around 40K words, are used as training data for
the CRF model.

4. Disfluency Detection using CRF
Introduced by [9], CRF is a framework dedicated to labeling
sequence data. A CRF models a hidden label sequence given
the observed sequence. CRFs have been applied extensively
in diverse tasks of NLP, such as sentence segmentation [10],
POS tagging [9] and shallow parsing [11] due to its advan-
tages of representing long-range dependencies in the obser-
vations.

In this work we use the linear chain CRF modeling tech-
nique to detect speech disfluencies. By using bigram features
we can model first-order dependencies between words with
a disfluency. We used the GRMM package [12] implemen-
tation of the CRF model. The CRF model was trained using
L-BFGS, with the default parameters of the toolkit.

4.1. Features

In this work we utilize lexical, language model, word repre-
sentation, and phrase table information features. Word repre-
sentation and phrase table information features are devised in
order to capture more syntactic and semantic characteristics
of speech disfluencies. They are described in detail later on.

Our lexical and language model features are based on the
ones described in [2]. We extend the language model features
on words and POS tags up to 4-grams. Parser information
and JC-04 Edit results as shown in [1] are not available in



Table 6: Sample features on the lexical level

Source Da gibt es da gab es in uh gab es nur eins .
Engl. gloss. There is there was in uh there was only one .
Word Da gibt es da gab es in uh gab es nur eins .
POS ADV VVFIN PPER ADV VVFIN PPER APPR ITJ VVFIN PPER ADV PIS $.
Word-Dist 3 365 3 47 4 4 259 9 218 821 115 933 27
POS-Dist 3 3 3 7 4 4 12 9 6 80 3 21 27
Word-Patt 0 0 0 0 1 1 0 0 0 0 0 0 0
POS-Patt 1 1 1 0 1 1 0 0 0 0 0 0 0
Annotation - RC RC RC RC RC RC FL - - - - -

German, and therefore not used in this work. Furthermore,
we add two new pattern features on the lexical level.

In Table 6, several selected features are shown for the
rough repetition sentence from Table 1. The ‘Word/POS-
Dist’ feature means the distance of a token to its next ap-
pearance. Therefore, a low ‘Word/POS-Dist’ number indi-
cates that this token occurs again shortly thereafter. If two or
more neighboring tokens have the same ‘Word/POS-Dist’,
the ‘Word/POS-Patt’ feature of the corresponding tokens is
set to 1. For example, the first three tokens have the same
‘POS-Dist’ number, therefore their ‘POS-Patt’ has a value of
1. This feature enables us to efficiently detect such blocks
of repetition, where the same or roughly the same words are
repeated. We use a 1 of k encoding for features. Since binary
features are supported better by the toolkit, we quantize the
numeric features. The POS tags are automatically generated
using [13].

With the mentioned features, we can find syntactic clues
for disfluency detection. For example, POS tokens and their
patterns can help to figure out repetitive (rough)copy oc-
currences. However, as discussed earlier, in the annotated
data we observe that in many cases it is required to include a
semantic level of information as well. In addition to the men-
tioned features, we devised a new strategy of including word
embedding features derived from a recurrent neural network
(RNN) and phrase table information.

4.2. Word Representation using RNN

Word representations have gained a great deal of attention
for various NLP tasks. Especially word representation using
RNNs is proven to be able to capture meaningful syntactic
and semantic regularities efficiently [14]. RNNs are simi-
lar to multilayer perceptrons, but an RNN has a backwards
directed loop, where the output of hidden layers becomes ad-
ditional input. This allows the network to effectively capture
longer history compared to other feed-forward-based n-gram
models.

Word embedding is a distributed word representation,
where words are represented as multi-dimensional vectors.
The word vectors syntactically and semantically relating to
each other will be close to each other in that representation
space. Thus, words within certain semantic and syntactic re-

lations have similar vector values. Conventionally, word em-
beddings of a textual corpus are obtained using certain types
of neural networks.

In the hope that word representation can offer insights
on semantics and syntactis, in this paper we use word em-
bedding features learned from an RNN for the CRF model.
We use RNNLM [15] with 100 dimensions for word repre-
sentations. In order to ensure an appropriate coverage of the
representation, we use the preprocessed training data of the
MT system, which contains various domains such as news
and lectures. This data consists of 462 million tokens with
150K unique tokens.

4.2.1. Word Projection and Cosine Distance

Figure 1 depicts the 2-dimensional word projection from
the real-valued 100-dimensional vectors representations us-
ing the RNN, we can observe word clusters being formed.
This visualization is obtained using t-Distributed Stochastic
Neighbor Embedding [16]. Due to memory consumption,
only the most frequent 10K words are projected.

Figure 1: Word projection of training data, with word repre-
sentation obtained with an RNN

Analyzing the details of this projection, we observe that
words with the same syntactic role are projected closely to
each other. For example, possessive cases corresponding
to ‘my’, ‘his’, and ‘our’ in English are projected closely to
each other. This is consistent for other grammatical com-
ponents of a sentence, such as personal pronouns or relative
pronouns. We observe clusters for dates, months and times.

The projection seems to convey semantic relations to



some extent. When it comes to adjectives, they are projected
according to their stem and occasionally meanings. Verbs are
clustered with other verbs with the same tense or stem.

In order to compare the closeness of words numerically,
we calculate their cosine similarity.

Table 7: Cosine similarity of words in word representations

Word in German Meaning in English Cosine Distance
schnell fast, quick 1
rasch quick, rapid 0.8394
bald soon, shortly 0.6245
effektiv effective 0.6092
zügig efficient, speedy 0.6088
wahrscheinlich probable 1
vermutlich probably 0.9066
möglicherweise maybe, possibly 0.8938
sicherlich certainly 0.8937
vielleicht maybe, possibly 0.8827

Table 7 depicts a couple of examples. For each bold-
lettered word, the four words with the highest cosine simi-
larity are presented. Evidently, these four words are sharing
a high semantic closeness with each given word, which will
provide a quality feature for the task of disfluency detection.
From this analysis, we conclude that RNNs can offer syntac-
tic and semantic clues for disfluency detection.

4.2.2. Word Clustering

In order to use the word representation vectors as features
in the CRF model more efficiently, we cluster the word rep-
resentations with the k-means algorithm. From preliminary
experiments, the number of clusters k is chosen to be 100.

Therefore every word of the RNN training data falls into
the 100 clusters. For every word in the test data, it is checked
whether this word has been observed in the word represen-
tations. If it has been observed, the word is assigned with
the corresponding cluster code as a binary feature. If it has
not been observed, the cluster code 0 is assigned. Also, the
distance to the next identical cluster code and the repetitive
pattern of it are also used as CRF model features, as shown
in Table 6 for word and POS tokens.

4.3. Phrase Table Information

One of the common effects of disfluencies on the MT pro-
cess is that often the translation contains repetitive words or
phrases. When identical tokens in the source sentence are the
reason for this, the original source sentence can be corrected
using lexical features. However, often we observe other cases
where two words, which are different on the lexical level,
generate two identical translated words. Table 8 depicts one
example for this from our data.

In this example, the German word jetzt (Engl. gloss.
‘now’) is annotated as a disfluency, followed by a word in-
zwischen (Engl. gloss. ‘meantime’, ‘now’). Translating this

source sentence as it is generates the translation containing
two identical tokens in a row in English. We expect to solve
this problem by examining the meaning of the source words
in a phrase table. Thus, the target words for given source
words in a phrase table are examined.

An advantage from using phrase table information is that
we can detect semantic closeness of words or phrases in
a source sentence independent from their syntactic roles.
As shown in Table 7, word representation tends to group
those words together which are syntactically and semanti-
cally closely related. However, using the phrase table in-
formation, words which are only semantically related, but
not necessarily syntactically related, can also be grouped to-
gether. Considering that many of the repetitions also have
different POS tags in a sentence, this phrase table feature is
expected to capture such disfluencies.

In order to derive this feature, we examine the bilingual
language model [17] tokens in the phrase table. The bilin-
gual language model tokens consist of target words and their
aligned source words. Using this information, we count how
often a given source word is aligned to a certain target word
and list the three most frequently used target words. We com-
pare the aligned target words of the current and the following
word. If the same target word(s) appears in both lists, the cur-
rent word is given a phrase table feature.

An equivalent feature is introduced for the phrase level.
As an example, we can consider consecutive source words
f1, f2, and f3 in one phrase. This phrase is aligned to a
target token e1. If the next source token f4 is also aligned
to the target token e1, the first three tokens, namely f1, f2,
and f3, are given the phrase level phrase table feature. The
coverage of the phrase level feature can be expanded upto
three consecutive words as one phrase on the source side.
Thus, the source tokens f1, f2, and f3 are examined as one
phrase, and this can be also narrowed down to f1 and f2 only.
The target token(s) aligned to the source phrase, consists of
upto f1, f2, and f3, is compared to the target token(s) aligned
to the potential repetitive phrase, which can consist of also
upto next three tokens f4, f5, and f6. The German source
words with split compounds are also considered in this way.

In our phrase table the word inzwischen in Table 8 is
aligned to ‘now’ most frequently, followed by ‘meantime’
and ‘meanwhile’. The most frequently appeared translation
for the next appearing word jetzt is ‘now’, followed by ‘cur-
rently’, and ‘just’. Thus, by using the phrase table features, it
will be indicated that the first word jetzt is aligned to a same
target word with its next appearing word.

5. Experiments
5.1. System Description

In this section we introduce the SMT system used in our ex-
periments. The translation system is trained on 1.76 million
sentences of German-English parallel data including the Eu-
ropean Parliament data and the News Commentary corpus.



Table 8: Necessity of using phrase table information for disfluency detection

Source Diese Vorlesungen sind natürlich jetzt inzwischen alle abgespeichert, die liegen auf unserem Server.
Engl. gloss These lectures are of course now meantime all stored, they lie on our server.
MT output This lecture series are, of course, now now all stored, which lie on our server.
Reference These lectures have of course all been saved in the meantime, they are on our server.

We also use the parallel TED data1 as in-domain data to adapt
our models to the lecture domain. Preprocessing which con-
sists of text normalization, tokenization, and smartcasing is
applied before the training. For the German side, compound
splitting and conversion of words written according to the
old spelling conventions into the new form of spelling are
applied additionally.

As development data, manual transcripts of lecture data
collected internally at our university are used. The talks are
14K parallel sentences from university classes and events.

In order to build the phrase table, we use the Moses pack-
age [18]. Using the SRILM Toolkit [19], a 4-gram language
model is trained on 462 million words from the English side
of the data. A bilingual language model [17] is used to extend
source word context. In order to address the different word
orders between German and English, the POS-based reorder-
ing model as described in [20] is applied. This is further ex-
tended as described in [21] to cover long-range reorderings.
We use Minimum Error Rate Training (MERT) [22] for the
optimization in the in-house phrase-based decoder [23].

5.2. Results

To investigate the impact of disfluencies in speech translation
quality, we conduct four experiments.

In the first experiment, the whole data, including anno-
tated disfluencies, is passed through our statistical machine
translation (SMT) system.

For the second experiment, we remove the obvious filler
words uh and uhm manually in order to study the impact of
the filler words which can be captured systematically. Al-
though there are a great number of other filler words, many
of these filler words are not removed in this experiment, since
they are not always disfluencies.

In the third experiment, we use the output from the
CRF model trained with features from word representations
and phrase table information, which will be noted as CRF-
Extended. We also translate the output from the CRF model
trained without any word representation and phrase table fea-
tures. This will be denoted as CRF-Baseline. If the CRF
models detect a token as either of the three classes, filler,
(rough)copy, or non-copy, the word token is assumed
to be a disfluency and is removed. The three classes are
trained in the same model together. As mentioned previously,
training and testing the CRF model is done with three-fold
cross-validation. Thus, both of the CRF models are trained
on around 40K annotated words, and tested on around 20K

1http://www.ted.com

annotated words. The performance is evaluated on the joined
three sub-test sets.

In the last experiment, all disfluency-annotated words are
removed manually. As all annotation marks are generated
manually, this experiment shows as an orcale experiment the
maximum possible improvement we could achieve.

All four experiments are conducted on manually tran-
scribed texts, in order to disambiguate the effects from errors
of an ASR system. The experiments considers all available
data, which is 61K words, or 3K sentences.

Table 9 depicts the results of our experiments. The scores
are reported as case-sensitive BLEU scores, including punc-
tuation marks.

Table 9: Influence of disfluency in speech translation

System BLEU
Baseline 19.98
+ no uh 21.28
CRF-Extended 21.94
Oracle 23.14

The result of the first experiment is presented as the Base-
line system, where all disfluencies are kept in the source text.
When we remove all uhs and uhms in the source text manu-
ally, we gain 1.3 BLEU points.

Apart from this, we use the output of the CRF-Extended
as an input to our machine translation system. Words tagged
as disfluencies are all removed. The translation score us-
ing the CRF-Extended is almost 2 BLEU points better than
translating the text with all disfluencies. Compared to the
second experiment where we remove uh and uhm, the per-
formance is improved by around 0.7 BLEU points. As the
BLEU score does not show a significant difference between
the CRF-Extended and CRF-Baseline, here only the CRF-
Extended score is shown. An in-depth analysis of the impact
of the two systems will be given in the following chapter.

5.3. Analysis

The detection results for all models are given in Table 10. In
total, there are 5,432 speech disfluencies annotated by human
annotators, and among them, 3,012 speech disfluencies are
detected by the CRF-Extended.

Compared to the case where the obvious filler words are
removed, 1,025 more speech disfluencies are detected and re-
moved. Compared to the CRF-Baseline, where the features
obtained from the word representations and phrase table in-
formation are not used, 103 more disfluencies are detected



Table 10: Results of disfluency detection in tokens

System Correct Wrong
Baseline 0 0
+ no uh 1,987 0
CRF-Baseline 2,909 489
CRF-Extended 3,012 552
Oracle 5,432 0

using the CRF-Extended, while also a higher number of to-
kens are falsely detected.

In order to analyze the difference between the trans-
lations produced by CRF-Baseline and CRF-Extended, we
score the test set sentence by sentence and rank them accord-
ing to the difference in BLEU scores. Differences appear in
223 sentences.

One notable difference is that the CRF-Extended system
detects a higher number of repetitions. Table 11 shows a sen-
tence from the test set, where a longer phrase of repetition is
captured using CRF-Extended. Words which represent a dis-
fluency are marked in bold letters. Both systems can catch
the obvious filler word uh and the simple repetition als als.
In addition to this detection, the CRF-Extended system cap-
tures the whole disfluency region, in spite of the considerably
complicated sentence structure and repetitive patterns. In this
sentence the repeated words appear with varying frequencies
and with a different distance to the next identical token. In
order to detect such disfluencies, the correct phrase boundary
needs to be recognized. As a result of this detection, the MT
output using the CRF-Extended system is much more fluent
than the one using the CRF-Baseline system.

Table 12 shows a sentence from the test set, where the
CRF-Extended system does not perform better than the CRF-
Baseline system for the given reference. The only disfluency

shown in the original sentence der, marked with bold let-
ters, is removed using both techniques. The CRF-Extended
system additionally detects einen Umschwung as a disflu-
ency. However, this deletion harms neither the structure
nor meaning of the sentence, as einen Umschwung means
‘a turnaround’, or ‘a change’, which conveys practically the
same meaning as the next following tokens.

It is an interesting point that using the semantic fea-
tures we could detect that einen Umschwung is semantically
closely related with eine veränderte, despite their distance in
tokens and different syntactic roles in the sentence. This is an
example that even though the CRF-Extended output does not
match the human-generated annotation in this case, the CRF-
Extended still provides a good criteria to detect semantically
related words.

The CRF-Extended system also performs better with re-
gard to distinguishing between discourse markers and the
normal usages of the words. 59% of difference in correctly
classified disfluencies between the CRF-Baseline and CRF-
Extended stems from filler words. The rest is achieved from
detecting a higher number of correct repetitions.

6. Conclusions
In this paper, we presented a CRF-based disfluency detection
technique with extended features from word representations
and a phrase table. These features are designed to capture
deeper semantic aspects of the tokens. Using the predicted
results from the CRF model, we gain around 2 BLEU points
on manual transcripts of lectures. From the detailed analy-
sis, we show that usage of the extended features provides a
good means to detect semantically related disfluencies. The
oracle experiment suggests that the machine translation of
spontaneous speech can be improved significantly by detect-
ing more disfluencies correctly.

Table 11: Syntactically complicated, long phrase with a disfluency captured using CRF-Extended

Source Man kann das natürlich sowohl als Links- als auch als als Links- als auch als Rechtshänder uh verwenden.
Engl. gloss You can this of course both as left- as also as as left- as also as right-handed uh use.
CRF-Baseline Man kann das natürlich sowohl als Links- als auch als Links- als auch als Rechtshänder verwenden.
MT output You can use this, of course, both as a left- as well as on the left- as well as a right-handed.
CRF-Extended Man kann das natürlich sowohl als Links- als auch als Rechtshänder verwenden.
MT output You can use this, of course, both as a left- as well as a right-handed.
Reference You can of course use this as left- as well as also as a right-handed person.

Table 12: Semantically related words detected using CRF-Extended

Source Die Ausrufung des totalen Kriegs markierte eigentlich einen Umschwung, der eine veränderte Form der
Politik.

Engl. gloss The proclamation of total war marked actually a turnaround, of a change form of politics.
CRF-Baseline Die Ausrufung des totalen Kriegs markierte eigentlich einen Umschwung, eine veränderte Form der Politik.
MT output The proclamation of the total war was collared actually a turnaround, a changed form of politics.
CRF-Extended Die Ausrufung des totalen Kriegs markierte eigentlich eine veränderte Form der Politik.
MT output The proclamation of the total war was collared actually a changed form of politics.
Reference The call for total war in fact marked a turnaround, and a changed form of politics.



In future work, we would like to pursue the develop-
ment of disfluency detection systems which take prosodic
features into account in order to apply them to automatic
speech recognition output. Furthermore, integrating the dis-
fluency detection system tightly into machine translation sys-
tems could improve the performance even more.
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Abstract

Russian is a challenging language for automatic speech
recognition systems due to its rich morphology. This rich
morphology stems from Russian’s highly inflectional nature
and the frequent use of pre- and suffixes. Also, Russian has
a very free word order, changes in which are used to re-
flect connotations of the sentences. Dealing with these phe-
nomena is rather difficult for traditional n-gram models. We
therefore investigate in this paper the use of a maximum en-
tropy language model for Russian whose features are specif-
ically designed to deal with the inflections in Russian, as
well as the loose word order. We combine this with a sub-
word based language model in order to alleviate the problem
of large vocabulary sizes necessary for dealing with highly
inflecting languages. Applying the maximum entropy lan-
guage model during re-scoring improves the word error rate
of our recognition system by 1.2% absolute, while the use of
the sub-word based language model reduces the vocabulary
size from 120k to 40k and the OOV rate from 4.8% to 2.1%.

1. Introduction
The Russian language has some properties that make the
creation of high performing Large Vocabulary Continuous
Speech Recognition (LVCSR) quite challenging. Especially
in language modeling there are two principal problems that
need to be dealt with:

• Morphology: Russian is a highly inflecting language.
E.g., Russian nouns can be declined according to six
cases, two numbers (singular and plural) and three
grammatical genders (male, female and neutral). Ad-
jectives need to declined in accordance with the sub-
ject that they belong to; verbs can be conjugated ac-
cording to three persons, two numbers and two tenses.
Prefixes and suffixes are frequently used to produce a
multitude of derivatives of basic words.

• Word Order: The word order in Russian is rather free.
Different word orders for the same sentence are used
to convey different connotations.

The rich morphology of Russian leads to the need for
large vocabularies. And even with rather large vocabularies
ASR systems suffer from relatively high out of vocabulary
(OOV) rates [1, 2].

Also, the combination of loose word order and rich mor-
phology leads to very high perplexities for standard n-gram
language models, especially when trained estimated on mod-
erate amounts of training data [1, 3]. Larger vocabularies
generally lead to higher n-gram language model perplexities.
The same is true for the loose word order, as n-gram lan-
guage models compose the sentence language model proba-
bility from the probabilities of word sequences of fixed order
and short length.

In order to deal with the problem of high OOV rates that
arise from the rich morphology of a language, the use of sub-
word based search vocabularies is a common technique and
has been successfully used in a multitude of languages (see
Section 2). However, their impact on the problems of the
high perplexities of the language model are only limited, es-
pecially for Russian with respect to its many endings arising
from the grammatical inflections, but also with respect to its
many prefixes and suffixes that can be combined with a myr-
iad of words.

In order to alleviate this problem we propose the applica-
tion of maximum entropy language models to Russian. In
this paper we present an implementation of such a maxi-
mum entropy language model that deals specifically with
the phenomena that make n-gram language models perform
badly for Russian. We combine the maximum entropy model
with our implementation of a sub-word based vocabulary and
evaluate both approaches on a large vocabulary continuous
speech recognition task in the tourist domain.

The rest of the paper is structured as follows. In Sec-
tion 2 we give an overview of related work in both areas –
sub-word based language modeling and maximum entropy
language models. Section 3 then introduces our approach to
sub-word based language modeling for Russian, while Sec-
tion 4 describes our design of an entropy based language
model that deals specifically with Russian morphology. In
Section 5 we report on the improvements in word error rate
that we achieved with the approaches described in this paper.



