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Abstract

We investigate the problem of combining the outputs
of different translation systems into a minimum Bayes’
risk consensus translation. We explore different risk
formulations based on the BLEU score, and provide a
dynamic programming decoding algorithm for each of
them. In our experiments, these algorithms generated
consensus translations with better risk, and more effi-
ciently, than previous proposals.

1. Introduction

Machine translation (MT) is a fundamental technology
and a core component of language processing systems.
However, MT systems are still far from perfect [1]. The
combination of multiple MT systems is a promising re-
search direction to improve the quality of current MT
technology. The key idea of system combination [2] is
that it is often very difficult to find the real best sys-
tem for the task at hand, while different systems can ex-
hibit complementary strengths and limitations. Thus, a
proper combination of systems could be more effective
than using a single monolithic system.

A simple, yet effective, system combination method
for MT was proposed by González-Rubio et al., [3].
The authors describe minimum Bayes’ risk system
combination (MBRSC), a method to combine the out-
puts of multiple MT systems into a consensus trans-
lation with maximum expected BLEU [4] score. Pre-
vious combination methods either implement sophisti-
cated decision functions to select one of the provided
translations [5, 6, 7], or generate new consensus trans-
lations by combining the best subsequences of the pro-
vided translations by means of a Viterbi-like search
on a confusion network [8, 9, 10]. MBRSC aims at
gathering together the advantages of sentence-selection
and subsequence-combination methods. In compari-
son to sentence-selection methods, MBRSC also im-

plements a sophisticated minimum Bayes’ risk (MBR)
classifier, and additionally, it is able to generate new
consensus translations that include the “best” subse-
quences from different individual translations. Regard-
ing subsequence-combination methods, MBRSC can
also generate new consensus translations different from
the provided translations, and also, the final consensus
translation has the best expected score with respect to
the widespread BLEU score.

Despite these advantages, the original implementa-
tion of MBRSC [3] (§2) presented some flaws, e.g. the
proposed gradient ascent decoding, that, in our opin-
ion, prevents the method from revealing its full poten-
tial. Here, we propose new decoding algorithms for
MBRSC based on the dynamic programming [11] (DP)
paradigm. We study two different approaches to com-
pute the BLEU-based risk. On the one hand, we instan-
tiate DP decoding to use the original BLEU risk over
expected counts (§3) so our results are comparable to
those in [3]. In practice, this approach is implemented
as a beam search [12]. On the other hand, we implement
an actual exact DP decoding using the linear approxi-
mation to the BLEU score proposed in [13] to compute
the risk (§4). Then, we provide an extensive empirical
study (§5) of the proposed decoding algorithms in com-
parison to the original MBRSC proposal. Finally, we
conclude with a summary of our contributions.

2. Minimum Bayes’ Risk System Combination

2.1. MBRSC Model and Decision Function

We now describe the original MBRSC proposal in [3].
Given K MT systems, MBRSC models the probability
of a sentence y to be a translation of a source sentence
x as a weighted ensemble [14]:

P (y | x) =

K∑
k=1

αk ·Pk(y | x) (1)



where Pk(y | x) denotes the probability distribution
over translations modeled by system k. Free param-
eters {α1, . . . , αK} are scaling factors that denote the
relative importance of each system (

∑K
k=1 αk = 1).

Given a loss function L(y,y′) between a candidate
translation y and a reference translation y′, the optimal
decision function for the ensemble model of MBRSC is
an instance of the MBR classifier [15]:

ŷ = arg min
y∈Y

R(y | x)

= arg min
y∈Y

EP (y′|x) [L(y,y′)]

= arg min
y∈Y

∑
y′∈Y

P (y′ | x) · L(y,y′) (2)

where R(y | x) denotes the Bayes’ risk, namely the
expected loss (EP (y′|x) [L(y,y′)]), of translation y, and
Y denotes the whole target language.