2. Related Work
2.1. Sub-Word Based Language Models

Sub-word based language models have been reported to be
successful for highly inflecting languages such as Russian[4,
1], Czech[5], Finnish[6], Turkish[7], Slovenian[8], Arabic[9,
10].

In [9] SyntaxNN, a neural network language model using
syntactic and morphological features, and DLM, a discrim-
inative language model trained using the Minimum Bayes
Risk (MBR) criterion, and unigram, bigram, and trigram
morphs features were applied to Arabic.

To incorporate syntactical and morphological knowledge
of Arabic to language modeling [10] utilized a Factored Lan-
guage Modeling toolkit[11]. The use of word lexeme and
morpheme features led to a reduction in WER of 2% rela-
tive.

A particle (similar to sub-word) based n-gram model in
combination with a word based model applied to Russian
was shown to give a reduction of perplexity of up to 7.5%
[4]. For this, data-driven techniques were applied that deter-
mine particle units and word decompositions automatically.

A random-forest language model for Russian[4] using
word stems among other morphological features achieved a
WER improvement of 3.4% relative over a trigram model.

[12] explored the use of sub-word based language mod-
els for Finnish, Estonian, Turkish and Egyptian Colloquial
Arabic. They performed word decomposition in an unsu-
pervised, data-driven way using Morfessor. They showed
that the morph models performed fairly well on OOVs with-
out compromising the recognition accuracy of in-vocabulary
words.

An application of sub-word based language model to
Czech is studied in [5]. A sub-word based language model
which includes different models for different sub-word units,
such as stems and endings, reduces the WER by about 7%
absolute. They applied their language model in n-best list
re-scoring.

An interesting idea is proposed in [7]. Here, Turkish
was modeled with so called FlexGrams, which allow skip-
ping several parents and use later grams in the history to es-
timate a probability of the current word. They experimented
with words split into their stem and suffix forms, and defined
stem-suffix FlexGrams, where one set of offsets is applied to
stems and another to suffixes.

2.2. Maximum Entropy Language Models

The maximum entropy approach was introduced to language
modeling more than 10 years ago[13, 14, 15]. And it is be-
ing used today the state-of-the-art language models such as
ModelM[16].

ModelM[16] is an exponential class-based n-gram lan-
guage model. The word n-gram and word class features are
incorporated into the language model within an exponen-
tial modeling framework. The model with enhanced word

classing[17] achives a total gain of up to 3.0% absolute over
a Katz-smoothed trigram model[17]. Experiments were done
on the Wall Street Journal corpus.

Maximum Entropy models are also being successfully
used for machine translation systems, e.g. [18, 19]

In [19] it was shown that the use of discriminative word
lexica (DWL) can improve the translation quality signifi-
cantly. For every target word, they trained a maximum en-
tropy model to determine whether this target word should be
in the translated sentence or not. As features for their classi-
fier they used one feature per source word.

3. Sub-Word Based Search Vocabulary and
Language Model

The goal of sub-word based search vocabularies and lan-
guage models is to reduce the OOV rate of an ASR system
by decomposing whole words into smaller units. Normally,
the distinct number of these sub-word units is significantly
smaller than the number of words that they form. So, with
constant vocabulary size, the OOV rate of the recognition
system is drastically reduced.

In order to work, the following steps need to be taken:

• Decomposition: The original words need to be decom-
posed into smaller units. The units need to show some
sort of consistency, so that their total number is clearly
smaller than that of the words that they were derived
from. Depending on the language one can decide to ei-
ther decompose all words in the search vocabulary, or
only a certain sub-set, e.g., those occurring relatively
infrequently, while the frequent words are being kept
intact. Word decomposition is usually done for the lan-
guage model training material and then a new vocabu-
lary is derived.

• Pronunciation Generation: For the generated sub-
word units pronunciations need to be added to the sys-
tem’s dictionary. Since in general the mapping be-
tween the writing of a word and its pronunciation, i.e.
phoneme sequence, is not given or easily derivable, de-
ducting the pronunciation of the sub-word units from
the pronunciation of the original words is often not
straight-forward or even impossible. Often grapheme
based pronunciation dictionaries can offer a solution
here.

• Language Model Training: Based on the new vocab-
ulary composed of the sub-word units, and potentially
mixed with whole words, a new language model needs
to be trained that is then used for recognition.

• Word Reconstruction: After decoding, the recognized
sub-words need to be recombined in order to obtain a
valid word sequence.



3.1. Word Decomposition and Merging

For word decomposition we used a Snowball [20] based
stemmer. Snowball is a small string processing language
designed for creating stemming algorithms. A stemmer for
Russian is distributed with the package. The stemmer is not a
tool for morpheme analysis, but a word stem derivation tool.
Therefore, the output of this tool needs to be processed to
split up words into subunits. For a given word the stemmer
returns a stem. Endings can then be derived by comparing
the original word string against that of the stem. For example
the words in the phrase "необходимое условие" (necessary
conditions) are decomposed into:

word stem ending
необходимое → необходим → ое
условие → услов → ие

Compound words that are joined via a hyphen, are first
split before being put through the stemmer, as every sub part
of a compound might have its own ending.

In order to simplify the merging of sub-words after de-
coding every word part after the first stem is marked as an
ending. After decoding all endings after a stem are merged
to the stem, until a new stem is encountered. For words that
do not have an explicit ending, the null-ending was utilized
for language modeling.

4. Maximum Entropy Language Modeling
In maximum entropy modeling the model is constrained by
features. In language modeling these features must be ex-
tractable from the word sequence for which the probability
needs to be calculated. The models are then trained accord-
ing to the maximum conditional entropy criterion. Thereby a
number of different training algorithms are available for find-
ing the probability distribution with the maximum entropy,
given the training data.

4.1. Features

For n-gram models the features used are the bigrams, tri-
grams, etc. that appear in the word sequence. For maxi-
mum entropy language models one can use additional fea-
tures, such as part of speech (POS) tags, different grammat-
ical categories or topic information. All these kinds of fea-
tures can be represented by binary feature functions or indi-
cator functions.

A bigram feature can for example be expressed by the
following indicator function:

f1(x, y) =

{
1, i f y = "day" and x = "nice"
0, otherwise

The function, feature respectively, f1 returns 1 for the word
y and its context x, if y and x form the bigram "nice day".

Using large amounts of training data we can estimate the
probability distribution pe (x, y) where x and y can take on
all possible words in the search vocabulary. Now, with the

help of pe , we can estimate a mean value of feature f1:

µ( f1) =
∑
x,y

pe (x, y) f1(x, y) =
∑
x,y

rel f req(x, y) f1(x, y)

(1)
If the training data is sufficiently large, the mean value rep-
resents the expected value of the real distribution:

E( f1) =
∑
x,y

p(x, y) f1(x, y) (2)

Our language model pm is requested to be unbiased with re-
spect to f1, i.e. to have the same expected value for the fea-
ture f1: ∑

x,y

pe (x, y) f1(x, y) =
∑
x,y

pm (x, y) f1(x, y), (3)

where pm (x, y) is the distribution as given by the model.
However, we are interested in modeling p(y |x) and not

p(x, y). Therefore the constraint equations for feature f1 has
to be:∑

x,y

pe (x, y) f1(x, y) =
∑
x,y

pe (x)pm (y |x) f1(x, y), (4)

For every feature that we define for the maximum likelihood
model such a constraint function is defined and has to be
obeyed by our model distribution pm .

4.2. Maximization of conditional entropy

Depending on which features we select for our language
model, not only one but a whole set of distributions that com-
ply with the constraints exists. From these many possible
distributions the best one needs to be selected. One approach
comes from information theory and is based on the concept
of conditional entropy:

H (Y |X ) = −
∑
x∈X,
y∈Y

p(x, y) log p(y |x) (5)

The idea of maximum entropy modeling is to choose that
model which maximizes the conditional entropy of labels y

given an information x (e.g., word context):

pme = arg max
pm

H (pm ) (6)

In simple words this means that the model makes no fur-
ther assumptions about the given features. With the help
of Lagrange multipliers, which are used to solve this con-
strained optimization problem, it can be shown that the re-
sulting probability distribution has the parametric form:

pme (λ) =
1

Z (x)
exp



∑
i

λi f i (x, y)


 , (7)

where f i (x, y) are binary feature functions. λi are weight
factors—parameters of the model. Z (x) is the normalization
factor in order to ensure that result is indeed a probability
distribution.



4.3. Training

A number of algorithms can be used for estimating the
parameters of a maximum entropy model. There are
both–––special methods, such as Generalized Iterative Scal-
ing[21], Improved Iterative Scaling[22], and general purpose
optimization techniques, such as gradient ascent, conjugate
gradient and quasi-Newton methods. [23] in its comparison
of algorithms for maximum entropy parameter estimation
states that the widely used iterative scaling algorithms per-
form quite poorly, and for all of the test problems, a limited
memory variable metric algorithm outperformed the other
choices.

Four our experiments we used Limited-memory
BFGS a limited memory variation of the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method [24, 25],
which is an implementation of the variable metric method.
For this we used the CRF++ Toolkit[26].

5. Experimental Set-Up and Results
We evaluated our two approaches on Russian data that was
recorded by Mobile Technologies in the domain of tourist
and basic medical needs, as it can be found in mobile speech
translation devices such as Jibbigo1. We compare our results
to a baseline with a word based n-gram model, while we keep
the acoustic model fixed.

5.1. Data Set

The acoustic model training data accounts for about 620
hours of broadcast news and broadcast conversations ac-
quired within the QUAERO[27] project. Further, we used a
data set of read speech mostly in touristic and medical speech
domains, provided by Mobile Technology GmbH[28]. From
this set of 63 hours we cut away 3 hours as test set, while the
rest went into acoustic model training.

For training our language models we used a text corpus
collected from the Internet, 156M tokens in size. The text
was crawled from forums in the touristic and medical do-
main.

The word decomposition for the sub-word based as well
as the maximum entropy language model was done with the
Snowball stemming algorithm[20].

Table 1 gives an overview for the datasets used.

AM training Broadcast news & radio 620 hours
AM training Read speech 60 hours
LM training Web forums 156M words
Testing Read speech 3 hours

Table 1: Over view over the acoustic data used for testing
and AM training

1http://www.jibbigo.com

5.2. Baseline System

We performed all experiments with the help of the Janus
Recognition Toolkit featuring the IBIS single pass decoder
[29]. For our HMM based acoustic model we used a context
dependent quinphone setup with three states per phoneme,
and a left-to-right topology without skip states. The 8,000
models of the HMM were trained using incremental splitting
of Gaussians (MAS) training, followed by optimal feature
space training and 2 iterations of Viterbi training. The mod-
els were further improved with boosted MMIE training [30].

For the baseline system we used a standard 4-gram lan-
guage model which we trained with the help of the SRI LM
toolkit [31]. The search vocabulary was taken from the 120k
most frequent words from the LM training data. For both
cases the dictionaries are grapheme based dictionaries which
works quite well for Russian [3].

5.3. Sub-Word Based Experiments

The sub-word based system uses a sub-word search vocabu-
lary and a sub-word based 4-gram model. For this we split
the words in the language model training with our procedure
described in Section 3. As vocabulary we selected the 40k
most frequent sub-word units.

5.4. Re-Scoring with Word N-Gram Model

While sub-word based language modeling reduces the OOV
rate, it introduces additional problems such as a loss in lan-
guage model reach, and the fact that the sub-word units are
acoustically more confusable. Therefore, in order to combine
the advantages of a sub-word based and a word based LM we
re-scored n-best lists that were generated with the sub-word
based LM.

Re-scoring was done by interpolating the combined
acoustic and LM model scores of the sub-word based system
with the LM score from the word based 4-gram LM. Inter-
polation was done as a weighted sum of the scores in the log
domain. We tested a series of interpolation weights from 0 to
10.

5.5. Re-Scoring with Maximum Entropy LM

Word endings in Russian depend on several grammatical fea-
tures of the current word, such as gender, case, tens, and form
a pattern for the utterance. At the same time recognizing
the endings correctly is quite challenging, as they have little
acoustic evidence and are difficult to model with a regular
n-gram LM. So, we selected features for the maximum en-
tropy model that help with discriminating the endings. The
features consist of words and endings in their context. Here



is a small example:

s−5 e−5 как ∼#
s−4 e−4 подчеркнул ∼#
s−3 e−3 офицер ∼#
s−2 e−2 полиц ∼ии
s−1 e−1 жёстк ∼ие
s0 e0 мер ∼ы
s1 e1 не ∼#
s2 e2 применя ∼лись

Since applying the entropy language model during regular
decoding is too computationally intensive, again we applied
the language model during n-best list re-scoring. For cal-
culating the LM score we used the three previous stems
(s−3, s−2, s−1), three previous endings (e−3,e−2,e−1) and one
successor stem (s1) and ending (s1) as features. The null end-
ing is explicitly modeled with the ∼# place-holder.

For training, the CRF++ Toolkit[26] is utilized. As the
training of the labels, endings in our case, within a single
model was not possible due to main memory usage (more
than 512GB RAM was needed), a similar approach as in [18]
and [19] was applied. The idea is to train a separate model for
every label. Every model evaluates then only two classes: the
ending, which the models stands for versus all other endings.

In testing, all models, whose corresponding endings were
present in the utterance, were applied. The resulting score is
given by the sum of the scores from the single models.

Again we re-scored the n-best lists generated by the sub-
word system by interpolating the language model score from
the maximum entropy language model with the combined
acoustic and LM scores from the sub-word system. As for
the interpolation described above we tested a series of inter-
polation weights, this time in the range of 0 to 20.

5.6. Results

5.6.1. Baseline System and Sub-Word Based System

Table 2 shows results of the full-word baseline and the sub-
word based system. It can be seen that in spite of the fact
that the OOV rate of the full-word system (4.8%) is higher
than that of the sub-word system (2.1%), the latter performs
slightly worse. Two of the reasons for that could be the
higher acoustic confusability between the shorter sub-words
and the shorter context of the sub-word based n-gram lan-
guage model. The OOV rate of the sub-word based system is
quite high but still half of that of the full-word system. The
reason for that could be the difference in vocabulary size (40k
vs. 120k).

WER OOV vocabulary size
baseline 25.7% 4.8% 120k
sub-words 25.9% 2.1% 40k

Table 2: Word error rates, OOV rates and vocabulary sizes of
the word based baseline and the sub-word based system

5.6.2. Re-Scoring with Word Based LM and Maximum En-
tropy LM

Figure 1 shows the result of our experiments in re-scoring the
n-best lists from the sub-word system with a series of interpo-
lation weights. One can see that for re-scoring with the word
based LM, when choosing the right interpolation weight, we
can improve the WER of the sub-word based system by 0.4%
absolute.

When re-scoring with the maximum entropy model we
can improve the WER of the sub-word based model by up to
1.2% absolute. We can also see that the interpolation is rather
insensitive to the interpolation weight Finally, we combined

Figure 1: WER of re-scoring the n-best list of the sub-word
system with the full word 4-gram model and with the maxi-
mum entropy model using different interpolation weights

both language models in the interpolation during re-scoring,
taking the best interpolation weights from the individual re-
scoring experiments. Table 3 shows the results of this com-
bination. We can see that the improvements from the two
language models sum up, i.e. their gains seem to be orthog-
onal to each other. In that way we can reduce the WER of
the sub-word based based system by 1.6% absolute and that
of our baseline system with the word based n-gram LM by
1.4% absolute.

Baseline 25.7%
Subwords 25.9%
+ Maximum entropy 24.7%
+ Word n-gram 24.3%

Table 3: Combined results of recognition and re-scoring sys-
tems

6. Conclusion
In this paper we investigated the use of a maximum entropy
language model in order to deal with the highly inflectional
nature of Russian and its loose word order. We designed the
features of the language model specifically to target these
problems. Applying the maximum entropy model during n-
best list rescoring reduces the word error rate of our baseline



system by 1.2% absolute. In order to deal with the need for a
large vocabulary for a Russian ASR system due to the many
inflections possible in Russian, we implemented a sub-word
based LM based on stemming. Using this language model re-
duces the vocabulary necessary during decoding from 120k
to 40k and the OOV rate from 4.8% to 2.1%. By re-scoring
the n-best lists of the sub-word based system with a combi-
nation of the maximum entropy language model and a word
based 4-gram model, we can reduce the word error rate by
another 0.2% absolute.
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Abstract
Research into the translation of the output of automatic
speech recognition (ASR) systems is hindered by the dearth
of datasets developed for that explicit purpose. For Spanish-
English translation, in particular, most parallel data available
exists only in vastly different domains and registers. In order
to support research on cross-lingual speech applications, we
introduce the Fisher and Callhome Spanish-English Speech
Translation Corpus, supplementing existing LDC audio and
transcripts with (a) ASR 1-best, lattice, and oracle output pro-
duced by the Kaldi recognition system and (b) English trans-
lations obtained on Amazon’s Mechanical Turk. The result
is a four-way parallel dataset of Spanish audio, transcrip-
tions, ASR lattices, and English translations of approximately
38 hours of speech, with defined training, development, and
held-out test sets.

We conduct baseline machine translation experiments us-
ing models trained on the provided training data, and validate
the dataset by corroborating a number of known results in the
field, including the utility of in-domain (information, conver-
sational) training data, increased performance translating lat-
tices (instead of recognizer 1-best output), and the relation-
ship between word error rate and BLEU score.

1. Introduction
The fields of automatic speech recognition (ASR) and ma-
chine translation (MT) share many traits, including simi-
lar conceptual underpinnings, sustained interest and atten-
tion from researchers, remarkable progress over the past two
decades, and resulting widespread popular use. They both
also have a long way to go, with accuracies of speech-to-
text transcription and text-to-text translation varying wildly
across a number of dimensions. For speech, these variables
determining success include properties of the channel, the
identity of the speaker, and a host of factors that alter how an
individual speaks (such as heartrate, stress, emotional state).
Machine translation accuracy is affected by different factors,
such as domain (e.g., newswire, medical, SMS, speech), reg-
ister, and the typological differences between the languages.

Because these technologies are imperfect themselves,
their inaccuracies tend to multiply when they are chained to-
gether in the task of speech translation. Cross-lingual speech
applications are typically built by combining speech recog-
nition and machine translation systems, each trained on dis-
parate datasets [1, 2]. The recognizer makes mistakes, pass-
ing text to the MT system with vastly different statistical
properties from the parallel datasets (usually newswire or
government texts) used to train large-scale translation sys-
tems, which are then further corrupted with the MT system’s
own mistakes. Errors compound, and the results are often
very poor.

There are many approaches to improving this speech-to-
text pipeline. One is to gather training data that is closer to
the test data, perhaps by paying professionals or using crowd-
sourcing techniques. The latter has been repeatedly demon-
strated to be useful for collecting relevant training data for
both speech and translation [3, 4, 5, 6], and in this paper we
do the same for speech-to-text translation, assembling a four-
way parallel dataset of audio, transcriptions, ASR output,
and translations. The translations were produced inexpen-
sively by non-professional translators using Amazon’s popu-
lar crowdsourcing platform, Mechanical Turk (§2).

A second approach is to configure the ASR system to ex-
pose a portion of its search space by outputting more than just
the single best output. Previous in speech-to-text translation
have demonstrated success in translating ASR n-best lists [7]
and confusion networks1 [8], and lattices [9, 10]. In this pa-
per, we apply similar techniques in the context of a machine
translation, demonstrating consistent improvements over the
single-best ASR translation in two different speech corpora.

The contributions of this paper are as follows:

• We extend two LDC Spanish speech sets with En-
glish translations and ASR recognizer output (in the
form of lattices, ASR 1-best output, and lattice ora-
cle paths) providing the community with a 3.8 million

1Aconfusion network, colloquially referred to as a sausage, is a restricted
form of lattice in which all of a node’s outgoing arcs go to the same head
node.



word dataset for further research in Spanish-English
speech-to-text translation.2

• We demonstrate improvements of up to 11.1 BLEU
points in translating ASR output using this in-domain
dataset as training data, compared to standard machine
translation training sets (of twenty times the size) based
on out-of-domain government and newswire text.

• We show further improvements in translation quality
(1.2 absolute BLEU points) when translating the lat-
tices instead of ASR 1-best output.

2. Collecting Translations
Here we describe the procedure used to obtain the transla-
tions, based on the current best practices for the collection of
crowd-sourced translations.

The source data are the Fisher Spanish and Callhome
Spanish datasets, comprising transcribed telephone conver-
sations between (mostly native) Spanish speakers in a va-
riety of dialects. The Fisher Spanish corpus3 consists of
819 transcribed conversations on a variety of provided topics
primarily between strangers, resulting in approximately 160
hours of speech aligned at the utterance level, with 1.5 mil-
lion tokens. The Callhome Spanish corpus4 comprises 120
transcripts of spontaneous conversations primarily between
friends and family members, resulting in approximately 20
hours of speech aligned at the utterance level, with just over
200,000 words (tokens) of transcribed text. The combined
dataset features a large variety of dialects, topics, and famil-
iarity level between participants.

2.1. Crowdsourced Translations

We obtained translations using the popular crowdsourcing
platform Amazon Mechanical Turk (MTurk), following a
widespread trend in scientific data collection and annotation
across a variety of fields [11, 12, 13, 14, 15, 3], and in partic-
ular the translation crowdsourcing work of [16].

We began by lightly preprocessing the transcripts, first to
remove all non-linguistic markup in the transcriptions (such
as annotations for laughter or background noise), and sec-
ond to concatenate sequential utterances of a speaker during
a single turn. Many utterances in the original transcript con-
sisted only of single words or in some cases only markup,
so this second step produced longer sentences for translation,
enabling us to provide more context to translators and reduce
cost. When the length of a combined utterance exceeded 25
words, it was split on the next utterance boundary.

We present sequences of twenty of these combined utter-
ances (always from the same transcript) in each individual
translation task — human intelligence tasks (HIT), in MTurk
terminology. The utterances in each HIT were presented to

2joshua-decoder.org/fisher-callhome-corpus
3LDC2010S01 and LDC2010T04
4LDC96S35 and LDC96T17

each translator in the original order alongside the speaker
name from the source transcript, thereby providing the trans-
lators with context for each utterance. HITs included the in-
structions taken from [16].

2.2. Quality Control Measures

MTurk provides only rudimentary tools for vetting workers
for a specialized task like translation, so following estab-
lished practice, we took steps to deter wholesale use of au-
tomated translation services by our translators.

• Utterances were presented as images rather than text;
this prevented cutting and pasting into online transla-
tion services.5

• We obtained translations fromGoogle Translate for the
utterances before presenting them to workers. HITs
which had a small edit distance from these translations
were manually reviewed and rejected if they were too
similar (in particular, if they contained many of the
same errors).

• We also included four consecutive short sentences
from the Europarl parallel corpus [17] in each HIT.
HITs which had low overlap with the reference trans-
lations of these sentences were manually reviewed and
rejected if they were of low quality.

We obtained four redundant translations of sixty ran-
domly chosen conversations from the Fisher corpus. In to-
tal, 115 workers completed 2463 HITs, producing 46,324
utterance-level translations and a little less than half a mil-
lion words.

2.3. Selection of Preferred Translators

We then extended a strategy devised by [16] to select high-
quality translators from the first round of translations. We de-
signed a second-pass HIT which was used to rate the above
translators; those whose translations were consistently pre-
ferred were then invited to subsequent Spanish-English trans-
lation tasks.

For this voting task, monolingual English-speakingwork-
ers were presented with four different translations of an input
sentence or utterance and asked to select the best one. Aswith
the first HIT, users were presented with a sequence of twenty
utterances from the same conversation, thereby providing lo-
cal context for each decision. Each HIT was completed by
three workers; in total, 193 workers completed 1676 assign-
ments, yielding 31,626 sentence-level comparisons between
4 alternative translations.

From this data, we qualified 28 translators out of the ini-
tial 115. This set of translators produced 45% of the first-pass

5Some online translation engines now provide optical-character recog-
nition from images, reducing the potential effectiveness of this control for
future work.



Source Data Docs. Segments Spanish words Translations English words Cost
Fisher (set one) 60 11,581 121,484 4 (avg) 118,176 $2,684
Fisher (set two) 759 138,819 1,503,003 1 1,440,727 $10,034
Callhome 120 20,875 204,112 1 201,760 $1,514
Combined 939 171,275 1,828,599 1 1,760,663 $14,232
Voting +$1,433
Total $15,665

Table 1: Corpus size and cost. Counts of segments and words were computed after pre-processing (§2).

Split Words Sentences
Fisher/Train 1,810,385 138,819
Dev 50,700 3,979
Dev2 47,946 3,961
Test 47,896 3,641
Callhome/Train 181,311 15,080
Devtest 47,045 3,966
Evltest 23,626 1,829
Europarl + NC 44,649,409 1,936,975

Table 2: Data splits for Fisher Spanish (top), Callhome Span-
ish (middle), and Europarl + News Commentary (bottom; for
comparison). Words is the number of Spanish word tokens
(after tokenization). The mean number of words per sen-
tences ranges from 11.8 to 13.1.

translations. As a sanity check, we computed different accu-
racy thresholds for the voters, and the downstream ratings of
the translators turned out to be relatively stable, so we were
reasonably confident about the group of selected translators.

2.4. Complete Translations

The preferred translators were invited to translate the remain-
ing Fisher data and all of the Callhome data at a higher wage,
using the same strategy as the first round of translations. We
obtained only one translation per utterance. Table 1 gives
the size and cost of the entire translation corpus. To the best
of our knowledge, the resulting corpus is the largest parallel
dataset of audio, transcriptions, and translations. We antici-
pate that this data will be useful for research in a variety of
cross-lingual speech applications, a number of which we ex-
plore ourselves in the following sections.

3. Collecting Speech Output
After collecting translations, we split the data into training,
development, and test sets suitable for experimentation (Ta-
ble 2). Callhome defines its own data splits, organized into
train, devtest, and evltest, sowe retained them. For Fisher, we
produced four data splits: a large training section and three
test sets (dev, dev2, and test). These test sets correspond to
portions of the data where we have four translations.

The above procedures produced a three-way parallel cor-

pus: Spanish audio, Spanish transcripts, and English transla-
tions. To this, we added speech recognizer output produced
with the open-source Kaldi Automatic Speech Recognition
System [18].6

In order to get output for the entire data set, we built mul-
tiple independent recognition systems:

• For Fisher/Dev2 and Fisher/Test, and all of the Call-
home data, we used a recognition system built from
Fisher/Train and tuned on Fisher/Dev.

• For Fisher/Train and Fisher/Dev, we used a 10-fold
training and decoding scheme, where each fold was
trained, tuned, and tested on a distinct 80/10/10 split.
We then assembled these portions of the data set by
taking the corresponding data from the test portions of
these splits.

Each ASR system was built in the following manner. The
phonetic lexicon included words from the training corpus,
pronunciations for which were created using the LDC Span-
ish rule-based phonetic lexicon (LDC96L16). We then be-
gan with one round of monophone training, which was used
for alignment and subsequent training with triphoneGaussian
mixture models, which incorporated linear discriminant anal-
ysis with Maximum Likelihood Linear Transforms (MLLT)
[19]. The results of triphone training were then used for
Speaker Adaptive training [20, SAT]. Alignment and decod-
ing for the SAT training step incorporated fMLLR [21]. We
used a trigram language model derived solely from the train-
ing corpus and created with Kaldi tools.7

Along with the 1-best output, we extracted lattices rep-
resenting the recognition hypotheses for each utterance. We
applied epsilon-removal and weight-pushing to the lattices,
and pruned them with a beam width of 2.0. All of these op-
erations were performed using the OpenFST toolkit [22].

Finally, we also extracted and provide the oracle path
from these lattices. These are useful in helping to quantify
the missed performance in both the ASR and MT systems.
Statistics about the lattices are presented in Table 3.

6kaldi.sourceforge.net
7The procedures, parameters, and design decisions of this process are

captured in a custom Kaldi recipe, now distributed with Kaldi.



WER
1-best Oracle # Paths

Fisher/Dev 41.3 19.3 28k
Fisher/Dev2 40.0 19.4 168k
Fisher/Test 36.5 16.1 48k
Callhome/Devtest 64.7 36.4 6,119k
Callhome/Evltest 65.3 37.9 1,328k

Table 3: Lattice statistics for the three Fisher and two Call-
home test sets. Word error rates correspond to the 1-best and
oracle paths from the lattice, and # Paths denotes the average
number of distinct paths through each lattice. The average
node density (the number of outgoing arcs) is 1.3 for Fisher
and 1.4 for Callhome.

4. Experimental Setup
Our main interest is in the downstream performance of the
MT system, and we report experiments varying different
components of the ASR–MT pipeline to examine their effect
on this goal. For Fisher, we use Dev for tuning the parame-
ters of the MT system and present results on Dev2 (reserving
Test for future use); for Callhome, we tune on Devtest and
present results on Evltest. Because of our focus on speech
translation, for all models, we strip all punctuation (except
for contractions) from both sides of the parallel data.

For machine translation, we used Joshua, an open-source
hierarchical machine translation toolkit written in Java [23].
Our grammars are hierarchical synchronous grammars [24].
Decoding proceeds by parsing the input with the source-side
projection of the synchronous grammar using the CKY+ al-
gorithm and combining target-side hypotheses with cube-
pruning [24]. This algorithm can easily be extended to lattice
decoding in a way that permits hierarchical decomposition
and reordering of words on the input lattice [25].

The decoder’s linear model comprises these features:

• Phrasal probabilities (p(e|f) and p(f |e))

• Lexical probabilities (w(e|f) and w(f |e))

• Rarity penalty, exp(1− count(rule))

• Word penalty

• Glue rule penalty

• Out-of-vocabulary word penalty

• 5-gram language model score

• Lattice weight (the input path’s posterior log probabil-
ity; where appropriate)

The languagemodel is always constructed over the target side
of the training data. These features are tuned using k-best
batch MIRA [26], and results are reported on the average of
three runs. Our metric is case-insensitive BLEU-4 [27] with
four references (for Fisher) and one reference (for Callhome).

Training set
LDC

Interface Euro LDC ASR +ASR
Transcript 41.8 58.7 54.6 58.7
1-best 24.3 35.4 34.7 35.5
Lattice - 37.1 35.9 36.8
Oracle Path 32.1 46.2 44.3 46.3

Table 4: BLEU scores (four references) on Fisher/Dev2. The
columns vary the data used to train the MT system, and the
rows alter the interface between the ASR and MT systems.

Training set
LDC

Interface Euro LDC ASR +ASR
Transcript 17.3 27.8 24.9 28.0
1-best 7.3 11.7 10.7 11.6
Lattice - 12.3 11.5 12.3
Oracle Path 9.8 16.4 15.2 16.4

Table 5: BLEU scores (one reference) on Callhome/Evltest.

5. Experiments
Our experiments largely center on an exploration varying one
of two major components in the ASR–MT pipeline: (a) the
training data used to build themachine translation engine, and
(b) the interface between the ASR and MT systems.

For (a), we examine four training data sets (Table 2):

• Euro. The version 7 release of the Spanish-English Eu-
roparl dataset [17], a corpus of European parliamentary
proceedings.

• LDC. An in-domain model constructed from paired
LDC Spanish transcripts and their corresponding En-
glish translations, on Fisher Train, as described above.

• ASR. An in-domain model trained on pairs of Spanish
ASR outputs and English translations.

• LDC+ASR. Amodel trained by concatenating the train-
ing data for LDC and ASR.

For (b), we vary the interface in four ways:

• Transcript. We translate the LDC transcripts. This
serves as an upper bound on the possible performance.

• 1-best. We translate the 1-best output as presented by
the speech recognizer.

• Lattices. We pass a pruned lattice from the recognizer
to the MT system.

• Oracle Path. The oracle path from the lattice, repre-
senting the best transcription found in the ASR sys-
tem’s hypothesis space (subject to pruning).
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Transcript sí hablar de cuáles y cosas pero tenemos que utilizar la palabra matrimonio supongo
1-best sí habla de cuál incorporamos que utilizar la palabra matrimonio supongo
Lattice sí habla de cuál escoger tenemos que utilizar la palabra matrimonio supongo

Reference yes [we can] talk about anything but we have to use the word marriage i guess
1-best→MT yes speaking of which incorporamosOOV to use the word marriage i suppose
Lattice→MT yes speaking of which to choose we have to use the word marriage i suppose

1-best→ Google does speak of what we incorporate to use the word marriage guess

Figure 1: A subgraph of a lattice (sentence 17 of Fisher/Dev2) representing an ASR ambiguity. The oracle path is in bold. With
access to the lattice, the MT system avoids the untranslatable word incorporamos, found in the 1-best output, producing a better
translation. Above the line are inputs and the reference, with the Lattice line denoting the path selected by the MT system. The
Google line is suggestive of the general difficulty in translating conversational speech.

Tables 4 and 5 contain results for the Fisher and Callhome
datasets, respectively. The rest of this section is devoted to
their analysis.

5.1. Varying the interface

The Transcript and Oracle Path interfaces represent upper
bounds of different sorts. Transcript is roughly how well we
could translate if we had perfect recognition, while Oracle
Path is how well we could translate if the MT system could
perfectly capitalize on the speech recognition lattice. From
these baseline scores, it’s clear that the quality of the speech
recognition is the biggest hindrance to downstream machine
translation quality, and therefore improving recognition ac-
curacy qualifies as the best way to improve it.

However, there is significant room for MT improve-
ment from the lattices themselves. Translating ASR lattices
produces consistently better results than translating ASR 1-
best output, corroborating an already well-attested finding
for speech translation. Interestingly, these results hold true
across the translation models, whether in-domain or out-of-
domain, and when built from both LDC and ASR training
data. It seems that the lattices truly contain paths that are
better-suited to the translation engine, regardless of what was
used to train the model. Figure 1 contains examples where
lattice translation improves over translation of the ASR 1-
best for this corpus.

In general, these numbers establish a relationship be-
tween word error rate and BLEU score. Figure 2 visualizes
this relationship, by breaking out the data from Fisher/Dev
and Fisher/Dev2 into its original twenty conversations, and
plotting WER and BLEU for each of them.
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Figure 2: Conversation-level WER and BLEU, for conver-
sations found in Fisher/Dev (open points) and Fisher/Dev2
(solid points). The Pearson’s correlation coefficient is -0.72.

5.2. Varying the training data

The BLEU scores between columns 1 and 2 clearly demon-
strate lessons well-known in the domain-adaptation litera-
ture. In our case, small, in-domain models built on the
Fisher/Train significantly outperform the much larger (by a
factor of twenty) but less relevant Europarl data. The test
sentences in the Fisher and Callhome corpora, with their in-
formal register and first-person speech, are a poor match for
models trained on Parliamentary proceedings and news text.



While unsurprising, these results demonstrate the utility of
the Fisher and Callhome Translation corpus for translating
conversational speech, and are a further footnote on the con-
ventional wisdom that “more data” is the best kind of data.

As an additional experiment, we tried building MT trans-
lation models from the Spanish ASR output (pairing the En-
glish translations with the ASR outputs instead of the Spanish
LDC transcripts on Fisher/Train), based on the idea that errors
made by the recognizer (between training and test data) might
be regular enough that they could be captured by the trans-
lation system. Columns 3 and 4, which show worse BLEU
scores than with the LDC translation model, provide prelim-
inary evidence that this is not the case. This is not to claim
that there is no utility to be found in training translation mod-
els on ASR output, but finding improvements from such will
require something more than simply concatenating the two
corpora.

6. Summary
We described the development and release of The Fisher and
Callhome Spanish-English Speech Translation Corpus. The
translations and ASR output (in the form of lattices and 1-
best and oracle paths) complement their corresponding LDC
acoustic data and transcripts, together producing a valuable
dataset for research into the translation of informal Span-
ish conversational speech. This dataset is available from the
Joshua website.8
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Abstract

We present the first known experiments incorporat-
ing unsupervised bilingual nonterminal category learn-
ing within end-to-end fully unsupervised transduction
grammar induction using matched training and testing
models. Despite steady recent progress, such induction
experiments until now have not allowed for learning dif-
ferentiated nonterminal categories. We divide the learn-
ing into two stages: (1) a bootstrap stage that generates a
large set of categorized short transduction rule hypothe-
ses, and (2) a minimum conditional description length
stage that simultaneously prunes away less useful short
rule hypotheses, while also iteratively segmenting full
sentence pairs into useful longer categorized transduc-
tion rules. We show that the second stage works bet-
ter when the rule hypotheses have categories than when
they do not, and that the proposed conditional descrip-
tion length approach combines the rules hypothesized
by the two stages better than a mixture model does. We
also show that the compact model learned during the
second stage can be further improved by combining the
result of different iterations in a mixture model. In to-
tal, we see a jump in BLEU score, from 17.53 for a
standalone minimum description length baseline with
no category learning, to 20.93 when incorporating cate-
gory induction on a Chinese–English translation task.

1. Introduction

Even simple lexical translations are surprisingly
context-dependent, in this paper we aim to learn a
translation model that can base contextual translation
decision on more than lexical n-grams, both in the input
and output language. In a syntactic translation system

*A full version of this paper appears at IWPT 2013.

such as inversion transduction grammars (ITGs), this
can be achieved with unsupervised bilingual category
induction. Surface-based and hierarchical models only
use output language n-grams, and syntactic model
typically choose the categories from either the input
or the output language, or attempts to heuristically
synthesize a set of bilingual categories from the two
monolingual sets. In contrast, we attempt to learn a
set of bilingual categories without supervision, which
gives a unique opportunity to strike a good balance
between the two approaches.

The specific translation of words and segments de-
pend heavily on the context. A grammar-based trans-
lation model can model the context with nonterminal
categories, which allows (a) moving beyond n-grams
(as a compliment to the language model prior which is
typically preserved), and (b) taking both the input and
output language context into account. Typical syntactic
MT systems either ignore categories (bracketing ITGs
and hierarchical models), or derive the categories from
tree-banks, which relies on choosing the set of cate-
gories from either language, or heuristically synthesize
it from both; both approaches eliminates the full benefits
of (b). In contrast, unsupervised induction of bilingual
categories has the potential to take full advantage of (b).

Recent work has seen steady improvement in trans-
lation quality for completely unsupervised transduction
grammar induction under end-to-end purely matched
training and testing model conditions. In this paper,
we take a further step along this line of research by in-
corporating unsupervised bilingual category induction
into the learning process. To our knowledge, no previ-
ous attempt has beenmade to incorporate bilingual cate-
gories under such conditions. Matching the training and
testing models as closely as possible is a fundamental
principle taken for granted in most applications of ma-



chine learning, but for machine translation it has been
the norm to see very different assumptions during train-
ing and testing, which makes it difficult to assess the ef-
fects of changing or tweaking the model—the observed
effect may not be repeatable. By matching training and
testing conditions, this risk is minimized.

A bilingual category is similar to a monolingual cat-
egory in that it is realized as the left-hand side label
of a (transduction) grammar rule, but differ in what it
represents. A monolingual category only encodes how
something relates to other parts of the language, a bilin-
gual category should encode how a translation equiva-
lence relates to other translation equivalences. It needs
to account for the relationship between two languages
as well as the relationship between the parts of the indi-
vidual languages. This makes the usage of existing tag-
ging schemes problematic. It would be possible to use
the categories from either of the languages (assuming
they are languages with enough resources) and impose
these on the other language. This could work for closely
related languages, but we are translating between En-
glish and Chinese: two very different languages, and we
know that the category sets of either language is a poor
fit for the other. Another possibility is to take the cross-
product of the monolingual category sets, but handling
such a large set of categories becomes unwieldy in ITG
induction, a process which is resource intensive as is,
without exploding the set of nonterminals. Instead, we
opt for unsupervised learning of the bilingual categories
during induction of the ITG itself.

The novel learning method we propose consists
of an initial hypothesis generator that proposes (a)
short lexical translations and (b) nonterminal categories,
screened by a mechanism that (c) verifies the usefulness
of the hypotheses while (d) uses them to further gener-
ate longer transduction rules. For convenience, our im-
plementation breaks this into two stages: one that gen-
erates a large set of short transduction rule hypotheses,
and another that iteratively segments long transduction
rules (initialized from the sentence pairs in the training
data) by trying to reuse a minimal subset of the hypothe-
ses while chipping away at the long sentence pair rules
until the conditional description length is minimized.

2. Background

Description length has been used before to drive iter-
ative segmenting ITG learning [1]. We will use their
algorithm as our baseline, but the simple mixture model

we used then works poorly with our ITG with cate-
gories. Instead, we propose a tighter incorporation,
where the rule segmenting learning is biased towards
rules that are present in the categorized ITG.

We refer to this objective as minimizing conditional
description length, since technically, the length of the
ITG being segmented is conditioned on the categorized
ITG. Conditional description length (CDL) is detailed
in Section 3. The minimum CDL (MCDL) objective
differs from the simple mixture model in that it sepa-
rates the rule hypotheses into two groups: the ones that
are used during segmentation and therefor carries over
to the final induced ITG, and those that do not and are
effectively filtered out. As we will see, MCDL far out-
performs the mixture model when one of the ITGs has
categories and the other does not.

A problem with the description length family of
learning objectives is that they tend to commit to a seg-
mentation when it would be wise to keep the unseg-
mented rule as well—a significant part of the success
of phrase-based translation models comes from their ap-
proach to keep all possible segmental translations (that
do not violate the prerequisite word alignment). We will
show that we can counter this by combining different it-
erations of the same segmentation process into a single
grammar, which gives a significant bump in BLEU.

By insisting on the fundamental machine learning
principle of matching the training model to the testing
model, we do forfeit the short term boost in BLEU that
is typically seen when embedding a learned ITG in the
midst of the common heuristics employed in statistical
machine translation. For example, [2–14] all plug some
aspect of the ITGs they learn into training pipelines for
existing, mismatched decoders, typically in the form of
the word alignment that an ITG imposes on a parallel
corpus as it is biparsed. Our own past work has also
taken similar approaches, but it is not necessary to do
so—instead, any ITG can be used for decoding by di-
rectly parsing with the input sentence as a hard con-
straint, as we do in this paper. Although it allows you
to tap into the vast engineering efforts that have gone
into perfecting existing decoders, it also prevents you
from surpassing them in the long run. The motivation
for our present series of experiments is that, as a field we
are well served by tackling the fundamental questions as
well, and not exclusively focusing on engineering short
term incremental BLEU score boosts where the quality
of an induced ITG itself is obscured because it is em-
bedded within many other heuristic algorithms.