MBRSC uses the widespread BLEU [4] metric as
loss function. The BLEU score B(y,y′) between a can-
didate translation y and a reference y′ is given by:

B(y,y′) =

(
4∏

n=1

ρn(y,y′)

) 1
4

· φ(y,y′) (3)

where ρn(y,y′) is the precision of n-grams of size n
between y and y′, and φ(y,y′) is a brevity penalty, that
penalizes short translations:

ρn(y,y′) =

∑
w∈Wn(y) min(#w(y),#w(y′))∑

w∈Wn(y) #w(y)
(4)

φ(y,y′) = min

(
exp

(
1− |y

′ |
|y |

)
, 1

)
(5)

where Wn(y) is the set of n-grams of size n in y,
#w(y) is the count of n-gram w in y, and |y | denotes
the length of translation y.

BLEU is a percentage with a value of one denoting
an exact match between y and y′. Thus, we rewrite the
MBRSC decision function in Equation (2) substituting
the arg miny∈Y operator by an arg maxy∈Y :

ŷ = arg max
y∈Y

K∑
k=1

αk ·

∑
y′∈Y

Pk(y′ | x) · B(y,y′)


︸ ︷︷ ︸

system−specific loss

(6)

This formulation assumes that all systems share the
same domain of translations (Y) which in practice it is
not always true. In practice, MBRSC takes as input
a representation, e.g. an N -best list, of the candidate
translations of each system and assumes that any other

translation not in the provided representation has zero
probability of being generated by that system.

Optimum values for scaling factors αk are esti-
mated by minimum error rate training [16] optimizing
BLEU on a separate development set.

2.2. MBRSC Decoding

The direct implementation of Equation (6) has a high
temporal complexity inO(| Y |2 ·I), where | Y | denotes
the number of candidate translations, and I represents
the maximum translation length given that B(y,y′) can
be computed in O(max(|y |, |y′ |)) time. Since the
number of candidate translations may be quite large, an
exhaustive enumeration of all of them is often unfeasi-
ble. González-Rubio et. al [3] address this challenge by
dividing Equation (6) into two sub-problems: the com-
putation of the risk, namely the expected BLEU score,
of each translation, and the actual search for the optimal
consensus translation (arg maxy∈Y ).

Given that BLEU references the reference transla-
tion y′ only via its n-gram counts (see Equation (3)),
MBRSC follows [17] to formalize an efficient alterna-
tive to the exact risk in Equation (6). Instead of comput-
ing the expected BLEU score of translation y, MBRSC
computes the BLEU score of y with respect to the ex-
pected n-gram counts EP (y′|x)[#w(y′)] in the alterna-
tive candidate translations of x:

R(y | x) = EP (y′|x)[B(y,y′)]

≈ B̃(y,EP (y′|x)[#w(y′)])

=

(
4∏

n=1

ρ̃n(y,EP (y′|x)[#w(y′)])

) 1
4

·

φ̃(y,EP (y′|x)[#w(y′)]) (7)

where P (y′ | x) is the ensemble probability in Equa-
tion (1), and ρn(y,y′) and φ(y,y′) are reformulated as
functions of expected n-gram counts.

Regarding the actual search, MBRSC implements
a two-step algorithm. First, it performs a conventional
MBR sentence-selection decoding [18] to obtain an ini-
tial consensus translation. Then, a gradient ascent al-
gorithm refines that initial solution by the iterative ap-
plication of different edit operations (substitution, in-
sertion, and deletion of single words) searching for an
improvement in risk. Algorithm 1 depicts this gradient
ascent decoding algorithm. Since the risk (R(y | x)
in Equation (7)) can be computed in O(I)1, the com-

1Expected n-gram counts can be computed in advance.



Algorithm 1: MBRSC gradient ascent search [3].
input : y0 (initial solution)

Σ (target language vocabulary)
I (maximum translation length)

output : ŷ,R(ŷ | x) (best translation and its score)
auxiliary : R(y |x) (expected BLEU score of y)

sub(y, y, i) (replaces ith word of y by y)
del(y, i) (deletes the ith word of y)
ins(y, y, i) (inserts y as the ith word of y)

begin1
ŷ← y0;2
repeat3

yc ← ŷ;4
for 1 ≤ i ≤ |yc | do5

ŷs ← yc; ŷi ← yc;6
for y ∈ Σ do7

ys ← sub(yc, y, i);8
if R(ys | x) ≥ R(ŷs | x) then9

ŷs ← ys;10

yi ← ins(yc, y, i);11
if R(yi | x) ≥ R(ŷi | x) then12

ŷi ← yi;13

ŷd ← del(yc, i);14
ŷ← arg maxy′∈{ŷ,ŷs,ŷi,ŷd}R(y′ | x)15

until (R(ŷ | x) ≤ R(yc | x)) || (ŷ ≥ I) ;16
return ŷ,R(ŷ | x);17

end18

plexity of the main loop is O(I2 · |Σ|), and usually only
a moderate number of iterations (< 10) are needed to
converge. Hence, the complete two-step decoding has a
complexity inO(N2 +I2 · |Σ|), whereN is the number
of translations under consideration in the preliminary
sentence-selection decoding.

3. MBRSC Dynamic Programming Decoding

The main drawback of the originally proposed gradient
ascent decoding is that it is sensitive to an initial solu-
tion which makes it prone to get stuck in local optima.
Next, we propose a more sophisticated approach by for-
malizing MBRSC decoding as a DP problem.

Under the DP framework, decoding is interpreted as
a sequence of decisions that incrementally generate new
translation hypotheses. Starting with an empty hypoth-
esis, hypotheses of size i are expanded with one more
target word y ∈ Σ to create new hypotheses of size
i+1. This search space can be represented as a directed
acyclic graph where the states denote partial hypotheses
and the edges are labeled with expansion words.

Among all possible translations, we are interested
in that of the higher expected BLEU score. In this case,
since two hypotheses sharing the same n-gram counts
are indistinguishable, each state of the graph can be rep-
resented by a specific bag (namely a specific multiset)
N of n-grams. We define Q(N ,y) = q where q is the
maximum score of a path leading from the initial state
to the state (N ), and y is the corresponding translation
hypothesis. We also define Q̂ = q̂ as the final state
of the optimal translation ŷ. Finally, the following DP
recursion equations allow us to retrieve the path of max-
imum score in such a search graph:

Q(∅, ””) = 0

Q(N e,ye) = max
y∈Σ∪{$}:

∀(Np,yp), ye=yp y

N e=Np ∪Θ(yp,y)

B̃(ye,EP (y′|x)[#w(y′)])

Q̂ = max
∀(Np,yp)

ŷ=yp $

B̃(ŷ,EP (y′|x)[#w(y′)])

where the end-of-sentence symbol, $, denotes a com-
plete translation, and function Θ(yp, y) returns the new
n-grams generated when expanding hypothesis yp with
word y. For example, given the hypothesis yp=“we
are faced with” and the expansion word y=“enormous”,
the expanded hypothesis ye=“we are faced with enor-
mous” contains four2 n-grams more than yp: “enor-
mous”, “with enormous”, “faced with enormous”, and
“are faced with enormous”.

In the DP recursion equations, all target language
words are considered as potential expansion options for
every hypothesis. However, not all word sequences
form correct natural language sentences. E.g., given the
example above, it is clear that word y=“enormous” can
be a valid expansion option while word y=“with” cannot.
Thus, we consider y ∈ Σ ∪ {$} as a valid expansion
word for hypothesis yp only if at least one of the new
n-grams (w ∈ Θ(yp, y)) in the resulting expanded hy-
pothesis ye = yp y has an expected count above zero:

∆(yp) = {y | ∃w ∈ Θ(yp, y) ∧ EP (y′|x)[#w(y′)] > 0}

Unfortunately, due to the exponential number of
states3, we cannot expect to efficiently implement the
recursion equations above. In practice, we use a beam
search algorithm [12] with pruning. Specifically, for
each size i, we keep only the M best-scoring hypothe-
ses and discard the rest of them. To assure a fair com-
petition between hypotheses, the score of each of them

2BLEU considers n-grams up to size four.
3The number is exponential in the size of the vocabulary [19].