When the structure of an ITG is induced without su-
pervision, it is possible to get an effect that resembles
MDL. [3] impose a sparsity prior over the rule proba-
bilities to prevent the search from having to consider all
the rules found in the Viterbi biparses. [4, 5, 8, 13, 14]
use Gibbs sampling to learn ITGs with priors over the
rule structures that serve a similar purpose to the model
length component of description length. All of the
above evaluate their models by biparsing the training
data and feeding the imposed word alignment into an
existing, mismatched SMT learning pipeline.

Transduction grammars can also be inducedwith su-
pervision from treebanks, which cuts down the search
space by enforcing external constraints [15]. Although
this constitutes a way to borrow nonterminal categories
that help the translation model, it complicates the learn-
ing process by adding external constraints that are
bound to match the translation model poorly.

3. Conditional description length

Conditional description length (CDL) is a general
method for evaluating a model and a dataset given a pre-
existing model. This makes it ideal for augmenting an
existing model with a variant model of the same fam-
ily. In this paper we will apply this to augment an ex-
isting inversion transduction grammar (ITG) with rules
that are found with a different search strategy. CDL is
similar to description length [16,17], but the length cal-
culations are subject to additional constraints. When
minimum CDL (MCDL) is used as a learning objec-
tive, all the desired properties of minimum description
length (MDL) are retained: the model is allowed to be-
come less certain about the data provided that the it
shrinks sufficiently to compensate for the loss in pre-
cision. MDL is a good way to prevent over-fitting, and
MCDL retains this property, but for the task of inducing
a model that is specifically tailored toward augmenting
an existing model. Formally, the conditional descrip-
tion length is:

DL (Φ, D|Ψ) = DL (D|Φ,Ψ) +DL (Φ|Ψ)

where Ψ is the fixed preexisting model, Φ is the model
being induced, and D is the data. The total uncondi-
tional length is:

DL (Ψ,Φ, D) =

DL (D|Φ,Ψ) +DL (Φ|Ψ) +DL (Ψ)

In minimizing CDL, we fixDL (Ψ) instead of allowing
Ψ to vary as we would in full MCDL; to be precise, we
seek:

argmin
Φ

DL (Ψ,Φ, D)

= argmin
Φ

DL (D|Φ,Ψ) +DL (Φ|Ψ) +DL (Ψ)

= argmin
Φ

DL (Φ, D|Ψ)

= argmin
Φ

DL (D|Φ,Ψ) +DL (Φ|Ψ)

To measure the CDL of the data, we turn to information
theory to count the number of bits needed to encode the
data given the two models under an optimal encoding
[18], which gives:

DL (D|Φ,Ψ) = −lg P (D|Φ,Ψ)

To measure the CDL of the model, we borrow the en-
coding scheme for description length presented in [1],
and define the conditional description length as:

DL (Φ|Ψ) ≡ DL (Φ)−DL (Φ∩Ψ)

To determine whether a model Φ has a shorter condi-
tional description length, than another model Φ′, it is
sufficient to be able to subtract one length from the
other. For the model length, this is trivial as we merely
have to calculate the length of the difference between
the two models in our theoretical encoding. For data
length, we need to solve:

DL
(
D|Φ′,Ψ

)
−DL (D|Φ,Ψ)

= −lg P
(
D|Φ′,Ψ

)
−−lg P (D|Φ,Ψ)

= −lg P (D|Φ′,Ψ)

P (D|Φ,Ψ)

4. Generating rule hypotheses

In the first stage of our learning approach, we gener-
ate a large set of possible rules, from which the second
stage will choose a small subset to keep. The goal of this
stage is to keep the recall high with respect to a theoret-
ical “optimal ITG”, precision is achieved in the second
stage. We rely on chunking and category splitting to
generate this large set of rule hypotheses.

To generate these high-recall ITGs, we will follow
the bootstrapping approach presented in [19], and start
with a finite-state transduction grammar (FSTG), do the



chunking and category splitting within the FSTG frame-
work before transferring the resulting grammar to a cor-
responding ITG. This is likely to produce an ITG that
performs poorly on its own, but may be informative in
the second stage.

5. Segmenting rules

In the second stage of our learning approach, we seg-
ment rules explicitly representing the entire training
data, into smaller—more general—rules, reusing rules
from the first stage whenever we can. By driving
the segmentation-based learning with a minimum de-
scription length objective, we are learning a very con-
cise ITG, and by conditioning the description length
on the rules hypothesized in the first stage, we sepa-
rate the good rule hypotheses from the bad: the good
rules—along with their categorizing left-hand sides—
are reused and the bad are not.

In this work, we are only considering segmenta-
tion of lexical rules, which keeps the ITG in normal
form, greatly simplifying processing without altering
the expressivity. A lexical ITG rule has the form A →
e0..T /f0..V , whereA is the left-hand side nonterminal—
the category, e0..T is a sequence of T (from position 0
up to but not including position T ) L0 tokens and f0..V
is a sequence of V (from position 0 up to but not includ-
ing position V ) L1 tokens. When segmenting this rule,
three new rules are produced which take one of the fol-
lowing forms depending on whether the segmentation is
inverted or not:

A→ [BC] A→ ⟨BC⟩
B → e0..S/f0..U or B → e0..S/fU..V

C → eS..T /fU..V C → eS..T /f0..U

All possible splits of the terminal rule can be accounted
for by choosing the identities of B, C, S and U , as well
as whether the split it straight or inverted.

The pseudocode for the iterative rule segment-
ing learning algorithm driven by minimal conditional
description length can be found in Algorithm 1.
It uses the methods collect_biaffixes, eval_cdl,
sort_by_delta and make_segmentations. These
methods collect all biaffixes in the rules of an ITG,
evaluate the difference in conditional description length,
sorts candidates by these differences, and commits to a
given set of candidates, respectively. To evaluate the
CDL of a proposed set of candidate segmentations, we
need to calculate the difference in CDL between the cur-

Algorithm 1 Iterative rule segmenting learning driven
by minimum conditional description length.

Φ ▷ The ITG being induced
Ψ ▷ The ITG the learning is conditioned on
repeat

δsum ← 0
bs← collect_biaffixes(Φ)
bδ ← []
for all b ∈ bs do

δ ← eval_cdl(b,Ψ,Φ)
if δ < 0 then

bδ ← [bδ, ⟨b, δ⟩]
sort_by_delta(bδ)
for all ⟨b, δ⟩ ∈ bδ do

δ′ ← eval_cdl(b,Ψ,Φ)
if δ′ < 0 then

Φ← make_segmentations(b,Φ)
δsum ← δsum + δ′

until δsum ≥ 0
return Φ

rent model, and the model that would result from com-
mitting to the candidate segmentations:

DL
(
D,Φ′|Ψ

)
−DL (D,Φ|Ψ)

= DL
(
D|Φ′,Ψ

)
−DL (D|Φ,Ψ)

+DL
(
Φ′|Ψ

)
−DL (Φ|Ψ)

The model lengths are trivial, as we merely have to en-
code the rules that are removed and inserted according
to our encoding scheme and plug in the summed lengths
in the above equation. This leaves the length of the data,
which would be:

DL
(
D|Φ′,Ψ

)
−DL (D|Φ,Ψ) = −lg P (D|Φ′,Ψ)

P (D|Φ,Ψ)

For the sake of convenience in efficiently calculating
this probability, we make the assumption that:

P (D|Φ,Ψ) ≈ P (D|Φ) = P (D|θ)

where θ represents themodel parameters, which reduces
the difference in data CDL to:

−lg P (D|θ′)
P (D|θ)

which lets us determine the probability through bipars-
ing with the model being induced. Biparsing is, how-
ever, a very expensive operation, and we are making rel-
atively small changes to the ITG, so we will further as-
sume that we can estimate the CDL difference in closed



form based on the model parameters. Given that we are
splitting the rule r0 into the three rules r1, r2 and r3, and
that the probability mass of r0 is distributed uniformly
over the new rules, the new grammar parameters θ′ will
be identical to θ, except that:

θ′r0 = 0

θ′r1 = θr1 +
1

3
θr0

θ′r2 = θr2 +
1

3
θr0

θ′r3 = θr3 +
1

3
θr0

We estimate the CDL of the corpus given this new pa-
rameters to be:

−lg P (D|θ′)
P (D|θ)

≈ −lg θ′r1θ
′
r2θ

′
r3

θr0

To generalize this to a set of rule segmentations, we con-
struct the new parameters θ′ to reflect all the changes in
the set in a first pass, and then sum the differences in
CDL for all the rule segmentations with the new param-
eters in a second pass.

6. Experimental setup

The learning approach we chose has two stages, and in
this sectionwe describe the different ways of using these
two stages to arrive at a final ITG, and how we intend
to evaluate the quality of those ITGs.

For the first stage, we will use the technique de-
scribed in [19] to start with a finite-state transduction
grammar (FSTG) and perform chunking before splitting
the nonterminal categories and moving the FSTG into
ITG form. We perform one round of chunking, and two
rounds of category splitting (resulting in 4 nonterminals
and 4 preterminals, which becomes 8 nonterminals in
the ITG form). At each stage, we run a few iterations of
expectation maximization using the algorithm detailed
in [20] for biparsing. For comparison we also bootstrap
a comparable ITG that has not had the categories split.
Before using either of the bootstrapped ITGs, we elim-
inate all rules that do not have a probability above a
threshold that we fixed to 10−50. This eliminates the
highly unlikely rules from the ITG.

For the second stage, we use the iterative rule seg-
mentation learning algorithm driven by minimum con-
ditional description length that we introduced in Section
5. We will try three different variants on this algorithm:
one without an ITG to condition on, one conditioned on

the chunked ITG, and one conditioned on the chunked
ITG with categories. The first variant is completely in-
dependent from the chunked ITGs, so we will also try
to create mixture models with it and the chunked ITGs.

Since the MCDL objective tends to segment large
rules and count on them being recreatable when needed,
many of the longer rules that would be good to have
when translating are not explicitly in the grammar. This
is potentially a source of translation mistakes, and to
investigate this, we create a mixture model from iter-
ations of the segmenting learning process leading up to
the learned ITG.

All the above outlined ITGs are trained using the
IWSLT07 Chinese–English data set [21], which con-
tains 46,867 sentence pairs of training data, and 489
Chinese sentences with 6 English reference translations
each as test data; all the sentences are taken from the
traveling domain. Since the Chinese is written without
whitespace, we use a tool that tries to clump characters
together into more “word like” sequences [22].

To test the learned ITGs, we use them as translation
systems with our in-house ITG decoder. The decoder
uses a CKY-style parsing algorithm [23–25] and cube
pruning [26] to integrate the language model scores.
For language model, we use a trigram language model
trained with the SRILM toolkit [27] on the English side
of the training corpus. To evaluate the resulting transla-
tions, we use BLEU [28] and NIST [29].

7. Results

In this section we present the empirical results: bilin-
gual categories help translation quality under the ex-
perimental conditions detailed in the previous section.
The results are summarized in Table 1. As predicted
the base chunked only ITG fares poorly, while the cat-
egories help a great deal in the chunked w/categories
only ITG—though the scores are not very reliable when
in this low range.

The trade-off between model and data size during
segmentation conditioned on the ITG with categories is
illustrated in Figure 1. It starts out with most of the total
description being used to describe the model, and very
little to describe the data. This is the degenerate situ-
ation where every sentence pair is its own lexical rule.
Then there is a sharp drop in model size with a slight in-
crease in data size. This is where the most dramatic gen-
eralizations take place. It levels off fairly quickly, and
the minor adjustments that take place on the plateau still



Table 1: Experimental results. Chunked is the base model, which has categories added to produce chunked
w/categories. Segmented corresponds to the second learning stage, which can be done in isolation (only), mixed
with a base model, or conditioned on a base model.

Model BLEU NIST Categories
Chunked ITG only 3.76 0.0119 1
Chunked ITG w/categories only 9.39 0.7481 8
Segmented ITG only 17.53 4.5409 1
Segmented ITG mixed with chunked ITG 10.23 0.2886 1
Segmented ITG mixed with chunked ITG w/categories 12.06 1.1415 8
Segmented ITG conditioned on chunked ITG 17.04 4.4920 1
Segmented ITG conditioned on chunked ITG w/categories 19.02 4.6079 8
... with iterations combined 20.20 4.8287 8
... and improved search parameters 20.93 4.8426 8
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Figure 1: Description length in bits over the different
iterations of segmenting search. The lower part repre-
sents model CDL,DL (Φ|Ψ), and the upper part repre-
sents data CDL, DL (D|Φ,Ψ).

represent valid generalizations, they just have a very
small effect on the over-all description length of either
the model or the data.

That the chunked ITG with split categories suffers
from having too many irrelevant rules is clearly seen
in Figure 2, where we plotted the number of rules con-
trasted to the BLEU score. Merely pruning to a thresh-
old helps somewhat, but the sharper improvement—
both in terms of model size and BLEU score—is seen
with the filtering that MCDL represents.

A number of interesting lessons emerge from the re-
sults, as follows.

7.1. Minimum CDL outperforms mixture modeling

The segmenting approach works as expected (seg-
mented only), essentially reproducing the results re-
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Figure 2: Rule count versus BLEU scores for the boot-
strapped ITG, the pruned bootstrapped ITG and the seg-
mented ITG conditioned on the pruned bootstrapped
ITG.

ported by [1] for this style of bilingual grammar induc-
tion. Interestingly, however, where they had success
with the mixture model combining the base ITGs with
the ITG learned through the segmenting approach (seg-
mented mixed with...), we see a significant drop in trans-
lation quality. This may be because we have categories
in our base ITG and they do not.

7.2. Category induction strongly improves mini-
mum CDL learning

When we use the base ITGs to condition the segment-
ing approach, we see something interesting. The base
ITG that has categories causes a sharp 1.5 BLEU point
rise in translation quality (compare segmented only to
segmented conditioned on chunked w/categories).

In contrast, the base ITG that does not have cate-



gories causes a slight 0.5 BLEU point fall in translation
quality (compare segmented only to segmented condi-
tioned on chunked).

7.3. Redundant segmental rule granularities help

As mentioned, the minimum description length objec-
tive may be theoretically nice, but it also relies on the
learned ITG being able to reassemble segmented rules
with fairly high fidelity at decoding time. To demand
that all transduction rules are reduced to exactly a sin-
gle right level of granularity may be a bit of a tall order.

Our way to test this was to uniformly mix the ITGs
at different iterations though the segmenting process.
By mixing the ITG after each iteration up to the one la-
beled segmented conditioned on chunked w/categories,
we get the same model labeled ...with iterations com-
bined, which secures an additional 1.18 BLEU points.

7.4. Tuning search parameters

Lastly, for the best approach, we further experimented
with adjusting the parameters somewhat. Pruning the
base grammar harder (a threshold of 10−10 instead of
10−50), and allowing for a wider beam (100 items in-
stead of 25) during the parsing part of the segmenting
learning approach, we see the BLEU score rise to 20.93.

7.5. Analysis of learned rules

A manual inspection of the content of the categories
learned reveals that the main nonterminal contains
mainly structural rules, segments that it could not seg-
ment further. The latter type of rules varies from full
clauses such as that ' s a really beautiful dress/真是件漂
亮的衣服 to reasonable translation units such as Kazuo
Yamada/ＫａｚｕｏＹａｍａｄａ, which is really hard
to capture because each Latin character on the Chinese
side is its own individual token whereas the English side
has whole names as individual tokens.

A second nonterminal category contains punctua-
tion such as full stop and question mark, along with ,
sir/，先生, which can be considered as a form of punc-
tuation in the domain of the training data.

A third nonterminal category contains personal pro-
nouns in subject form (I,we, he, and also ambiguous pro-
nouns that could be either subject or object form such
as you and it) paired up with their respective Chinese
translations. It also contains please/请, which—like pro-
nouns in subject form—occurs frequently in the begin-

ning of sentence pairs.
A fourth nonterminal category contains pairs such

as can/吗, do you/吗, is/吗, could you/吗 and will you/吗—
instances where Chinese typically makes a statement,
possibly eliding the pronoun, and adds the question
particle (吗) to the end, and where English prefixes
that statement with a verb; both languages use a ques-
tion mark in the particular training data we used. The
main nonterminal learned that this category typically
was used in inverted rules, and the other translation
equivalences conform to that pattern. They include
where/在哪, where the Chinese more literally translates
to on/at which, what/什么which is a good translation, and
have/了, where the English auxiliary verb corresponds
well to the Chinese particle signaling perfect aspect.

Other categories appear to be consolidating, with a
mix of nouns, verbs, adjectives, and adverbials. Chinese
words and phrases typically can function as any of these,
so it is possible that differentiating them may require
increased emphasis on the English half of the rules.

Although the well-formed categories are few and
somewhat trivial, it is very encouraging to see them
emerging without any form of human supervision. Fu-
ture work will expand to continue learning an even
wider range of categories.

8. Conclusions

We have presented the first known experiments for
incorporating bilingual category learning within com-
pletely unsupervised transduction grammar induction
under end-to-end matched training and testing model
conditions. The novel approach employs iterative rule
segmenting driven by a minimum conditional descrip-
tion length learning objective, conditioned on a prior de-
fined by a stochastic ITG containing automatically in-
duced bilingual categories. We showed that this learn-
ing objective is superior to the previously used mixture
model, when bilingual categories are involved. We also
showed that the segmenting learning algorithm may be
committing too greedily to segmentations since com-
bining the ITGs with different degrees of segmentation
gives better scores than any single point in the segmen-
tation process; this points out an interesting avenue of
future research. We further saw that the segmenting
minimization of conditional description length can pick
up some of the signal in categorization that was buried in
noise in the base ITG the induction was conditioned on,
leading to an ITG with much clearer categories. In total



we have seen an improvement of 3.40 BLEU points due
to the incorporation of unsupervised category induction.
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(1) LIMSI-CNRS, Orsay, France
(2) Lingua et Machina, Le Chesnay, France

(3) Univ. Paris Sud, Orsay, France
{firstname.lastname}@limsi.fr

Abstract
This paper describes a study of translation hypotheses

that can be obtained by iterative, greedy oracle improvement
from the best hypothesis of a state-of-the-art phrase-based
Statistical Machine Translation system. The factors that we
consider include the influence of the rewriting operations,
target languages, and training data sizes. Analysis of our re-
sults provide new insights into some previously unanswered
questions, which include the reachability of previously un-
reachable hypotheses via indirect translation (thanks to the
introduction of a rewrite operation on the source text),
and the potential translation performance of systems relying
on pruned phrase tables.

1. Introduction
There are two opposing ways in which one may look at the
current level of performance reached by Statistical Machine
Translation (SMT) systems. One is that the results of SMT
systems are still quite unreliable and not appropriate for dis-
semination or even post-editing by human translators, in par-
ticular for low-resourced and/or difficult language pairs, and
for situations where domain adaptation is difficult. The other,
opposing view is that some contexts allow SMT systems to
reach very high performance, including when large enough
quantities of adapted data are available, e.g. by using SMT
systems in conjunction with translation memories, which has
yielded much interest into the study and use of human post-
editing and tools for supporting this activity.

Such performance levels typically correspond to the uti-
lization of the best translation hypothesis produced by a
given system, which is a reflection of the system’s relative
evaluation of the translations in its search space. Previous or-
acle studies have shown that the best attainable performance
of such systems was in fact much higher than their best out-
put [1]. This is achieved by relaxing pruning and reorder-
ing constraints imposed on decoders, and maximizing some
evaluation metrics score rather than the system’s own scoring
function. Such studies are useful, in particular, to make ex-
plicit the potential of a given system configuration (training
data, extraction procedures, etc.) and to possibly exhibit the
difficult parts of a source text (e.g. [2])) as well as the pos-
sible defects of reference translations. A lesson that can be

drawn from these results is the poor adequacy of the internal
scores of translation quality used by current systems.

Another interesting potential use of oracle studies is that
they can produce useful data under the form of individ-
ual post-editing steps that may be used to improve existing
translation hypotheses. Initial attempts at automatic post-
editing of SMT output approached the problem as one of
second-pass translation between automatic predictions and
correct translations [3]. Among the drawbacks of such ap-
proaches, large quantities of texts have to be translated to
learn post-editing models, which are then furthermore spe-
cific to a given version of a given system and consequently
not straightforwardly reusable. Some large collections of
manually revised translations have been collected [4, 5],
which can be used e.g. for sub-sentential confidence estima-
tion. However, such data sets are costly to acquire, in partic-
ular for some language pairs, and may again be, on some as-
pects, too specific to a given version of the MT system used.

In this article, we describe an approach to build a related
resource, but for a modest cost and with possibly wider ap-
plicability. We resort to greedy rewriting of translation hy-
potheses, in a similar spirit to Langlais et al. [6], to find the
sequence of rewriting steps which maximizes the quality of
translation hypotheses with respect to some evaluation met-
rics and reference translation(s). Individual rewritings are
based on the repertoire of biphrases units of some phrase-
based SMT systems, and thus do not have to correspond to
plausible rewritings made by human translators.