Algorithm 2: Beam search for MBRSC.
input : x (source language sentence),

M (pruning parameter),
I (maximum translation length)

output : ŷ, q̂ (optimal translation and its score)
auxiliary : Θ(y, y) (new n-grams after expanding

hypothesis y with word y),
∆(y) (expansion words for hypothesis y),
R(y | x) (complete score of y),
Π(i,N) (non-pruned states of size i)

begin1

Q(∅, ””)← 0; ŷ← ””; Q̂← 0;2
for i = 0 to I do3

forall (N p,yp) ∈ Π(i,N) do4
forall y ∈ ∆(yp) do5

ye ← yp y; qe ← R(ye | x);6
if y == $ then7

q̂ ← Q̂;8
if qe > q̂ then9

ŷ← ye; Q̂← qe;10

else11
N e ← N p

⋃
Θ(yp, y);12

q ← Q(N e, ·);13
if qe > q then14
Q(N e,ye)← qe;15

return ŷ, Q̂;16
end17

is given by a combination of its score so far, and an esti-
mate of the rest score to complete the translation. Sim-
ilarly as done in [20], we perform a light decoding pro-
cess (considering at each step only the single best ex-
pansion) to estimate the complete translation that can be
obtained from each hypothesis. The score of these com-
plete translations are then used as the complete scores
R(y | x) of the partial hypotheses.

Algorithm 2 shows the proposed beam search algo-
rithm with pruning. It takes as input a source sentence
x, the number of hypotheses to keep after pruning (M ),
and the maximum translation length under considera-
tion (I). We use some auxiliary functions: Θ(y, y) re-
turns the set of new n-grams generated in the expansion
of hypothesis y with word y, ∆(y) returns the valid ex-
pansion words for y, R(y | x) returns the complete
score of y, and Π(i,M) denotes the M best states of
size i; lower-scoring states are pruned out.

To avoid repeated computations, the first loop in
Algorithm 2 performs a breadth-first exploration of the

search graph. Additionally, this loop introduces an up-
per bound to the maximum translation size under con-
sideration, and thus, to the number of iterations of the
algorithm. At each iteration, line 4 loops over the non-
pruned states that remain from the previous iteration.
For each of these predecessor states, line 5 loops over
the corresponding expansion words. Given a predeces-
sor state (N p,yp) and a valid expansion word y, we
compute the complete score qe of the expanded hypoth-
esis ye = yp y (line 6). If the expanded hypothesis is a
complete translation (y == $) and it improves the score
Q̂ of the current best consensus translation, we then up-
date it (lines 7–10). If not, we first compute the bag
of n-grams N e of the expanded hypothesis (line 12).
Then, if the score qe of the expanded hypothesis im-
proves the score stored in the corresponding successor
state (N e, ·) (line 14), we update the state.

The proposed beam search algorithm with prun-
ing has a computational complexity in O(I2 ·M ·D),
where M denotes the pruning parameter that controls
the number of predecessor states in line 4, D denotes
the maximum number of expansion words in line 5, and
I is the maximum translation size in line 3. The extra
O(I) factor is given by the score computation in line 6.

4. MBRSC DP Search for Linear BLEU

A potential drawback of decoding Algorithm 2 is that it
cannot exploit the full potential of the DP framework.
The problem stems in the BLEU based risk proposed
in [3]: the n-gram count clippings in its formulation,
see Equation (4), make impossible to compute it incre-
mentally. To address this problem, we import the lin-
ear approximation to the logarithm of the BLEU scores
proposed in [13]:

log(B(y,y′)) ≈ λ0|y |+
∑

w∈W(y)

λw#w(y)δw(y′) (8)

whereW(y) is the complete set of n-grams (up to size
four) in y, λ0 and λw are free parameters, and δw(y′)
is an indicator feature whose value is equal to one if n-
gram w is present in y′ and zero otherwise. Given this
BLEU approximation, the risk of a candidate transla-
tion y is given by:

R(y | x) = λ0|y |+
∑

w∈W(y)

λw#w(y)EP (y′|x)[δw(y′)] (9)

where EP (y′ |x)[δw(y′)] denotes the expected probabil-
ity of n-gram w to be present. Values λ0, λw can be
computed from the n-gram precision statistics of a sep-
arate development set [13]. Gradient ascent decoding



can also implement this risk formulation by using Equa-
tion (9) as risk function R(y | x) in Algorithm 1.

Note that the BLEU risk over expected counts in
Equation (7) yields a decoding alternative to MBR us-
ing BLEU, while the linear BLEU risk in Equation (9)
results in a MBR decoding for an alternative to BLEU.