While we aim to use such a resource to learn to iden-
tify improvable fragments (e.g. [4]) and learn discriminative
rerankers (e.g. [7]), we will here focus on a systematic study
of such an artificial resource. Our experiments will study the
following factors:

• rewriting operations: we will use a revised and ex-
tended set of previously used operations [6], and in-
troduce an original operation which allows source sen-
tence rewriting (rewrite), as well as a target phrase
deletion operation (remove);

• training data size: we will use 5 different sizes of train-
ing data, where training data are split independently
from their relation to the test data;



• number of available reference translations: we will be
able to verify whether phenomena observed when a
single reference translation is available can also be ob-
served when as many as 7 reference translations allow
for a much more robust evaluation of translation qual-
ity;

• phrase table filtering: we will use unfiltered phrase ta-
bles and phrase tables filtered using a significance test-
ing criterion [8];

• target language: we will use French as the source lan-
guage, and 10 other European languages as target lan-
guages, with exactly the same training data;

• beam size: finally, we will also consider various beam
sizes to get some account of the quantity of search er-
rors made by our greedy decoder, although this aspect
is not central to the present study.

The remainder of this article is organized as follows. Sec-
tion 2 introduces greedy oracle decoding and describes the
operations that we have used in this work. Section 3 presents
our choice of data, systems, and search settings for this work.
Our experiments are then detailed in Section 4. We finally
summarize our main findings and present some of our future
work in Section 5.

2. Greedy oracle decoding
Greedy decoding for Statistical Machine Translation was in-
troduced in [9], as a fast solution to the NP-complete prob-
lem of finding the best translation hypothesis from a trans-
lation engine’s search space.1 Although such a technique
was shown to produce more search errors than its dynamic
programming-based counterpart for max-derivation approx-
imation, Langlais et al. [6] described an implementation of
greedy search decoding that could improve the best hypothe-
sis from a then state-of-the-art DP-decoder. Subsequent work
using a Gibbs sampler for approximating maximum transla-
tion decoding [10] showed, however, the adequacy of the ap-
proximations made by recent decoders for finding the best
translation in their search space, leaving as the main source
to account for current translation performance the scoring of
translation hypotheses.

Our objective in the present work is not to improve the
decoder score of the translation hypotheses that are found,
but rather to obtain, by construction, iteratively better hy-
potheses by using a sentence-level measure of actual transla-
tion performance (hence, some approximation of an oracle).
The sub-optimality of the search is not a problem for our
purpose, so we resort to a straightforward greedy algorithm
to build such sequences of iteratively improving translation
hypotheses.

1An optimal, but more costly solution, relying on integer programming,
was also proposed in the same article.

Algorithm 1 Greedy oracle search algorithm
Require: source (input sentence), beamSize

nbest← NBEST LIST(source, beamSize)
oneBest← GET ONE BEST(nbest)
loop

newNbestList← INITIALIZE LIST()
sCurrent← SBLEU(oneBest)
s← sCurrent
for all h ∈ NEIGHBORHOOD BEAM(nbest) do
c← SBLEU(h)
newNbestList← ADD(h, c, beamSize)
if c > s then

s← c
end if

end for
if s = sCurrent then

return oneBest
else
nbest← newNbestList
oneBest← GET ONE BEST(newNbestList)

end if
end loop

Our greedy oracle decoding is illustrated as pseudo-code
in Algorithm 1. We take as seeds the n-best, segmented
translation hypotheses of a phrase-based SMT system. At
each iteration, a number of best hypotheses relative to our
evaluation metrics are kept in a beam until convergence is
obtained. Each surviving hypothesis undergoes a number
of modifications by means of a repertoire of rewriting op-
erations on bi-phrases that define a neighborhood function.
We used the following operations (N denotes the number
of biphrases, T the maximum number of entries per source
phrase in a translation table, R the maximum number of en-
tries per source phrase in a source rewriting table, and S the
average number of tokens per source phrase)2:

1. replace (O(N.T )): replaces the translation of a
source phrase with another translation from the phrase
table;

2. split (O(N.S.T 2)): splits a source phrase into all
possible sets of two (contiguous) phrases, and uses
replace on each of the resulting phrases;

3. merge (O(T.N)): merges two contiguous source
phrases and uses replace on the resulting new
phrase;

4. move (O(N2)): moves the target phrase of a biphrase
to all inter-phrase positions in the translation hypothe-
sis;

2Complexity is expressed in terms of the maximum number of hypothe-
ses that will be considered given a seed hypothesis. Note that some of our
operations have a much higher complexity than those in [6], which is justi-
fied by the fact that we want to explore a larger search space.



Source une majorité du groupe ppe soutiendra donc la ligne du rapport kindermann
Reference the majority of the ppe group will be supporting the line of the kindermann report

initial hypothesis une majorité1 du groupe ppe2 donc3 soutiendra4 la ligne5 du6 rapport kindermann7

↓ a majority1 of the ppe group2 therefore3 support4 the line5 the6 kindermann report7

replace une majorité1 du groupe ppe2 donc3 soutiendra4 la ligne5 du6 rapport kindermann7

↓ a majority1 of the ppe group2 therefore3 will be supporting4 the line5 the6 kindermann report7

split une majorité1 du groupe ppe2 donc3 soutiendra4 la5 ligne6 du7 rapport kindermann8

↓ a majority1 of the ppe group2 therefore3 will be supporting4 the5 line of6 the7 kindermann report8

remove une majorité1 du groupe ppe2 donc3 soutiendra4 la5 ligne6 du7 rapport kindermann8

↓ a majority1 of the ppe group2 3 will be supporting4 the5 line of6 the7 kindermann report8

replace une majorité1 du groupe ppe2 donc3 soutiendra4 la5 ligne6 du7 rapport kindermann8

the majority1 of the ppe group2 3 will be supporting4 the5 line of6 the7 kindermann report8

Figure 1: Trace of an example greedy oracle decoding between French and English. The final state is reached after a sequence
of 4 operations (replace, split, remove, replace). Indices in the frames around phrases indicate bilingual alignments
originating from the seed hypothesis produced by the Moses decoder.

5. remove (O(N)): deletes the translation of a given
biphrase (which remains available as a placeholder for
later rewritings);

6. rewrite (O(N.R)): replaces the source phrase of a
biphrase with some other source phrase, and replaces
its translation with the translations of this new source
phrase; note that, by construction, we only need to put
in the source rewriting table biphrases that allow to
reach n-grams that are not reachable using other op-
erations.

Such a greedy oracle decoder has several limitations. As
said previously, it cannot perform a full exploration of the
search space and will consequently make search errors; we
will report in Section 4 some effects of beam size. Further-
more, our operations are applied on some bilingual phrase
segmentation of the source sentence and the translation hy-
pothesis, and split and merge operations will only allow
to visit a subset of all rewritings that would be licenced if
considering word alignments only. However, this is accept-
able for our purpose, as a subsequent objective will be to
improve the output of a state-of-the-art phrase-based system
using a repertoire of such phrase-based rewriting operations.

One may also keep in mind that some increases in trans-
lation scores will not always correspond to actual improve-
ments as judged by human translators. Indeed, some attempts
at maximizing a single metrics will result in inappropriate
transformations, such as arbitrarily removing words or mov-
ing them to positions where e.g. they do not break any longer
substrings from the reference translation. One solution may
be to make use of a mixture of complementary translation
metrics, which may however make computation much more
expensive; we leave this to our future work, accepting for
now the fact that important metrics score differences (e.g. up

to 37 BLEU points and 31 TER points for French to English
translation in this study) should always correspond to a ma-
jority of clear improvements.

Figure 1 shows an example of a trace by our system of
iterative improvement of a translation from French into En-
glish, starting from a competitive initial hypothesis (see sec-
tion 3). A local maximum is here reached after 4 rewriting
operations. Examples for the other types of rewriting opera-
tions are shown on Figure 2.

3. Experimental settings
In order to experiment with several target languages under
the same conditions, we used the Europarl corpus of parlia-
mentary debates3, and computed the intersection for 11 lan-
guages using English as pivot. From the collected data,
we extracted held-out, later entries as tuning and test sets
(see Table 1). We used French as our sole source language,
and experimented with all other possible target languages.
English was used as the main target language of the study,
notably in settings where the training data was reduced to
smaller fractions. Furthermore, in order to verify how our
oracles would behave in situations where the evaluation met-
rics could make use of several possible reference translations,
we also used the BTEC corpus of basic traveling expres-
sions [11], allowing us to use 16 references for tuning our
baseline systems and 7 references for evaluating them on the
French to English language pair (see Table 1).

We built state-of-the-art phrase-based SMT systems us-
ing the open source Moses system4, using standard settings
and models and MERT [12] for optimizing the parameters
on the tuning set. Trigrams target language models were es-

3http://statmt.org/europarl/
4http://www.statmt.org/moses



previous ... le projet qui ferait gagner le plus de temps sur un ferroviaire15 trajet16 très long17

... the project which would win the more time on a rail15 route16 very long17

move ... le projet qui ferait gagner le plus de temps sur un ferroviaire trajet très long

... the project which would win the more time on a very long rail route

previous il est évident que parler d’ intermodalité présuppose un profond changement de la culture d’ entreprise .
it is clear that speak intermodality presupposes a profound change in the business culture .

rewrite il est évident que débat d’ intermodalité présuppose un profond changement de la culture d’ entreprise .

it is clear that discussion on intermodality presupposes a profound change in the business culture .

previous qu’ il me soit3 permis4 dès lors de le placer dans une perspective plus historique .
it would therefore be3 allowed4 to put it into a more a more historical perspective .

merge qu’ il me soit permis dès lors de le placer dans une perspective plus historique .

it would therefore be permitted to put it into a more a more historical perspective .

Figure 2: Examples of applications of rewriting operations not already illustrated on the trace of Figure 1.

train tune test
# M-tok. # K-tok. # K-tok. BLEU TER

Europarl corpora
fr 10.2 32.8 32.8 - -
en 8.8 28.3 28.6 29.1 54.0
/2 4.4 | | 28.6 54.4
/4 2.2 | | 27.6 55.4
/8 1.1 | | 26.1 56.8

/16 0.5 | | 25.2 58.4
da 8.4 27.0 27.2 23.2 61.3
de 8.4 27.1 27.1 17.0 68.0
el 8.8 28.5 28.5 23.5 62.2
es 9.2 29.5 29.7 35.9 49.7
fi 6.4 20.6 20.5 11.2 79.7
it 10.2 28.9 29.0 31.6 55.3
nl 8.9 28.2 28.7 21.2 64.6
pt 9.1 29.4 29.3 33.4 52.8
sv 7.9 25.7 25.8 21.0 62.7

BTEC corpus
fr 0.2 0.5 0.5 - -
en 0.2 0.5∗ 0.5∗∗ 59.6 24.6

Table 1: Top: Statistics for our Europarl training (up to
310K bi-sentences), tune (1K bi-sentences) and test (1K bi-
sentences) corpora. Translation performance is given for all
baseline systems using French as the source language. Bot-
tom: Statistics for our BTEC training, tuning (16 references∗)
and test (7 references∗∗) corpora.

timated from the bilingual training data only, using Kneser-
Ney smoothing. Results for all baseline systems and all train-
ing conditions are reported in Table 1, using BLEU and TER
as complementary indicators of translation performance.

We used the greedy search operations described in Sec-
tion 2. We implemented various approximations to speed up
decoding. In particular, we limited candidate replacements

for replace, split and merge to phrases that contain
at least one token in common with the reference translation,
except for the 50 most frequent tokens.5 We used sentence-
level smoothed BLEU [13] as our objective function for
greedy decoding (using a single (Europarl) or several refer-
ence translations (BTEC)), but will use corpus-level BLEU
and individual n-gram precisions, as well as TER, to report
translation performance.

4. Experiments and analysis
4.1. Rewriting operations

Using our main language pair, French to English, we ex-
perimented with each individual rewriting operation, as well
as with the full set; see Table 2. The two operations that
individually lead to the largest improvements are not sur-
prisingly those that have access to replacement translations
from the phrase table, replace and split. The larger
improvements with the latter are due to the combination of
sub-replace operations, which encompass translations at-
tainable by composition as well as possibly more combi-
nations not seen associated with the larger source phrases.
Conversely, merge is of moderate use, but still manages to
capture some cases where translations cannot be obtained by
composition. As the sole operation, remove has almost no
impact on translation, and may in fact only artificially in-
flate low-order n-gram precision values. move has a mod-
erate impact, not too surprisingly more apparent on BLEU
and higher-order n-gram precision than on TER, which may
be attributed in part to the language pair (see Section 4.3).
The impact of the rewrite operation will be specifically
discussed in section 4.4.

5Although lowering this value led to fewer search errors, we deemed the
chosen value a good compromise time-wise.



Europarl fr→en (1 ref.) BTEC fr→en (7 refs.)
BLEU TER avg # BLEU TER avg #

score 1g 2g 3g 4g score iterations score 1g 2g 3g 4g score iterations
baseline 29.0 63.2 35.5 22.6 14.6 54.0 - 59.62 85.08 67.13 53.33 41.48 24.60 -

beam size = 1
merge 31.8 65.3 38.3 25.2 16.9 51.7 0.75 60.43 85.43 67.84 54.32 42.35 24.32 0.07
move 32.0 63.2 39.1 25.8 17.3 53.3 1.01 61.70 85.08 69.52 55.84 43.87 24.60 0.16

remove 29.7 67.1 39.2 25.6 16.9 50.0 1.03 59.62 85.08 67.13 53.33 41.48 24.60 0.00
replace 42.1 73.9 48.8 34.8 25.1 42.5 4.40 66.50 88.72 73.40 60.90 49.33 23.67 0.91
rewrite 29.8 64.5 36.2 23.0 14.0 53.5 0.38 59.69 85.07 67.12 53.48 41.57 24.68 0.04
split 45.7 74.3 52.7 39.1 28.6 41.3 4.46 69.34 88.05 75.36 64.62 53.90 27.07 1.24

all 66.5 88.2 73.8 62.6 53.0 23.1 11.04 77.30 91.17 81.67 73.78 64.98 23.47 1.92
beam size = 2

all 66.6 88.1 73.9 62.8 53.2 23.0 11.19 77.88 91.44 82.36 74.37 65.68 23.16 2.28
beam size = 5

all 67.8 88.5 74.9 64.3 55.0 22.3 11.26 79.06 91.88 83.29 75.67 67.47 22.94 2.12

Table 2: Effects of individual operations and beam size (left: Europarl; right: BTEC).

Potential improvements to translation hypotheses using
the original phrase table are very large. However, this may
not reflect accurately actual improvements. One important
reason for this is the fact that a single reference translation
usually does not represent all the acceptable wordings of a
translation. Looking at the BTEC condition, where the base-
line evaluated on 7 reference translations is much stronger
than in the Europarl condition, we still find significant in-
creases in BLEU score with a relative contribution of opera-
tions that is well correlated to that obtained on the more diffi-
cult, single-reference Europarl condition. The main source of
improvement for translation hypotheses thus resides in trans-
lating using generally smaller phrases (split) and choosing
more appropriate translations for phrases (replace).

Next, we look at when each operation is used when they
are all activated. The distribution of operations on Europarl is
given on Figure 3 by looking at operations from each quarter
of complete sequences (thus each corresponding to an aver-
age of 11.04/4 = 2.76 operations). The first quarter of oper-
ations, yielding almost half of the full improvement, mostly
consists of alternative translations (split and replace).
The move operation contributes more after the initial burst
of operations, while remove progressively acts on phrases
for which split cannot propose any further improvement
from the reached hypotheses.

All subsequent experiments will be conducted with a
beam size of 1 to limit computation time.6 Table 2 addi-
tionally provides results for larger beams, which gives some
account of the reduction in search errors corresponding to a
larger number of iterations per sentence (on average, there is
0.22 more iteration per sentence using a beam of 5, but at the
cost of a running time multiplied by a factor of more than 3).

6On a single core of a 2.2Ghz machine with 64Gb memory, decoding our
whole test sets took roughly 6 hours for a beam size of 1, 8 hours for a beam
size of 2, and more than 20 hours for a beam size of 5.

Figure 3: Distribution of types of operations per quarters
of operations during greedy oracle search. Corresponding
BLEU scores obtained after each quarter of iterations are in-
dicated on the legend.

4.2. Training data size and phrase table filtering

Predicting translation performance given the available
amount of training data is a useful problem [14]. Here, we
look at how much training data size impacts the performance
attainable by our oracle decoder. We reduce training data
size up to 16 times on the Europarl condition, without select-
ing data in any way relative to the dev and test set. Results
are given in Table 3. Whereas reducing by half the quantity
of training data roughly corresponds to the loss of 1 BLEU
point or less, we find that loss in oracle performance, al-
though also regular for each training data size reduction, is
close to 5 BLEU points. This fact may be often overlooked in
the SMT research community, where it is commonly known
that doubling the size of the training data typically has only
a small impact on translation performance. Our results show
that this is mostly a result of the limitations of the scoring
function used by decoders, and that attainable improvements
benefit much more from the added training data.



A related question is whether pruned phrase tables, which
can yield competitive translation performance while retain-
ing only small fractions of the original phrase table entries,
would be significantly different in terms of attainable transla-
tions. We used the widely used significance pruning of John-
son et al. [8], and selected a configuration where phrase pairs
occurring once in the bilingual corpus and composed from
phrases also occurring once on their respective side of the
corpus (so-called 1-1-1 configurations) are pruned. Look-
ing at the results on Table 3, we find that keeping only 27%
of the original phrase table entries indeed yielded no loss in
translation performance at rank 1 for the decoder. Although
the intuitions for filtering such phrase pairs include the fact
that they may correspond to noise or offer too little reusabil-
ity, the important drop in oracle performance (-11.2 BLEU
points and +8.8 TER points) clearly indicates that a signif-
icant part of the filtered entries, although apparently poorly
scored by the translation system, would have in fact largely
benefited the system.7

4.3. Target languages

Classes of language pairs correspond to very different chal-
lenges for SMT systems, as exemplified by the large-scale
study reported in [15]. In this set of experiments, we wanted
to assess oracle performance for a number of target lan-
guages with various types of relationship to the source lan-
guage (e.g. closely related (Spanish), completely unrelated
(Finnish), different sentence structure (German), etc.) Re-
sults are shown in Table 4 for the 10 target languages of our
study in the Europarl condition. Relative improvements in
BLEU scores range from roughly +100% (for Spanish and
Portuguese) to more than +300% (Finnish). This latter case
seems particularly instructive: although not directly com-
parable to the absolute values reached for other target lan-
guages, phrase tables do contain entries that can significantly
improve automatic translation into such a complex language
as Finnish.8 We observe, in particular, a very large increase
in n-gram precision at all sizes.

Another interesting result concerns romance target lan-
guages, which obtain both the smallest relative increase in
BLEU (around +100%) and the largest relative reduction in
TER (up to -63%). Our hypothesis to account for this fact is
that the improvements on n-gram precisions do not result in
the strongest increases overall in BLEU, but that given that
many such improvements for long target phrases are indeed
possible, this globally results in sentence orderings that are
more symmetric between oracle outputs and reference trans-
lations.

We further look at the distributions of rewriting opera-

7We note, however, that using a filtered phrase table already yields an
interesting level of oracle translation improvement, with a very modest run-
ning time (less than half an hour on a single core for decoding the 1000 sen-
tences of our test set).

8We must, however, acknowledge the fact that the target language model
used for baseline decoding could not be very competitive here, which is
particularly true for this target language.

BLEU TER #. iterations
score +rew score +rew avg. per sent.

da baseline 23.2 61.3 -
oracle 58.4 +0.9 29.5 -0.8 10.7

de baseline 17.0 68.0 -
oracle 55.1 +1.4 32.0 -1.2 13.3

el baseline 23.5 62.2 -
oracle 62.8 +1.0 26.5 -0.6 11.5

en baseline 29.0 54.0 -
oracle 66.5 +0.6 23.1 -0.4 11.0

es baseline 35.9 49.7 -
oracle 74.0 +0.5 18.2 -0.5 10.7

fi baseline 11.2 79.7 -
oracle 46.1 +1.2 38.1 -1.2 11.3

it baseline 31.6 55.2 -
oracle 71.2 +1.1 20.4 -1.7 11.3

nl baseline 21.2 64.6 -
oracle 56.3 +1.6 32.4 -0.7 12.9

pt baseline 33.4 52.8 -
oracle 69.8 +0.7 21.5 -0.5 10.2

sv baseline 21.0 62.7 -
oracle 59.9 +1.0 27.8 -1.1 11.2

Table 4: Effects of target language (Europarl).
’+rew(rite)’ indicates the specific contribution of
the corresponding improvement (in BLEU or TER) of the
oracle score.

tions per target language, given on Figure 4. replace oper-
ations appear uniformely useful for all languages, illustrating
the relative inadequacy of the translation models used by the
decoders across languages. split operations are more nu-
merous for target languages with good baseline performance
(e.g. English and Portuguese). This can be attributed to some
over-confidence in long bi-phrases that can be extracted from
the training data, which not always permit to attain the ex-
pected reference translation. Conversely, we note slightly
more merge operations for romance languages and Greek,
a fact that should be investigated further. While phrases used
by the decoder used should be generally shorter, a signif-
icant number of source fragments are nonetheless inaccu-
rately translated compositionally when their correct transla-
tion is available.9

Not surprisingly, we also note a larger use of move op-
erations for translating into German (and, to a lesser extent,
Dutch and Scandinavian languages). Likewise, we find, at
no surprise, that Finnish required a more important number
of deletions of target words associated to source phrases, a
reflection of the much compositional morphology of the lan-
guage, which makes capturing appropriate biphrases difficult
when such a language is involved.

9Among other possibilities, a stronger language model may help correct
this to some extent. In this study, priority was put on ensuring that all sys-
tems were built from the same data.