Using the linear BLEU risk in Equation (9), two
partial hypotheses that share their last three words are
indistinguishable. Hence, the states in the correspond-
ing DP search graph can be represented by a particular
three-word history σ. To distinguish between hypothe-
ses of different size, we also index the search states by
the size of the best hypothesis that arrives to the state.
We defineQ(i,σ) as the maximum score of a path lead-
ing from the initial state to the state (i,σ), and Q̂ as the
score of the optimal translation ŷ. Finally, we obtain
the following DP recursion equations:

Q(0, ””) = 0

Q(i,σe) = max
y∈Σ:

qp=Q(i−1,σp)
ye=σp y

σe=tail(σp y)

qp+λ0+
∑

w∈Θ(σp,y)

λwEP (y′ |x)[δw(y′)]

Q̂ = max
qp=Q(·,σp)

σe=tail(σp $)

qp+λ0+
∑

w∈Θ(σp,$)

λwEP (y′ |x)[δw(y′)]

where tail(σ y) returns the last three words of word se-
quence σ y, and Θ(σ, y) returns the new n-grams gen-
erated when extending history σ with word y.

Since the number of states is at most cubical with
the target vocabulary, these recursive equations can be
implemented exactly. Algorithm 3 depicts DP decod-
ing using linear BLEU risk. It takes as input the in-
dicator feature expectations (EP (y′|x)[δw(y′)]), the val-
ues for the free parameters of linear BLEU (λ0, λw),
and the maximum translation length under considera-
tion (I). At each iteration the algorithm loops over the
predecessor states (line 4) and the corresponding expan-
sion words (line 5). Given a predecessor state (i,σp),
we compute the score qe of the expanded hypothesis
(line 6), and if qe improves the score in the correspond-
ing successor state (i+ 1,σe) (line 8), we update it and
the corresponding backpointer B(i + 1,σe). Finally,
backpointer variables allow us to retrieve the highest-
scoring consensus translation.

This DP algorithm has a computational complexity
in O(I · |Σ|3 ·D), where I is the maximum translation
length in line 3, |Σ| denotes the size of the target vocab-
ulary that controls the number of predecessor states in
line 4, and D denotes the maximum number of expan-
sion words in line 5.

Algorithm 3: MBRSC DP search for linear
BLEU.

input : EP (y′|x)[δw(y′)] (indicator feature
expectations),

λ0, λw (free parameters of linear BLEU),
I (maximum translation length)

output : Q(·, ·) (search graph),
B(·, ·) (backpointer variables)

auxiliary : tail(y) (returns the last three words of y),
Θ(y, y) (new n-grams after expanding

hypothesis y with word y),
∆(y) (set of expansion words for y)

begin1
Q(·, ·)← 0;2
for i = 0 to I do3

forall σp ∈ Q(i, ·) do4
forall y ∈ ∆(σp) do5
qe ← Q(i,σp) + λ0 +6 ∑

w∈Θ(σp,y) λwEP (y′|x)[δw(y′)];
σe ← tail(σp y);7
if qe > Q(i+ 1,σe) then8
Q(i+ 1,σe)← qe;9
B(i+ 1,σe)← (i,σp);10

end11

5. Experiments

5.1. Experimental Setup

We now describe the experimentation carried out to
evaluate the proposed decoding algorithms. Experi-
ments were performed on the French–English corpus
from the translation task of the 2009 workshop on sta-
tistical MT [21]. The corpus contains a development
and a test partition with 502 and 2525 sentences respec-
tively. We combined the outputs of the five MT systems
that submitted lists of N -best translations. The next ta-
ble displays the average number of translations for each
source sentence, and BLEU scores for the single best
translations of each system.

System #avg trans N BLEU [%]

A 13 24.8
B 9 25.2
C 41 25.8
D 263 25.8
E 126 26.4

Translations were tokenized and lower-cased before
combination. We report case-insensitive results to fac-
tor out the effect of true-casing from the effect of com-
puting the consensus translation.



The separate development set was used to compute
the values of the parameters (λ0, λw) of linear BLEU.
The maximum translation length I was always set equal
to the length of the longest provided translation; a more
sophisticated length model could be devised, but this
is a research direction beyond the scope of this arti-
cle. Except stated otherwise, all experiments were car-
ried out using uniform ensemble weights (αk in Equa-
tion (1)). This approach defines a controlled environ-
ment that assures a fair comparison between the differ-
ent decoding algorithms. For each source sentence, we
combined all the translation provided by the five indi-
vidual systems, on average, about 450 translations. We
used these translations to compute the expected n-gram
counts EP (y′|x)[#w(y′)], and the n-grams expectations
EP (y′|x)[δw(y′)] for each source sentence.

5.2. Assessment Measures

We present translation quality results in terms of
BLEU [4] (see Equation (3)), and TER [22]. TER mea-
sures the number of words that must be edited4 to con-
vert the candidate translation into the reference transla-
tion. Since MBRSC is designed to optimize BLEU, we
expect improvements in BLEU to be particularly impor-
tant. TER scores are reported to independently assess
BLEU results. We also measure the statistical signifi-
cance of the results by bootstrap re-sampling [23].

5.3. Preliminary Experiments

We carried out a preliminary series of experiments to
study how the number of hypotheses kept after pruning
(M ) affects the performance of Algorithm 2 in terms of
translation quality and decoding time5. Figure 1 dis-
plays the quality of the generated consensus transla-
tions (on the left vertical axis) and the total decoding
time (on the right vertical axis) as functions of M . We
observed that decoding time increased linearly with M
(note that M is log-scaled in Figure 1) while the qual-
ity of the consensus translations stayed approximately
constant with slight improvements for larger M values.

Given these results, we considered that a value
M = 10 provided the optimal trade-off between trans-
lation quality and decoding time. Thus, this is the value
used in the following experiments.

4Valid edit operations are: deletion, insertion and substitution of
single words, and shift of word sequences

5In a PC with an Intel Core c© i5-3570K processor (3.40 GHz.).
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Figure 1: BLEU score (on the left vertical axis) and
decoding time (on the right vertical axis) obtained by
the beam search using BLEU risk on expected n-gram
counts (Algorithm 2) as a function of the number of
hypotheses kept after pruning (M ).

5.4. Results

Table 1 displays BLEU and TER scores for the consen-
sus translations generated by MBRSC using different
decoding algorithms and risk formulations. We also re-
port results for the best and worst single systems.

We first present results for sentence-selection de-
coding [18]. The risk of each candidate translation was
computed by exhaustively calculating its BLEU-based
risk with respect to the rest of the provided transla-
tions as in Equation (6). Results for both risk functions
showed a substantial improvement over the best system:
∼+0.9 BLEU. Then, we used these sentence-selection
consensus translations as initial solutions for the gradi-
ent ascent decoding proposed in [3] (Algorithm 1). Re-
sults for BLEU risk on expected n-gram counts slightly
improved results for sentence-selection decoding: +0.3
BLEU and −0.1 TER. In contrast, results for linear
BLEU risk showed an important degradation in perfor-
mance: −0.9 BLEU and +3.4 TER. Finally, we gen-
erated consensus translations using BLEU risk over ex-
pected n-gram counts (Algorithm 2), and linear BLEU
risk (Algorithm 3). Results for BLEU risk on expected
counts slightly improved the results of the gradient as-
cent decoding: +0.1 BLEU and −0.3 TER. Regarding
linear BLEU risk, it again exhibited the same poor per-
formance observed for gradient ascent decoding.

Despite being scarce, the difference in translation
quality between the proposed decoding algorithms and
the original gradient ascent algorithm were statistically
significant: 85% confidence for BLEU risk over ex-
pected counts, and 99% confidence for linear BLEU
risk. Moreover, when we measured the risk scores of
the generated consensus translations, we found that for



System setup BLEU[%] TER[%]

worst single system 24.8 60.4
best single system 26.4 56.0

Sentence-selection EC 27.4 55.5
[18] LB 27.2 56.2

Gradient ascent EC 27.7 55.4
(Algorithm 1) LB 26.3 59.6

BS (Algorithm 2) EC 27.8 55.1
DP (Algorithm 3) LB 26.8 57.8

Table 1: Quality of the consensus translations gener-
ated by different MBRSC setups. BS stands for beam
search, EC for BLEU risk over expected counts (Equa-
tion (7)), and LB for linear BLEU risk (Equation (9)).

53% of the sentences DP-based search found a better-
scoring output than gradient ascent decoding (47%).