BLEU TER #. biphrases
baseline oracle 1g 2g 3g 4g baseline oracle in phrase table

full 29.1 65.9 87.9 73.3 61.9 52.4 54.0 23.5 735,273
/2 28.6 60.8 85.5 68.8 56.5 46.4 54.4 27.5 419,716
/4 27.6 55.6 82.8 64.3 51.0 40.7 55.4 31.1 239,647
/8 26.1 51.1 79.8 60.0 46.3 36.0 56.8 35.1 137,719
/16 25.2 46.0 76.9 55.2 41.1 30.7 58.4 39.0 79,837

sigtest 29.1 54.7 81.4 63.0 50.3 40.4 54.1 32.3 203,672

Table 3: Effects of training data size and phrase table filtering (all operations but rewrite) (Europarl).

Figure 4: Distribution of operations per target language.

4.4. Reachability of new reference fragments

Our rewrite operation allows to reach fragments from the
reference translations that are not directly reachable using
replace only. Using this operation alone for French to
English translation on the Europarl condition (Table 2) led to
an improvement of +0.8 BLEU and -0.5 TER, for an aver-
age number of 0.38 applications per sentence decoding. Re-
sults across target languages (Table 4) show that languages
that benefit the most from this increased reachability (more
than +1 BLEU and -1 TER) mostly corresponds to languages
with lower baseline scores, indicating that alignment diffi-
culty (considering that the exact same training data were used
for all language pairs) is responsible to some extent.

Positive applications of such an operation, as previously
proposed by [16, 17] using source paraphrase lattices, in-
clude a large typology of configurations largely not limited
to strict paraphrase phenomena, as illustrated on Figure 5.
For instance, using English as the source language for illus-
tration purposes, correctly translating the English word buy-
ing (in not by buying other countries’ quotas) by rachat (in
the expected translation non par le rachat du ”droit à pol-
luer” d’un autre pays) can only be done by translating the
noun purchase instead. Studying source rewriting patterns
on part-of-speeches (see Table 5) shows that French, with
a rich verbal inflection system, mostly requires rewriting of
verbs into verbs, with significantly fewer cases for nouns into
nouns, and fewer yet for adjectives into adjectives. The most
represented types with a change of category are verbs into
nouns, nouns into verbs, and adverbs into verbs.

Figure 5: Distribution of main part-of-speech patterns of
source rewrite for translation from French.

source reference rewrite phrases
abused dénaturé different
buying rachat purchase
complex multitude number | series | wealth
damaging désastreuse disastrous
drivers des personnels people
excuse argument argument | grounds | reason

Table 5: Examples of English source rewritings (note that
English was used as source language here for illustration pur-
poses) and their new reachable French reference translation
fragment.

5. Conclusion

This article has presented a study of iteratively improved
translation hypotheses, starting from competitive baseline
hypotheses up to translation hypotheses of very high quality,
even for comparatively difficult language pairs. Although we
implemented a non-optimal solution to finding the hypothe-
ses that maximize a single automatic metrics score, several
useful facts were empirically demonstrated. Our study first
confirmed the important potential for improvement of current
phrase-based SMT systems, both in situations where a single
or several reference translations are available, and the diffi-
culty of the translation scoring problem. Such conclusions
naturally pave the way for further research in discrimina-
tively training systems, more particularly based on dynamic
reranking using so-called pseudo-references [7], by focusing
more particularly on the rewriting of possibly ill-translated
phrases [2, 4].



We have also made explicit the relative contribution of a
number of rewriting operations, including an original one,
rewrite, which allows us to turn around the common
acceptance that unique reference translations are poor rep-
resentations of acceptable translations, and to claim that
the specificities of a unique source text sometimes are re-
sponsible for (automatic) translation difficulty. Previously,
Schroeder et al. [16] had shown the potential of using
many human rewritings of input texts, and Khalilov and
Sima’an [18] had shown the potential of using reorderings
of input texts, but to our knowledge this work is the first to
focus on the contribution of local indirect translation.10 Para-
phrasing the training data [19, 20] in a carefull manner is one
way to provide access to such knowledge during translation.

Other salient results of our study include the empirical
demonstration that pruned phrase tables significantly limit
the potential of SMT systems, and that current SMT systems
have the potential to already produce very good translation
hypotheses even for difficult language pairs, however diffi-
cult this may be to achieve in practice. Part of our intended
future work will focus on identifying high-quality greedy se-
quences of rewriting operations, and to compare them to edit
sequences made by human post-editors, for whom finding
a close-to-shortest route to translation improvement can be
difficult.
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Abstract

Spoken language translation (SLT) systems typically
follow a pipeline architecture, in which the best auto-
matic speech recognition (ASR) hypothesis of an in-
put utterance is fed into a statistical machine transla-
tion (SMT) system. Conversational speech often gener-
ates unrecoverable ASR errors owing to its rich vocab-
ulary (e.g. out-of-vocabulary (OOV) named entities).
In this paper, we study the possibility of alleviating the
impact of unrecoverable ASR errors on translation per-
formance by minimizing the contextual effects of incor-
rect source words in target hypotheses. Our approach
is driven by locally-derived penalties applied to bilin-
gual phrase pairs as well as target language model (LM)
likelihoods in the vicinity of source errors. With ora-
cle word error labels on an OOV word-rich English-to-
Iraqi Arabic translation task, we show statistically sig-
nificant relative improvements of 3.2% BLEU and 2.0%
METEOR over an error-agnostic baseline SMT system.
We then investigate the impact of imperfect source er-
ror labels on error-aware translation performance. Sim-
ulation experiments reveal that modest translation im-
provements are to be gained with this approach even
when the source error labels are noisy.

1. Introduction

Conversational speech translation enables monolingual
speakers of different languages to communicate with
one another. The pipeline consists of ASR transcrip-
tion of the input source language utterance, followed
by text-to-text translation by SMT, and optional text-
to-speech synthesis (TTS) in the target language. ASR
performance is often a crucial bottleneck in the perfor-
mance of speech translation systems, because it has a
significant downstream impact on the SMT component.

This is an important issue especially for spontaneous
conversational speech, which exhibits a rich vocabulary
even in domain-constrained applications, often result-
ing in a high OOV word rate. In the force protection and
medical assistance domains, targeted under the DARPA
TransTac and BOLT programs, a significant fraction of
OOV entities refer to names of people, places, organi-
zations, and objects. These OOV entities cause acous-
tically similar in-vocabulary words that best fit the lin-
guistic context to be substituted in the 1-best ASR tran-
scription, as illustrated in Figure 1. Furthermore, ASR
errors caused by OOV entities areunrecoverable, i.e.
there is no path in the ASR lattice that corresponds to
the correct transcription.

Figure 1: Unrecoverable ASR misrecognition caused
by an OOV named-entity.

Translation errors caused directly by unrecoverable
ASR errors, e.g. due to translation of source words sub-
stituted or inserted in place of an OOV entity, are un-
avoidable. However, these unrecoverable source lan-
guage errors also affect translations of surrounding re-
gions of error-free source words due to contextual ef-
fects. The goal of error-aware translation is to min-
imize the contextual impact of source errors and ob-
tain the best possible translation for the correctly rec-
ognized portions of the utterance. We study this pos-
sibility by modifying a phrase-based SMT decoder to
include penalties for bilingual phrase pairs spanning er-
roneous and error-free regions of input, and target lan-
guage model (LM) likelihoods in the vicinity of source



errors. The proposed features are naturally integrated
within a standard log-linear phrase-based translation
model, resulting in a straightforward development and
tuning process.

The remainder of this paper is organized as follows.
Section 2 presents an overview of related work in this
area. Section 3 describes the baseline speech transla-
tion pipeline, including details on the ASR and SMT
systems. A detailed description of the proposed error-
aware SMT decoding approach is given in Section 4.
Experimental results are presented in Section 5. Finally,
Section 6 concludes this paper with a brief discussion of
our contribution and presents directions for future re-
search in this area.

2. Relation to prior work

Integration of ASR and MT has gained popularity in the
SLT community as a way of improving translation per-
formance with potentially noisy input. This ranges from
simple ASR post-processing to obtain segment bound-
aries or to insert punctuation [1, 2] to more sophisti-
cated techniques such as joint decoding [3] and/or aug-
menting the SMT search space with ASRn-best lists,
lattices, or word graphs (confusion networks) [4, 5].
The latter approach relies on the fact that then-best list
or lattice might contain a better hypothesis that could
generate a more accurate translation. However, it is of
limited utility in improving translation performance for
utterances that generate unrecoverable ASR errors. Fur-
thermore, the joint search space can be very large, mak-
ing it difficult to implement some of these approaches
for low memory, small form-factor devices that are pre-
ferred for SLT applications.

Our proposed approach is inspired by the idea of
attention-shift decoding for ASR [6], where an input
utterance is comprised of reliableislands and unreli-
able gaps. In this framework, initial hypotheses are
constructed for the islands, and used to fill in the inter-
mediate gaps in conjunction with additional informa-
tion sources. In the case of SLT, islands refer to cor-
rectly recognized segments of the input utterance, while
gaps consist of unrecoverable ASR errors. Our goal is
to maximize translation performance on the correct is-
lands, while minimizing interference from the incorrect
gaps. In the SLT task domain, gaps will always gener-
ate translation errors and can only be filled in through
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additional external input (e.g. clarification dialog with
the user). We refer the reader to our previous work [7]
for more details on some of these interactive methods.
In this paper, we focus solely on improving translation
performance on the islands.

3. Baseline systems

The baseline ASR and SMT systems for our SLT ap-
plication are built on data from the DARPA TransTac
English-Iraqi Arabic parallel two-way spoken dialogue
collection. These data span a variety of domains in-
cluding force protection (e.g. checkpoint, reconnais-
sance, patrol), medical diagnosis and aid, maintenance
and infrastructure, etc., and are conversational in genre.
We focused on the English-to-Iraqi Arabic direction be-
cause this was a primary requirement of the ongoing
DARPA BOLT program, under which a significant part
of this research was conducted.

The baseline English ASR was based on the BBN
Byblos system, which uses a multi-pass decoding strat-
egy where models of increasing complexity are used in
successive passes in order to refine the recognition hy-
potheses [8]. The acoustic model was trained on ap-
proximately 200 hours of transcribed English speech
from the TransTac corpus. The LM was trained on 5.8M
English sentences (60M words), drawn from both in-
domain and out-of-domain sources. LM and decoding
parameters were tuned on a held-out development set of
3,534 utterances (45k words). With a dictionary of 38k
words, we obtained 12.8% WER on a separate held-out
test set of 3,138 utterances.

Our English-to-Iraqi Arabic SMT system was
trained on a parallel corpus derived from the TransTac
collection (773k sentence pairs, 7.3M words). Phrase
pairs were extracted from bidirectional IBM Model 4
word alignment [9, 10] based on the heuristic approach
of [11]. The target LM was trained on Iraqi Arabic
transcriptions from the parallel corpus. Our phrase-
based decoder (similar to Moses [12]) performs beam
search stack decoding based on a standard log-linear
model, whose parameters were tuned with MERT [13]
on a held-out development set (3,534 sentence pairs,
45k words). The BLEU and METEOR scores of this
system on a noise-free held-out test set (3,138 sentence
pairs, 38k words) were 16.1 and 42.5, respectively.



4. Error-aware SMT decoding

Phrase-based SMT decoders rely on context in order
to construct a reasonably fluent translation of an input
source sentence. Local source context is captured by
multi-word phrase pairs, while local target context is
modeled both by phrase pairs as well as an-gram target
LM. By definition, error regions in source input (gaps)
produce incorrect translations. This affects translation
of surrounding regions of error-free input (islands) due
to two primary contextual effects:

1. Selection of phrase pairs whose source phrases
span islands and gaps, leading to mixing of cor-
rect and incorrect words in the source context.

2. Erroneous target LM history causing propaga-
tion of bad hypotheses at the boundaries between
translations of source gaps and islands.

Our proposed approach to error-aware phrase-based
SMT decoding involves minimizing the contextual im-
pact gaps can have on the translation of islands. We en-
courage this separation between translation of islands
and gaps in two different ways: (a) by discouraging the
decoder from choosing phrase translation pairs whose
source phrases span island-gap boundaries; and (b) by
preventing the propagation of bad target hypotheses
generated by source gaps through the application of dy-
namic target language model penalties.

Throughout this paper, we assume that each ASR-
hypothesized source wordsi is tagged with a corre-
sponding probability of errorei, ranging from 0.0 (cor-
rect) to 1.0 (error). These error probabilities might be
based on oracle error labels (e.g. Levenshtein alignment
of ASR transcription with the reference), or automat-
ically estimated through some machine learning infer-
ence process. In interactive spoken language translation
systems, source error information may also be gleaned
directly from the user through clarification techniques
such as ASR confirmation [7]. In the latter approach,
the user hears a synthesized version of the ASR 1-best
hypothesis, and can inform the system of incorrect re-
gions (gaps) in the hypothesis.

We introduce two new features that leverage source
error probabilities to minimize gap interference in
translation of islands. These features are evaluated
at run-time and integrate directly within the log-
linear translation model framework. Tunable parameter
weights associated with these features can be optimized
with MERT on an appropriate development set. The

proposed approach is highly efficient because it pre-
serves the original search space and adds virtually no
complexity to the SMT decoder.

4.1. Phrase pair error span penalty

We introduce a penalty term that applies to phrase pairs
whose source phrases span the boundary between an is-
land and a gap, thereby discouraging selection of erro-
neous source contexts for translation of correctly recog-
nized words. This also encourages separation of incor-
rect target words generated by gaps from correct hy-
potheses due to islands, permitting replacement with
other information that can render the translation com-
prehensible. For instance, the interactive SLT system
described in [7] automatically identifies source gaps
generated by OOV named entities, and replaces incor-
rect target words due to them with an audio segment
corresponding to the spoken name.

The error span penalty is evaluated at run-time for
each candidate phrase pair in the search graph based
on the source words it spans. It is computed as the
maximal difference between error probabilities of suc-
cessive constituent words in the source phrase, and ap-
plies equally to all translation options generated by that
source phrase.

FX→Y (si, sj) = − max
i≤k<j

| ek+1 − ek | (1)

Equation 1 illustrates the evaluation of this feature
for a sample phrase pairX → Y which spans con-
tiguous source words(si, . . . , sj) with error probabil-
ities (ei, . . . , ej). The rationale behind this feature is
that source phrases spanning island-gap boundaries are
likely to exhibit large internal differences in source er-
ror probability. The error span penalty discourages
the decoder from choosing translations whose source
phrases potentially span island-gap boundaries. How-
ever, it does not penalize phrase pairs that exclusively
span either correct source words (islands) or incorrect
source words (gaps).

4.2. Target language model penalty

Bad phrase translations generated by source gaps can
negatively influence the target context through then-
gram target LM. To prevent the propagation of errors in
this manner, we introduce a dynamic target LM penalty
that is applied to each translation hypothesis in the



Figure 2: LM penalty highlighted for erroneous bigram context. Incorrect source words are highlighted in red.

beam search stack decoding process. In our decoder,
each hypothesis, regardless of which stack it is placed
in, records the most recent phrase pair (source/target
span) that was used to arrive at that hypothesis. The to-
tal LM log-likelihood of the current hypothesis is eval-
uated as the sum of LM log-likelihoods of each con-
stituent target word given itsn-gram context. Depend-
ing on then-gram order, the context may extend to
target words from the previous hypothesis on a lower-
order stack. If the most recent phrase pair used in ob-
taining the previous hypothesis corresponds to a source
gap, we dynamically adjust LM log-likelihoods for tar-
get words in the current hypothesis whose context in-
cludes target words from the previous hypothesis.

In the example of Figure 2, the total LM score
lm(hCwlA AlryAjyl) of the target phrasehCwlA
AlryAjyl is the sum of the LM log-likelihoods
lp(AlryAjyl | hCwlA) and lp(hCwlA | HtY) of
the constituent words given the local context (without
loss of generality, we illustrate using a bigram LM con-
text). However, the bigram likelihood of the first word
lp(hCwlA | HtY) is invalid due to the erroneous con-
textHtY, which in turn was generated by the incorrectly
recognized English source word (gap)to. Therefore,
we apply a penalty factor to this term, weighted by
the projection of the corresponding source error prob-
ability to the target context (µ3 = 0.8), in addition
to the globally tunable feature weightλ. Thus, the
penalty term attenuates the effect of the incorrect tar-
get hypothesisHtY to obtain the discounted LM score
lm∗(hCwlA AlryAjyl), thereby alleviating the im-

pact of erroneous LM context at run-time.
There is a subtle difference between discounting

the total target phrase LM score via subtraction as de-
scribed above, versus modifying the LM score directly
via a multiplicative penalty factor. Our discounting ap-
proach is more flexible because it allows us to tune
a feature weight specifically for the penalty discount,
without affecting the main LM feature weight. In other
words, the total penalty can be separated from the to-
tal LM score. An alternate solution would have been to
back-off to the unigram likelihood ofhCwlA instead.
However, back-off can only be applied with categorical
error labels, precluding the use of soft weighting and
tunable parameters.

5. Experimental results

To evaluate the proposed approach, we designed and
created high-error development/test (HED/HET) sets
consisting of spoken utterances rich in OOV entities.
Table 1 summarizes these datasets, which exhibit very
high OOV/ASR error rates compared to the baseline de-
velopment/test sets. Consequently, the baseline transla-
tion scores of 1-best ASR hypotheses of the HET set
were significantly lower (Table 2). For reference, the
noise-free test set baseline BLEU and METEOR scores
were 16.1 and 42.5, respectively.

We offer a proof-of-concept evaluation of error-
aware SMT decoding using oracle source error labels
for the HED/HET sets, i.e. with error probability of all
correct and incorrect source words set to 0.0 and 1.0,
respectively. The oracle error labels were obtained by



Dataset #Utts #Words OOV% WER
HED 627 6.4k 2.9% 31.8%
HET 507 5.3k 8.9% 46.8%

Table 1: High-error dev/test data statistics.

automatic alignment of ASR hypotheses to the refer-
ence transcriptions. Because of the relatively small size
of the HED set compared to the baseline development
set, we only optimized the weights of the two proposed
features on the HED set, carrying over all other tunable
parameters from the baseline system. This also allowed
a fair comparison, summarized in Table 2, between
the baseline and error-aware systems. In combination,
the proposed features produced relative gains of 3.2%
BLEU and 2.0% METEOR over the baseline system on
error-labeled ASR transcriptions of the HET set. Be-
cause it is impossible to translate gaps correctly, these
improvements are attributable solely to better transla-
tions of the islands.

To verify the statistical signficance of this im-
provement, we performed the non-parametric Wilcoxon
signed-rank test based on pair-wise bootstrap resam-
pling [14] of the baseline and error-aware SMT hy-
potheses. With 100 randomized samples, thep-value
returned by this test was5.14× 10−17, thus confirming
statistical significance of the improvement atα = 0.01.

System BLEU METEOR
Baseline 5.67 24.62
EAD (oracle) 5.85 25.12
EAD (estimated) 5.61 24.86

Table 2: HET set translation scores for error-aware de-
coding (EAD) with oracle/estimated error probabilities.

Achieving perfect ASR error detection is nearly im-
possible with current technology. We investigated the
impact of noisy source error labels on translation per-
formance in order to determine the noise level at which
error-aware SMT decoding no longer achieves its goal.
We simulated false alarms and missed detections by de-
liberately injecting noise into the oracle error labels,
i.e. randomly changing 0.0 error probabilities to 1.0,
and vice-versa in the desired proportion. Figure 3 il-
lustrates the trajectories of BLEU/METEOR scores of
error-aware decoding on the HET set across a range of
false alarm rates (x-axis). Each curve corresponds to a

specific detection rate; for instance, “DR-0.90” refers
to 90% error detection rate. Each data point on ev-
ery curve is the average of 10 independent noise sim-
ulations, giving a smooth trajectory of the performance
trend. The simulation results are consistent with our
intuition that there must be a gradual degradation in
translation performance (BLEU/METEOR scores) as
the noise level in the source word error labels (false
alarm rate) increases. We note that error-aware decod-
ing provides modest BLEU score improvements over
the baseline SMT system as long as the false alarm rate
is low (2-5%) and detection rate is high (70-80%). ME-
TEOR improvements persist at noisier operating points.

In our final experiment, we attempted to deter-
mine whether automatic detection of ASR errors could
be used in conjunction with error-aware SMT decod-
ing to improve translation performance in the absence
of oracle ASR error labels. To this end, we coupled
error-aware SMT decoding with a CRF-based auto-
mated ASR error predictor trained on a variety of fea-
tures, including ASR and SMT confidence scores, sub-
word ASR hypothesis mismatch, word boundary veri-
fication, named-entity detection, etc. The predictor in-
fers a real-valued probability of error in [0.0, 1.0] for
each source word in the HED/HET sets. Our recent
work [15] provides more details on this system. ROC
analysis showed that the automated predictor achieved
68% ASR error detection rate at 10% false alarm rate on
the HET set. Error probabilities inferred by this system
were used to evaluate the proposed penalties for SMT
decoding. While the corresponding BLEU score does
not improve (final row of Table 2), the METEOR score
is slightly better than the baseline system. Given the
current performance level of the automated error pre-
dictor, these results are in complete agreement with our
simulation experiments.

6. Conclusion and future directions

ASR performance is a crucial bottleneck for down-
stream SMT quality in conversational speech transla-
tion systems. Unrecoverable ASR errors due to OOV
words can also impact subsequent translation of sur-
rounding, correctly recognized words due to contextual
effects. Thus, errors in the source input can cause im-
perfect or incorrect translation of error-free neighboring
words. Besides being less effective on utterances that
generate unrecoverable ASR errors, traditional methods
of integrating ASR and SMT (for instance, via lattice or



(a) BLEU Trajectories (b) METEOR Trajectories

Figure 3: Trajectory of BLEU and METEOR scores for error-aware decoding at various false alarm and detection
rates for error labels. Dashed horizontal lines represent the baseline (lower) and error-aware decoding with perfect
error detection (upper). Figures show a gradual degradation in SMT performance as the noise level in the error labels
increases.

n-best based search space augmentation) can be com-
putationally expensive as well as memory intensive.

We presented an exploratory study in which we
made targeted modifications to a phrase-based SMT
decoder that reduce interference of incorrect gaps on
translation of correct islands by introducing dynamic
penalties applied to bilingual phrase pairs and the target
LM. The new features were directly integrated within
the log-linear model, resulting in straightforward devel-
opment and tuning of the modified SMT system.

In the proof-of-concept experiment where we as-
sumed perfect knowledge of source errors, the proposed
modifications gave statistically significant relative im-
provements of 3.2% BLEU and 2.0% METEOR over
the baseline system. Comprehensive simulation exper-
iments revealed that modest translation improvements
persist even in the presence of false alarms and missed
detections of source errors, subject to certain thresh-
olds. Coupling automated ASR error detection with
error-aware SMT decoding yielded small gains in ME-
TEOR. We expect translation performance to improve
as error prediction accuracy increases.

Based on these observations, one of our primary
goals for the future is to improve automated ASR er-
ror detection capability for coupling with error-aware
decoding. On the other hand, interactive, clarification-
enabled SLT systems (e.g. two-way speech-to-speech

translation systems) permit us to leverage user feedback
to obtain source error labels. For example, based on
cues from the automated ASR error detector, the system
may request the speaker to confirm whether a sequence
of ASR-hypothesized words is incorrect. In this way,
user feedback can be used to construct oracle source er-
ror labels as input to the error-aware SMT decoder.
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Abstract 

This paper focuses on the user experience (UX) of a 

simultaneous interpretation system for face-to-face 

conversation between two users. To assess the UX of 

the system, we first made a transcript of the speech of 

users recorded during a task-based evaluation 

experiment and then analyzed user speech from the 

viewpoint of UX. 

In a task-based evaluation experiment, 44 tasks 

out of 45 tasks were solved. The solved task ratio was 

97.8%. This indicates that the system can effectively 

provide interpretation to enable users to solve tasks. 

However, we found that users repeated speech due to 

errors in automatic speech recognition (ASR) or 

machine translation (MT). Users repeated clauses 1.8 

times on average. Users seemed to repeat themselves 

until they received a response from their partner users.  

In addition, we found that after approximately 

3.6 repetitions, users would change their words to 

avoid errors in ASR or MT and to evoke a response 

from their partner users.  

1. Introduction 

This paper focuses on user experience (UX) of our 

simultaneous interpretation system ([1], Figure 1), 

which is a variation of a speech-to-speech translation 

(S2ST) system. 

The goal of this paper is to assess whether users 

are satisfied with the whole conversation process 

when they use the simultaneous interpretation system 

and to evaluate whether the system provides 

interpretation of a quality sufficient for users to 

obtain information from speakers of other languages. 

To assess the UX, we analyzed the transcription 

of recorded speech during a task-based evaluation 

experiment. The simultaneous interpretation system 

consists of several modules: automatic speech 

recognition (ASR), sentence boundary detection 

(SBD), machine translation (MT), and user interface 

(UI). However, from the viewpoint of a user, the 

whole  system  is  one  application.   This  is  why  we 

 
Figure 1: Our simultaneous interpretation system 

 and  users 

 

chose a task-based evaluation experiment when trying 

to assess UX. 

Section 2 introduces related work. Section 3 

introduces the system that we developed and used for 

the evaluation experiment. Section 4 describes the 

evaluation experiment. In section 5, we analyze a 

transcript of speech recorded during the evaluation 

experiment and also explore some methods to detect 

whether users are satisfied with the whole experience 

of using our system. Section 6 provides a summary of 

this paper. 

2. Related Work 

Many studies have targeted S2ST ([2], [3], and [4]). 

In the early stage of S2ST technology studies, 

systems were restricted to certain topics and speech 

styles. Recently, systems that can incrementally 

interpret utterances have been developed ([5], [6]). 

Some of them are commercially available [8]. Some 

complex applications are targeted by S2ST systems, 

such as lecture interpretation [9]. 

Most previous studies of S2ST systems have 

evaluated these systems in terms of recognition, 

translation accuracy and time efficiency. For example, 

one simultaneous interpretation system reportedly 

shortened by 20% the time needed for interpretation 



without an accompanying decrease in quality [7].  

 When developing a simultaneous interpretation 

system, it is important to evaluate the precision of the 

interpretation and its time efficiency. In addition, it is 

important to consider the experience of users during 

actual use of the system. 

Many systems implicitly expect that users will 

speak rather clearly and fluently. However, those 

users who are interested in receiving information (e.g., 

information about shopping), rather than in 

conversation with the other speaker, do not pay much 

attention to learning how to use the system. We 

observed this habit in the conversation of users 

during task-based evaluation. 

Because simultaneous interpretation systems 

will soon be put to practical use, it is important to pay 

attention to the UX for the system. It has not been 

sufficiently discussed what kind of support and UX 

the system provides. There are few reports on the UX 

for simultaneous interpretation systems. Here, we 

focus on the number of repetitions of speech. In the 

experiment that we discuss in section 4, users 

repeated similar utterances until the ASR system 

recognized their speech correctly or until the other 

speaker responded. We also counted how many times 

a user would repeat something before changing the 

spoken words to avoid ASR or MT errors and obtain 

correct interpretation results and a response from the 

other user. This means that errors in the ASR or MT 

system interrupt conversation and decrease user 

satisfaction. 

This paper discusses the UX of the simultaneous 

interpretation system as measured by repetition of 

qualitatively identical speech. This paper proposes a 

guiding principle for developing a practical system of 

simultaneous interpretation. We developed our own 

simultaneous interpretation system and evaluated it in 

terms of conversation goal achievement. We also 

transcribed speech recorded during the task-based 

experiment and analyzed how the users spoke. 

 

3. System Architecture 

We introduce our simultaneous interpretation system 

here to clarify the experimental conditions. The 

simultaneous interpretation system comprises ASR, 

SBD, MT, and UI components. Figure 2 illustrates 

the simultaneous interpretation process. The server 

side engines of the ASR, SBD, and MT components 

communicate with the UI application, which works as 

a client terminal through the Internet. 

First, the system recognizes the user’s 

spontaneous speech, segmented by 200 ms of pause, 

 
Figure 2: Schematic diagram of speech production 

 

 

 
Figure 3: Schematic diagram of speech production 

 

 

and then the system continuously outputs a 

transcribed text. Second, the client terminal UI 

application gathers several speech segments and 

sends them to the SBD module. Segments are 

gathered only when the pause between them are 

shorter than 500 ms. The SBD module detects a 

sentence boundary to split the text into segments 

suitable for translation. Next, the SBD module 

examines each segment to see whether it needs to be 

translated. Segments are translated in the order of 

their speech. This procedure enables the system to 

start the MT process without waiting for the end of 

the whole speech by a speaker and to interpret users’ 

utterances after only a short delay for the original 

user’s utterance. In addition, when a user presses a 

button for text-to-speech (TTS), the TTS engine 

synthesizes a voice sound for the translation result.  

Figure 3 shows an example of the process. The 

original speech “Excuse me, I lost <pause> a bag at 

the train station” contains a pause longer than 200 ms 

between “lost” and “a.” Therefore, the ASR engine 

regards them as separate speech segments of “excuse 

me i lost” and “a bag at the train station”. Next, the 



UI application gathers these ASR results and sends 

them for SBD. The SBD module examines the whole 

string “excuse me i lost a bag at the train station” and 

finds a boundary suitable for translation. In the 

example, SBD found a boundary between “me” and 

“lost.” The system finally outputs the interpretation 

result for “excuse me” and “i lost a bag at the train 

station.” The rest of this section briefly introduces 

ASR, SBD, MT and UI, in that order. 

3.1. ASR 

To achieve accurate speech recognition under noisy 

environmental conditions, we carefully select the 

acoustic features for voice activity detection [10] and 

acoustic modeling [11]. The language model is 

trained with a large-scale text corpus collected from 

the web and a bilingual corpus that we developed for 

the travel domain. 

The ASR dictionary contains 200,000 Japanese 

words and 30,000 English words. These entries are 

selected according to frequency of appearance in the 

corpus. In addition, we registered words specific to 

Kawasaki City in Kanagawa Prefecture, Japan (e.g., 

names of sightseeing spots, transport facilities, etc.), 

where we conducted the experiment described in 

section 4. 

We configure the ASR module to output a 

recognition result for every speech section separated 

by a 200 ms pause. Because of variety in user speech 

style, the speech segments processed by ASR are not 

always appropriate for translation. We introduce an 

SBD method to provide input text for MT. 

3.2. SBD 

Among the many works on SBD, [12] is to our 

knowledge the newest report on SBD for 

simultaneous interpretation systems. The authors 

there prepare parallel corpora and create a phrase 

table using a statistical MT (SMT) tool. They realize 

SBD by using the phrase table.  

In contrast, our SBD is realized by a rather 

simple process. We first prepared monolingual 

corpora for Japanese and English. For Japanese, we 

set sentence boundaries by references to a set of 

manually developed rules; for English, we regarded 

punctuation as indicative of boundaries. Next, we 

used CRF++ [13], a machine-learning tool based on 

conditional random fields, and created a 

discrimination process to find sentence boundaries. 

Through these processes, we obtained monolingual 

SBD modules for three languages. For Japanese, we 

added a rule-based filler detector, and sentences that 

consist of only fillers are deleted as semantically null. 

3.2.1. Detection model 

Sentence boundaries are detected in two steps. In the 

first step, the system performs morphological analysis 

on the results from ASR and obtains word 

segmentation and also part-of-speech (POS) tags on 

Japanese and English. Then, fillers and other 

redundant parts are removed using simple pattern 

matching to POS. 

In the second step, machine-learning-based 

classifiers detect sentence boundaries. Sentence 

boundary detection is treated as a labeling task for 

each word [14]. We prepare spontaneous speech 

corpus in which words at the beginning of a sentence 

have “B” labels and other words have “I” labels. We 

use CRF++ [13] and create a discrimination model 

for the labeling. For the learning features, we use the 

surface form of two morphemes before and after each 

morpheme for Japanese and English. 

3.2.2. Training corpus 

To create Japanese and English sentence boundary 

detectors, we used two different corpora: for Japanese, 

140,000 sentences from “Corpus of Spoken Japanese 

(CSJ) [15]”, and for English, 110,000 sentences from 

WIT3 [16] data including transcriptions of TED talks. 

These corpora do not contain any tags denoting 

a suitable unit for translation. We regarded a 

punctuation mark as a boundary marker in English. 

For Japanese, we regarded a clause to be a suitable 

unit for translation [17] and prepared simple rules to 

find clause boundaries in the training corpus. 

3.2.3. Detection performance 

We evaluated precision and recall of boundary 

detection on test sets. The test sets had been ideally 

segmented into 244 Japanese sentences and 1664 

English sentences. We regarded punctuation as 

definitive segment boundaries. Table 1 shows 

detection accuracy. In this table, we calculate the 

precision and recall values as follows: 
 

Precision= 

No. of correctly estimated sentence boundaries 

No. of estimated sentence boundaries 

 

Recall= 

No. of correctly estimated sentence boundaries 

No. of periods in original corpus 

□ 

 

 

 

 



Table 1: Segment detection accuracy 

 Precision Recall F-value 

Japanese 0.739 0.672 0.705 

English 0.720 0.809 0.763 

 

3.3. MT 

3.3.1. Forest-driven rule-based MT 

Rule-based machine translation (RBMT) has been 

used in commercial systems for a long time. A well-

developed RBMT engine outputs a better translation 

and covers a larger domain than other types of 

systems. However, commercial MT systems are 

usually designed for use on grammatically written 

language, and they sometimes fails to process 

ungrammatically spoken language. 

We introduce a forest-driven parsing mechanism 

([18], Figure 4) into RBMT. It parses input sentences 

by generalized LR parsing, which can accept 

ungrammatical chunks by using an original context-

free grammar to capture the clause structure and deal 

with various ambiguities. The parser then generates 

possible syntax structures as a forest and transfers the 

best structure to the target language structure 

according to syntactic and semantic preferences. 

3.3.2. Hybrid MT 

SMT can generate natural translation results for 

restricted and specific domains. RBMT, however, can 

translate an input sentence robustly, but the result 

sometimes lacks fluency. 

We viewed these strengths and weaknesses as 

complementary, and so we used SMT and RBMT 

engines together to form a hybrid MT engine. 

Specifically, when the probability of an SMT result 

falls below a specified threshold, the RBMT result is 

selected instead as the final result of the hybrid MT 

engine [18]. This engine selection is made for each 

segment produced by SBD.  

We used phrase-based SMT [19]. For Japanese-

English and English-Japanese SMT, we trained the 

engine with a travel domain corpus consisting of 

220,000 sentence pairs developed by ourselves and 

20,000 sentence pairs distributed by the Advanced 

Language Information Forum [20]. 

3.3.3. Translation quality 

We evaluated engines both automatically and 
manually (Table 1). We used the IWSLT 2004 corpus 

[20] as a test set. For automatic evaluation, 500 

sentence pairs were used; the first 100 of these 

 
Figure 4: Process flow of forest driven RBMT 

 
Table 2: Detailed Translation Quality (data of 

IWSLT) 
  Adequacy Fluency BLEU RIBES 

J

E 

  

  

RBMT 3.93 3.69 20.64 0.575 

SMT 3.90 4.12 33.97 0.650 

Hybrid 4.01 3.89 28.54 0.631 

E

J 

  

  

RBMT 4.15 3.94 22.21 0.755 

SMT 4.25 4.29 34.28 0.807 

Hybrid 4.30 4.25 32.27 0.790 

 

sentence pairs were used for manual evaluation. 

We used BLEU [21] and RIBES [22] for 

automatic evaluation. We also manually evaluated 

fluency and adequacy metrics [23]. Table 2 shows the 

evaluation results. We assumed that adequacy of 

manual translation reflects correctness of meaning, 

and we chose the hybrid engine for our simultaneous 

interpretation system. 

3.4. UI 

We developed a translation system whose user 

interface runs on a tablet with the Android operating 

system. In the task-based assessment, a “host” and a 

“guest” share a terminal display and communicate 

with each other through the system.  

Figure 5 shows the user interface. A user starts 

speaking after pressing the “speak” button. While the 

user continues to speak, it is not necessary to hold the 

button. When the user presses the button a second 

time, the system processes it as an explicit signal that 

speech is concluded. 

Until the speech recognition result is finalized, a 

recognition candidate is shown in gray. When the 

translation result is finalized, the system displays the 

ASR and MT text. In Figure 6, the speak button for 

the English speaker is placed on the right hand side, 

and the button for the Japanese speaker on the left.  



 
Figure 5: User interface of Client Application 

 

 
Figure 6: Experiment situation and the evaluation 

process of Solved Task Ratio 

 

For interpretation from English to Japanese, the 

English speaker presses the speak button (1) and says 

something, such as “Is there any money exchange 

shop near here?” After this, the ASR result “is there 

any money exchange shop near here” is shown on the 

display (2). Then, the MT result “近くに両替所はあ

りますか [Chikaku ni ryougaejo wa arimasu ka]” is 

shown (3). For Japanese to English, the speak button, 

ASR result, and MT results are on the opposite side. 

4. Task-based Evaluation Experiment 

We conducted a task-based evaluation experiment in 

the Toshiba Customer Service Evaluation Center. 

This experiment is in addition to a previous 

evaluation experiment conducted in a tourist 

information center in Chiba City in Chiba Prefecture, 

Japan [1]. In this section, we discuss the parts of this 

prior experiment that relate to the analysis in section 

5. 

4.1. Tasks 

The tasks in the evaluation experiments were as 

follows. We prepared these tasks on the assumption 

that the conversation is being held in a tourist 

information center. The previous experiment [1] was 

Table 3: English Speaking Participants 

English 

Speaking 

Participant 

Sex Years 

 in Japan 

Place of Birth 

A M 3 Los Angels 

B F 3 Hawaii 

C F 3 Arizona 

D M 3 California 

E M 3 South Carolina 

 

Table4: Japanese Speaking Participants 

Japanese 

Speaking 

Participant 

Sex Place of Birth 

A F Okayama 

B F Kanagawa 

C F Tokyo 

D F Kanagawa 

E M Tokyo 

 

conducted in Chiba City. This additional experiment 

was held in Kawasaki City in Kanagawa Prefecture. 

Therefore, we modified some of the tasks to make 

them appropriate to Kawasaki City. We added 2 tasks 

to the 8 tasks in [1], and now we have the following 

10 travel tasks. 

 
(1) Ask whether you can book any local tours here. 

(2) Ask whether you can get to Tokyo Disneyland 

by train without changing trains. 

(3) Ask how much the fare is from Kawasaki 

Station to Hamamatsucho Station by train. 

(4) Ask how to get to a money exchange shop near 

here. 

(5) Now you would like to know the bus route and 

its schedule in Kawasaki City. Ask how you 

can get this information. 

(6) Ask what is the best souvenir from Japan. Ask 

about its features and how to get to a store 

where you can buy it. 

(7) Ask your partner to recommend a sightseeing 

spot and how to get there. Decide whether you 

will go according to your interest. 

(8) Imagine what you would like to try in Japan 

and ask where you can experience it around 

here. 

(9) Ask how to get downtown from here. Assume 

that you will have dinner there or go shopping. 

(10) You lost your bag on the train. Ask what you 

should do to find it. 

4.2. Participants and collected data 

The data collected for the analysis in section 5 

includes conversation logs and transcriptions of five 

English-speaking participants (Table 3) and of five 



Japanese-speaking participants (Table 4). The labels 

A to E were given to the five pairs of people who had 

conversations through the system. 

4.3. Solved Task Ratio 

The solved task ratio indicates the proportion of tasks 

achieved out of all tasks. In this paper, we focus on 

45 tasks for which speech was successfully recorded. 

Of these, 44 tasks were solved. Therefore, we had a 

solved task ratio of 97.8%. 

5. Analysis of UX 

The solved task ratio confirms that our simultaneous 

interpretation system can almost always help users to 

obtain information from speakers of a different 

language. However, we would like to ascertain 

whether users were satisfied with the whole process 

of conversation through our system. In other words, 

we would like to find a way to assess the UX of our 

simultaneous interpretation system.  

5.1. UX for our system 

It would be ideal if users would say each thing only 

once and this speech would be perfectly interpreted 

by our system. However, since ASR, SBD, and MT 

do not perform perfectly, users sometimes need to 

repeat themselves until the partner speaker can 

understand the interpretation result and respond. It is 

clear that less frequent repetition is preferable; 

however, we would still like to determine how many 

repetitions users will tolerate before experiencing 

stress. In other words, we would like to know what 

level of performance is needed so that our system 

does not put stress on users. 

5.2. Statistics from transcript and system log 

To assess the UX of the conversation process, we 

transcribed the 45 conversations from the evaluation 

experiment and manually analyzed them. 

Since spoken language includes parts smaller than 

clauses, we define here the relationship between 

“speech,” “clause,” and “intention of the clause.” A 

“speech” indicates the words from a transcript of the 

users’ voices, terminated by a pause of 200 ms. When 

spoken slowly, one clause will spread into several 

speeches, so we manually detected a clause chunk by 

hand from the transcription. For example, as shown in 

Figure 7, when a user says, “I want to go,” and 

pauses for 200 ms before saying “on a tour,” the 

speaker uttered two “speeches” but only one 

“clause.” We recorded 1330 speeches during the 45 

conversations and manually chunked the speech into 

 
Figure 7: unit of “a speech sound” and “an utterance” 

 

 
Figure 8: an example of repeated utterances 

 
Table 5: Change of intention after repeated failure of 

interpretation 

 

clauses. This gave 1018 clauses in the 45 

conversations. The “intention of a clause” indicates 

the intended meaning of a clause. 

5.3. Repeated clauses 

We counted how many times clauses were repeated 

before being understood by the partner speaker. 

Figure 9 illustrates how we counted the number of 

repetitions for each clause. In the example, utterances 

of the same letter are regarded as repetition to express 

the original intention of the speaker. In this analysis, 

a question asked by the partner speaker to clarify an 

unclear interpretation result caused by an 

interpretation error is also regarded as a repeated 

utterance.  

Number of 

repetition 

Transcription of 

utterances 

ASR result 

1 Where can I eat 

Yakiniku? 

where can i am eat 

your key to do it 

2 What is a good 

Yakiniku 

restaurant? 

what is a good jockey 

to restaurant 

- OK. Where can I 

get great Sushi? 

ok our can i get great 

sushi 



 
Figure 9: Number of repeated clauses for 578 intention 

 

Figure 10 shows the number of intentions that 

were expressed through multiple, distinct clauses or 

through more than two repetitions. We found that 381 

intentions were expressed through a clause without 

repetition; 102 intentions were expressed through a 

clause repeated once. The total number of intentions 

across the 45 conversations was 578. 