We performed additional experiments where the
values of the ensemble weights (αk in Equation (1))
were trained to optimize BLEU in the development
corpus. Results were similar to those in Table 1.
For instance, beam search with risk over expected
counts scored 28.1 BLEU while gradient ascent scored
27.8 BLEU. However, now DP-based search generated
better-scoring consensus translation for 93% of the sen-
tences. The scarce improvement with respect to the use
of uniform values can be explained by the similar qual-
ity of the systems being combined, see §5.1.

We also compared DP search and gradient ascent
search in terms of decoding time. We estimate decod-
ing time by the number of times each algorithm calls
the risk-computation function R(y | x) during the gen-
eration of consensus translations for the whole corpus.
We report this count instead of the actual decoding time
to filter out the potential effects of the particular imple-
mentation of each algorithm. We observed that gradi-
ent ascent made ∼23 millions calls to the risk function,
while DP decoding made ∼ 15 million calls including
those involved in the estimation of the rest score. For
instance, total decoding time for DP using BLEU risk
over expected counts was about 55 minutes (∼1.3 sec-
onds per sentence).

Finally, we conclude that the proposed DP decod-
ing is both more effective and efficient than the original
gradient ascent decoding proposed in [3].

Regarding the low performance of linear BLEU
risk, we consider that it was due to the the lack of
n-gram count clippings in the linear BLEU risk for-

Alg. 2: we have made great progress .
Alg. 3: we have made great progress . we have made

Alg. 2: it seems to be clear that it is better to buy only a
phone .

Alg. 3: to be clear that it seems to be clear that it is better
to buy only a phone .

Alg. 2: i am curious to know if i could see here .
Alg. 3: am curious to know if i am curious to know if i could

see here .

Table 2: Consensus translations generated using BLEU
risk over expected counts (Alg. 2), and using linear
BLEU risk (Alg. 3). The use of linear BLEU risk in Al-
gorithm 3 results in ill-formed consensus translations.

mulation. Consensus translations obtained with linear
BLEU risk tend to contain repeated instances of highly-
probable n-grams which resulted in longer consensus
translations (27.8 words on average) than the ones gen-
erated using BLEU risk over expected counts (26.4
words), and also longer than the average length (26.0
words) of the reference translations. Table 2 shows var-
ious examples of these erroneous consensus translations
generated by Algorithm 3. Given the adequate perfor-
mance of linear BLEU risk in our sentence-selection ex-
periments and in previous works [13, 7], we conclude
that linear BLEU is an effective loss function to be
used in sentence-selection methods, but due to the lack
of n-gram count clippings, it fails at scoring the new
translations explored though decoding by subsequence-
combination algorithms. The inclusion of more fea-
tures, such as a language model, in the formulation of
linear BLEU risk may mitigate this effect.

6. Summary

We have investigated different approaches to improve
the MBRSC method described in [3]. First, we have
proposed a new DP decoding algorithm to obtain the
optimal consensus translation according to the original
BLEU-based risk formulation. Then, we have studied
a more efficient risk formulation based on the linear
BLEU approximation proposed in [13]. Empirical re-
sults showed that the proposed DP decoding was able
to obtain better-scoring higher-quality hypotheses than
original gradient ascent search proposed in [3], and to
do that with less temporal complexity. We have also
shown that linear BLEU is not an adequate risk func-
tion for subsequence-combination methods due to the
lack of n-gram count clippings in its formulation.



7. Acknowledgments

Work supported by the European Union Seventh
Framework Program (FP7/2007-2013) under the Cas-
MaCat project (grants agreement no 287576), by the
Generalitat Valenciana under grant ALMPR (Prome-
teo/2009/014), and by the Spanish government under
grant TIN2012-31723.

8. References
[1] O. Bojar, C. Buck, C. Callison-Burch, C. Federmann,

B. Haddow, P. Koehn, C. Monz, M. Post, R. Soricut,
and L. Specia, “Findings of the 2013 Workshop on Sta-
tistical Machine Translation,” in Proc. of the 8th Work-
shop on SMT, 2013, pp. 1–44.

[2] T. G. Dietterich, “Ensemble methods in machine learn-
ing,” in Proc. of the 1st Workshop on Multiple Classifier
Systems, 2000, pp. 1–15.
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