To assess whether the number of repetitions was 

too large, we used another measure. As shown in 

Table 5, the speaker originally wished to eat 

“yakiniku,” which is a Japanese-style grilled meat. 

However, the word “yakiniku” was not recognized 

well and so was not interpreted to get the response 

from the partner speaker. The speaker changed to 

asking about “sushi” instead; this was successfully 

recognized and interpreted, and the partner speaker 

responded. The speaker did not return to the original 

intention of “yakiniku” again. In this example, an 

ASR error caused the interpretation error, but in some 

other cases, the ASR succeeded and MT caused an 

interpretation error. 

In the 45 conversations, there were 6 intentions 

that were changed due to repeated utterances. The 

speaker changed intentions after an average of 3.6 

interpretation errors (as indicated by lack of response 

from the partner speaker). 

6. Conclusions 

We introduced our simultaneous interpretation 

system for face-to-face conversation between two 

people, and we also analyzed the transcription of the 

speech and the system log in the experiment. This 

new version of our system has a revised SBD module. 

In the new system, several speeches are first 

combined together and then the system finds a 

suitable unit for translation. 

We also evaluated the system by a task-based 

experiment. The evaluation experiment showed a 

solved task ratio of 97.8% across 45 tasked-based 

conversations. However, we found that users repeated 

each utterance 1.8 times on average. 

From analysis of the transcripts and the system 

log, we found that after approximately 3.6 

interpretation errors, users would change what they 

said to avoid interpretation error and receive a 

response from the partner user. For future work, we 

would like to improve our system to reduce user 

speech repetition. 
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Abstract 

In this paper, we apply a set of approaches to, efficiently, 

rescore the output of the automatic speech recognition over 

weather-domain data. Since the in-domain data is usually 

insufficient for training an accurate language model (LM) we 

utilize an automatic selection method to extract domain-related 

sentences from a general text resource. Then, an N-gram 

language model is trained on this set. We exploit this LM, 

along with a pre-trained acoustic model for recognition of the 

development and test instances. The recognizer generates a 

confusion network (CN) for each instance. Afterwards, we 

make use of the recurrent neural network language model 

(RNNLM), trained on the in-domain data, in order to 

iteratively rescore the CNs. Rescoring the CNs, in this way, 

requires estimating the weights of the RNNLM, N-gramLM 

and acoustic model scores. Weights optimization is the critical 

part of this work, whereby, we propose using the minimum 

error rate training (MERT) algorithm along with a novel N-

best list extraction method. The experiments are done over 

weather forecast domain data that has been provided in the 

framework of EUBRIDGE project. 

 

Key words: automatic speech recognition, language model, 

neural network, confusion network, minimum error rate 

training 

1. Introduction 

A major problem in domain-specific speech recognition is the 

lack of sufficient in-domain data for acoustic modeling and 

language modeling. In the case of language modeling, one 

could train a n-gram based LM using a huge set of out of 

domain data and, then, adapt it to the domain using a given set 

of in-domain data and some adaptation techniques such as the 

ones described in [1], [2] and [3]. 

In this paper, we focus on the language modeling part and we 

introduce efficient approaches for post-processing the output 

of the automatic speech recognition (ASR) system. The 

recognizer generates the word graphs for each utterance. Then, 

we convert them into the Confusion Network (CN) forms. This 

form yields better oracle word error rate (WER) in comparison 

to the N-best list and word graphs. Then, we go through an 

iterative decoding approach for rescoring the confusion 

networks.  

For rescoring the CNs, we adopt an approach similar to the 

one described by A. Deoras [4], in particular  we combine, 

using iterative decoding, word posterior, RNNLM and 

NgramLM probabilities. The RNNLM is trained on the small 

(about 1 million words) set of in-domain data, which consists 

of captioning of weather forecast news. The reason for using 

RNNLM is that it has proven to exhibit good performance 

even if trained on small sizes of training data [5]. In order to 

estimate the weights to be assigned to RNNLM, NgramLM 

and posterior probability scores, we utilize Minimum Error 

Rate Training (MERT) technique [6] along with a novel 

method for extracting the N-best lists from the CNs. 

In Section 2 we will describe the acoustic models and the 

baseline LM employed in the experiments, as well as the 

process for generating word graphs and confusion networks. A 

description of the iterative decoding approach is given in 

Section 4. In Section 4 we describe the MERT approach 

developed for learning the weights of the various models used 

in the rescoring step. Section 5 describes the development/test 

corpora used and reports the experiments and results. Finally, 

Section 6 concludes the paper. 

1.1. Related Works 

The N-gram language model is commonly used in speech 

recognition systems. Simplicity and low computational 

complexity are the most important factors of this type of 

language model which has made it quite popular among the 

researchers. During the years, different extensions have been 

made on top of this model to overcome its deficiencies such as 

data sparseness, generalization and curse of dimensionality. 

The back-off techniques [7] and the discounting methods [8], 

[9] are the main extensions over the N-gram LM which are 

mostly based on making an interpolation between the shorter 

contexts. However, since in the N-gram LM the words are 

seen as discrete entities, computing interpolation between their 

probabilities is, in principle, not possible. 

An attempt to change the representation of the words in 

language modeling was done by Y. Bengio [10], when he 

introduced the neural network LM. In this model, the words 

are represented as the binary vectors. Schwenck [11] added a 

projection layer to the NNLM and named it the continuous 

space language model. The projection layer converts the 

binary word vectors into the real number vectors. He also 

applied this model in a large vocabulary continuous speech 

recognition system. The probability of the words in these feed 

forward NNLMs depends on a limited context (the same as the 

N-gram LMs). T. Mikolov [5] proposed the recurrent neural 

network LM in which the context is not constrained by a 

Markov window. The recursive arcs in the hidden layers work 

as a cache to save the impact of the previous words. 

These neural network approaches have shown better 

performance in terms of Perplexity; however, applying them 



directly in the ASR decoder is costly in computation and 

memory. A common solution is to utilize these models for 

rescoring the N-best list produced by a traditional ASR 

decoder which uses a finite state network constructed from a 

lexicon and an N-gram LM. 

However, N-best list rescoring is not the best way to benefit 

from the high potential of the NNLMs, as the number of the 

hypotheses limited. For example in our case, the oracle word 

error rate of the 1000-best list is around 9.9%, while, the word 

error rate of the 1-best is 10.4%. One could see that there is no 

big gap in-between. Instead of the N-best list, it is also 

possible to rescore word graphs or confusion networks. In our 

case, the oracle word error rate of the word graphs and the 

confusion networks resulted to be 5.5% and 3.4%, 

respectively.  

2. ASR training and CN generation 

For training acoustic models (AMs) we have used audio data 

provided within the EUBRIDGE consortium containing 

recordings of weather forecasts. These recordings come with 

captioning which is not exact transcriptions of the audio so 

that, in order to train tri-phone Hidden Markov Models 

(HMMs) a preliminary  alignment step is carried out between 

automatic transcriptions of the training data and the 

corresponding given captioning. Hence, only the segments of 

audio recordings that align with the corresponding captioning 

are retained for HMM training. After this phase about 30 hours 

of the weather forecasts have been selected for AM training. 

For language modeling, we are given a set of weather 

forecast sentences consisting of about 1 million words. With 

this latter set of sentences we train an in-domain LM which, in 

turn, is used for automatically selecting from a large general 

corpus (see [18]), containing about 1.6 billions of words, the 

sentences with the lowest perplexity. The automatically 

selected sentences, formed by about one hundred million 

words,  are used to train a 4-gram, back-off LM which is 

finally adapted, using the “mix” adaptation method described 

in [2] to the in-domain data. 

From the 4-gram adapted LM, we generate a finite state 

network (FSN), which also embeds the lexicon, that is used in 

two ASR decoding passes (the details of the ASR decoder are 

given in [14]). 

Word graphs (WGs) are generated in the second decoding 

pass. To do this, all of the word hypotheses that survive inside 

the trellis during the Viterbi beam search are saved in a word 

lattice containing the following information: initial word state 

in the trellis, final word state in the trellis, related time instants 

and word log-likelihood. From this data structure and given 

the LM used in the recognition steps, WGs are built with 

separate acoustic likelihood and LM probabilities associated to 

the word transitions. To increase the recombination of paths 

inside the trellis and consequently the density of the WGs, the 

so called word pair approximation [16] is applied. In this way 

the resulting graph error rate was estimated to be around 33% 

of the corresponding WER. 
Consensus decoding, through confusion network (CN) 

generation, allows minimizing the word error rate (WER) of 

sentence hypotheses, instead of maximizing the related 

posterior probability or, equivalently, minimizing the sentence 

error rate [15]. A CN is formed by a concatenation of 

confusion bins, each containing a list of word hypotheses with 

related posterior probabilities. Basically, a CN is generated 

from a given WG  by: 1) identify CN bins inside the WG 

corresponding to the non-overlapped time windows, 2) merge 

all the transitions inside a bin that share the same word (word 

posterior in a bin is the sum of all the corresponding link 

posterior in the original WG).  In this work, the CNs are 

produced using the algorithm described in [15] and the 

software package described in [17]. 

3. Iterative CN decoding 

The method of iterative Confusion Network decoding has 

already been proposed by A. Deoras [4]. Thus, for further 

details, we refer the readers to this paper. Here, we briefly 

describe this method with some variations in our own work. 

As mentioned above, a confusion network is a 

concatenation of bins. The process of iterative decoding, starts 

from the first bin, re-orders the arcs and shifts to the next one. 

In each bin, the decoder generates some hypotheses. The 

number of these hypotheses is equal to the number of the arcs 

in that bin.  Different hypotheses are created by changing a 

word in the sentence with the words of the bin. Thus, all the 

hypotheses in each bin differ in just one word. To each 

hypothesis, the feature functions assign a score. The feature 

functions, in our case, are RNNLM, N-gramLM, Posterior and 

Length (the number of the words). The lengths of the 

hypotheses may differ if there is a null arc in the bin. Then, the 

scores are interpolated and the resulted score is used to re-

order the arcs. After finishing processing a bin, the decoder 

moves to the next bin and repeats this step. By reaching at the 

last bin, the score of the best hypothesis (the one which is 

obtained by concatenating the first arcs) is computed. If this 

score is better than the one obtained from the previous 

iteration, the decoder continues this step, otherwise, it stops. 

To illustrate the process, we assume a confusion network 

(CN) consisting of four bins (A, B, C and D): 

]}..[],..[],..[],..[{: 1111 dcba nnnn ddDccCbbBaaACN  

Here, na is the number of the arcs in the bin A, and so on. 

Each bin contains a number of arcs and some contents which 

are assigned to the arcs. These contents are: a word, a 

posteriori score, an LM score and an acoustic model score. 

Thus, each arc can be seen as a structure: 
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The arcs in each bin are ordered according to their 

posteriori scores. Hence, the 1-best hypothesis (e*) in CN is 

made by concatenating the first arcs: 

wdwcwbwae .,.,.,. 1111

*    

a1.w is the word assigned to the first arc of the bin A. When 

the decoder starts processing the first bin (A), it will generate 

na different hypotheses: 
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Note that the hypotheses are different in just one word. In 

order to compare them, we need to compute the new scores. 



The RNNLM and NgramLM scores can be computed by 

applying the LMs on this set of sentences. For the posteriori 

scores, we can sum up the posteriors of all the words in each 

sentence or just consider the posteriori of the changing words. 

Finally, the total score of a sentence is computed by (i=1..na): 
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The length function should be taken into account to avoid 

being biased towards the short/long sentences. The weights (λ) 

can be estimated on a development set and by using the 

optimization techniques. 

The critical parts of this method are: selection of the feature 

functions, and estimation of the weights. In the next section, 

we describe the MERT algorithm which is a type of machine 

learning approach for estimating the weights. 

4. Minimum Error Rate Training 

The MERT algorithm was first introduced by F. Och [6] for 

using in a statistical machine translation (SMT) task. The 

algorithm is based on training a parameter model on a set of 

N-best targets and optimizing the model. The optimized 

model generates a new set of N-best targets. This set is 

merged with the one from the previous iteration. 

For a reference instane like fs we aim at finding a candidate 

in e (that is the corresponding N-best list) which maximizes 

the total score. 
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In the equation, Cs is the N-best list suggested for fs. The 

parameters hm and λm are the function and weight of the mth 

feature, respectively. In our case, we have four feature 

functions: RNNLM, N-gramLM, Posterior and length. 

The optimized weights for the feature functions can be 

obtained by solving a minimization problem over the error 

function E(rs,es). 
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The value S is equal to the number of the sentences in the 

development set. 

In the extended version of MERT developed by N. Bertoldi 

et al. [12], the algorithm is run in two loops: the outer loop and 

the inner loop. Starting from initial weights in the outer loop, 

the decoder processes the input instances and generates the 

corresponding N-best list. This list is used to feed the inner 

loop where the weights are optimized. The inner loop 

continues optimizing the weights till the time that there is no 

big change in the weights. 

The new weights are again used to run the decoder and 

generate the new N-best lists. In order to make sure that there 

is enough diversity among the N-best lists, the new list is 

combined with the previous one. The outer loop is iterated 

until the time that no considerable change is observed in 

WER. 

4.1. The M-best Extraction Method 

The decoder that is used in our work has been explained in the 

Section 2.1. The output of this decoder is an N-best list which 

is extracted from the confusion network. Given a confusion 

network, one could use a simple A* search algorithm to 

extract the N-best list from the network. This method that is 

already embedded in SRI toolkit uses the posterior scores of 

the arcs in order to output the N-bests. Since, the value of N is 

limited, the number of the hypotheses will be limited. 

Therefore, there would be some words in some bins that can 

never be seen among the hypotheses. It means that, the 

rescoring process might be again entangled in the lack of 

hypotheses. This is exactly the problem that is existed with 

simply rescoring the N-best lists.  

In this paper, we propose an efficient method for extracting 

the candidate list for MERT and we call it “M-best list”. In 

this method, all the possible hypotheses that can be generated 

in each bin are merged and considered as the N-best list of that 

step. Therefore, assuming CN as the decoded confusion 

network, the extracted M-best list includes: 

































































wdwcwbwae

wdwcwbwae

wdwcwbwae

wdwcwbwae

wdwcwbwae

wdwcwbwae

e

d

c

b

a

nM

ni

ni

i

ni

.,.,.,.

...

.,.,.,.

...

.,.,.,.

...

.,.,.,.

.,.,.,.

...

.,.,.,.

111

1112

1111

11211

111

11111

 

Note that the maximum size of M would be equal to: 

)1()1()1(  dcba nnnn   

While, the maximum number of the hypotheses is: 

dcba nnnn    

The advantages of this method are: 1) the MERT algorithm 

can see and process all the possible words in its inner loop; 2) 

there is no boundary for the size of M. According to the size of 

the confusion network, the number of the sentences could be 

different, while in the traditional method, this size is limited to 

N. 

The scores of each of these sentences are computed as 

before. The posterior score of a sentence is also computed by 

summing up all the posteriors of the words in the sentences. 

5. Experiments and Results 

In this section, we first describe the details of the corpus that is 

exploited in this work. Then, we go through the experiments. 

The reported experiments are arranged as follows: 

 Generating the confusion networks on the 

development and test instances. 

 Using Grid search approach for estimating the weights 

 Using MERT approach for estimating the weights 

We perform these experiments on two sets of confusion 

networks: one generated using the Bi-gramLM and the other 

generated using the 4-gramLM.     

5.1. The Corpus 

The dataset that we have used to analyze and evaluate our 

approaches is in the domain of weather forecast news, 



provided for the EU-BRIDGE project. As mentioned in the 

Section 2, in this dataset there is an in-domain text set that is 

around 1 Million words. This data has been used to train the 

RNNLM and also to select the auxiliary data from the out-of-

domain resource. There is also a domain-related text set about 

100 MW that has been selected automatically (see Section 2 

for the method of selection). The latter set is used to train the 

Bi-gramLM and 4-gramLM that are used along with the pre-

trained acoustic models to generate the ASR output and also 

the Confusion Networks. 

The development and test sets contain 32 and 650 

utterances, respectively. The MERT algorithm is run over the 

development set, in order to estimate and optimize the desired 

weights for rescoring. Obtaining the optimized weights, the 

iterative decoding is performed on the test set to rescore the 

confusion networks. 

5.2. Experiments 

By using the IRSTLM toolkit [13], we train a Bi-gram and a 4-

gram back-off, modified shift beta smoothed language models 

on the domain-related set (100MW) and we used them in the 

ASR decoder for generating two different sets of word graphs 

(one with Bi-gram and one with 4-gram LM). The ASR 

engine, used for this task is described in [14]. Afterwards, we 

use the SRI toolkit [17] to convert the word graphs into the 

confusion networks. At the end, we have two different sets of 

confusion networks: one created by using the Bi-gramLM and 

the other by 4-gramLM. The motivation of generating these 

two sets is to assess the performance of the iterative decoding 

approach (by the Bi-gram CNs), and improving the results (by 

the 4-gram CNs). 

The confusion networks created in this way contain lots of 

useless bins with null arcs. This number of useless bins 

dramatically increases the computational cost. Hence, we filter 

the confusion networks according to the posterior of the null 

arcs, i.e. all the bins containing null arcs with higher posterior 

than 0.99 are eliminated. This filtering decreases the average 

number of the bins per CN up to 92 percent (without changing 

the WER). 

The resulted CNs yield 16.4% and 10.4% WER on the 

development set and 20.2% and 14.3% WER on the test set for 

both Bi-gram and 4-gram CN sets, respectively (see Table 1 

and 2). 

In order to rescore the confusion networks, we use a 

RNNLM trained on the in-domain data. The RNNLM is built 

by the toolkit developed by T. Mikolov, et al [5]. For 

combining the scores from RNNLM, 4-GramLM, posterior 

and length, a simple linear interpolation is applied. In order to 

estimate the weights of these feature functions, we chase two 

different methods: Grid search and MERT. 

For applying the Grid search algorithm, we simply consider 

an interval from zero to one to assign a weight to each feature 

function: 
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By each set of the values, we decode the development 

confusion networks and the best set is selected to be used on 

the test set. One could find the results of this method in the 

second row of the Tables 1 and 2.  

Furthermore, we use the MERT algorithm on the 

development set. In this way, we exploit the proposed method 

for extracting the M-best lists at the end of each iteration of 

the decoder. Then, MERT is run to process the M-best list and 

optimize the weights. On this development set, MERT usually 

stops at the fourth of fifth iteration. A reason could be the lack 

of the feature functions. Here, we have just four functions that 

might not be sufficient. Another reason is the lack of the 

development data. Nevertheless, in order to validate the 

weights, suggested by MERT, we ran the algorithm several 

times on the development set and we selected the best one. 

The results of this method can be found in the third row of the 

Tables 1 and 2.   

Table 1: The WER results on the confusion networks created 

by the Bi-gramLM 

 Dev Test 

Baseline 16.4 20.2 

RNNLM-Grid-ItDec 14.1 18.9 

RNNLM-MERT-ItDec 13.5 18.3 

Table 2: The WER results on the confusion networks created 

by the 4-gramLM 

 Dev Test 

Baseline 10.4 14.3 

RNNLM-Grid-ItDec 10.2 14.3 

RNNLM-MERT-ItDec 9.5 14.0 

 

As it can be seen from the tables, the results of the 

confusion networks created by using the 4-gramLM are 

apparently better, because the 4-gramLM is more accurate. 

Note, that the training set and the procedure of training these 

two LMs are completely the same. Exactly because of the 

same reason, the improvement in the experiment on the Bi-

gramLM is higher. Again, note that the RNNLM used for 

rescoring both sets of confusion networks is the same. 

Therefore, one could evaluate the performances of the 

iterative decoding and the MERT algorithm. Finally, we can 

see a slight improvement by using the MERT algorithm over 

the Grid search. It means that the weights suggested by MERT 

are more efficient than the Grid search. Moreover, the number 

of iterations taken by MERT is fewer. For example, in MERT, 

the weights are estimated in 4 or 5 iterations, while for Grid 

search, we need 66 iterations (according to the intervals 

considered for the weights in Eq. 4). 

There are some deficiencies in the experiments: 

 The size of the development set is small and 

insufficient to have a better weight estimation. 

 There are a few feature functions that are not enough 

for MERT to give a reliable estimation. 

 The size of the training set of the RNNLM (1MW) is 

not comparable with the N-gramLM (100MW). 

Considering these deficiencies, we are designing the future 

experiments, in particular by using more RNNLMs. Due to 

the complexity of the RNNLM structure, it’s not efficient to 

build it on the big training sets. A wise solution would be to 

train several RNNLMs on the separated parts of the training 

set, and then use them as the new feature functions. 

6. Conclusion 

A set of approaches were introduced and analyzed for 

improving the process of rescoring the domain-specific ASR 

output. Instead of the common N-best list rescoring, we used 



confusion network rescoring that yields better oracle WER. 

An iterative decoding approach was used for rescoring the 

confusion networks and improving the output. Additionally, 

we applied the MERT algorithm to optimize the weights of 

the feature functions more efficiently. We also introduced a 

novel approach for extracting the N-best list from the 

confusion network that improves the affect of MERT 

optimization process. 
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