

Assessing Quick Update Methods of Statistical Translation Models

Shachar Mirkin & Nicola Cancedda

IWSLT 2013

- Transcription and translation of educational video lectures
- To be integrated into lecture repositories
 - -VideoLectures.NET, poliMedia
- 3 transcription languages:
 - English (en), Slovenian (sl), Spanish (es)
- 6 translation language pairs:
 - $en \rightarrow \{fr, de, sl, es\}, sl \rightarrow en, es \rightarrow en$
- ASR and SMT, with human supervision for each
- Improving the models
 - -By adaptation
 - Based on users' feedback

http://www.translectures.eu/

Users' feedback

- Main source of feedback: corrected translation (post-edition)
- Pretty standard procedure
 - When good quality translation is required
- May be tedious and time-consuming
 - We wish to minimize the effort
- Post-edition generates additional training material
 - That we can use to update the model
- We want the process to be *fast*

SMT model updates

SMT model – time per task

- CPU-time
- Exact configuration in the paper

Incremental training

- Enables updating the model based on new training data
 - Without re-training using all data
 - Much faster
- Using Online EM for alignment instead of "Batch"-EM
- Expected to produce better alignment
 - Vs. aligning only the new data on its own
- Potentially reflecting feedback immediately (real-time)

Incremental training for Moses

Suffix Arrays for SMT

- The entire training data is kept in memory
 - Instead of generating a phrase table in advance
- Scores are computed on the fly (Callison-Burch and Bannard, 2005)
- *Dynamic suffix arrays* (Levenberg et al., 2010):
 - Additions and deletions of parallel sentences are also possible
 - Enabling incremental training

Inc GIZA w/ suffix arrays in Moses

- Incremental GIZA (Levenberg et al., 2010)
 - HMM-based alignments and IBM Model 1
 - Stepwise Online EM
 - Updating model in mini-batches
 - Interpolating counts of old and new data
- Results are comparable to GIZA++ when used without updates
- Updating:
 - 1. Preprocess the new data
 - 2. Update vocabularies, co-occurrences & alignments
 - 3. Align the new data
 - 4. Insert new sentence-pairs into the suffix array via the *Moses Server*

Inc. GIZA w/ SA in Moses – Limitations

• Pros (reminder)

- No need to re-align the entire data
- Better statistics for aligning the new data
- Potentially: real-time update

• Limitations*

- High memory usage
- Can't save updated model to disk
- Reverse translation probability features not computed
- LM not updated
- Insertion takes a long time
 - The system is unusable in the meanwhile
- Results are inferior
 - Just the missing features? Not sure

* Before new suffix array version of summer 2013

Quick SMT model updates

Update cycles

• Slow

- E.g. weekly
- Any kind of task
 - Tuning, retraining, binarizing

• Quick

- E.g. daily
- Only short tasks
 - Preprocessing, training of small corpora

Quick updates - Goal

Quickly update MT models in between slow retraining

• Expecting to:

- Improve vs. last slow update ("batch")
- Get close to next slow update
- Via a quick method

Domain adaptation

- We start with little in-domain data
 - Expecting to obtain more as we proceed
 - Depend also on large out-of-domain data

- Prior work
 - Separating in- and out-of-domain data helps
 - Both for phrase tables and language models

Assessed configurations – PT setting

- *OLD-NEW*: 2 phrase tables (PTs): old/new data (relative to last slow update)
 - Very quick
- *IN-OUT*: 2 PTs: in/out of domain
 - Slower; proved to work well for domain adaptation
- *3-TABLES*: 1 table for out; 2 for in-domain: old & new
 - Potentially combines benefits of the above two
- BATCH: all concatenated

Effort by configurations - example

q ₂₂	Config./ Task	Prep.	Alignment	PT	LM
	OLD-NEW	5K	15K	15K	15K
	IN-OUT	5K	45K	45K	45K
	3-TABLES	5K	15K	15K	15K
	BATCH	5K	1,045K	1,045K	1,045K

Experiments

Setting

- 2 spoken language datasets:
 - transLectures (TL)
 - TED talks (WIT³)
- Europarl as out-of-domain

		TL (EN-FR)	WIT ³ (IT-EN)
out-of-domain	Training	Europarl 1M	Europarl 1M
	Training	4K	40K
In-domain	Development	1K	1K
	Test	1360	1K

- Phrase-based SMT: Moses
 - *either* option for multiple phrase tables
- Language models: 5-gram SRILM
- Tuning: MIRA
- **Evaluation**: Averaged sentence-level BLEU
- Reordering table not updated

Slow updates

• Using the complete in-domain data

Dataset	Configuration	BLEU
	Baseline	23.9
transLectures	BATCH, PT only	27.9
	BATCH, complete	28.3
	Baseline	29.4
WIT3	BATCH, PT only	30.9
	BATCH, complete	30.7

- Adding in-domain data significantly improves results
 - (even only 4K sentence-pairs)

Quick PT updates

• Generating only phrase tables with the new data

Dataset	Configuration	BLEU	-
	OLD-NEW	29.4	
transLectures	IN-OUT	29.7	vs. 28.3
	3-TABLES	30.2	
	OLD-NEW	31.2	
WIT3	IN-OUT	31.7	vs. 30.9
	3-tables	31.2	

• All are better (and faster) than batch retraining

Quick PT & LM updates

- Updating also the LMs
 - Matching LM configuration to PTs'

Dataset	Configuration	BLEU	
	OLD-NEW	31.2	
transLectures	IN-OUT	31.8	vs. 30.2
	3-TABLES	31.6	
	OLD-NEW	32.3	
WIT3	IN-OUT	33.1	vs. 31.7
	3-TABLES	32.3	

- Separating also the LMs further helps
 - But not separating them too much

Quick PT & LM updates

Dataset	Configuration	BLEU		
	OLD-NEW	31.2	Only LM i	S
transLectures	IN-OUT	31.8	(quickly)	
	3-TABLES	31.6	updated	
	OLD-NEW	32.3	Configuration	BLEU
WIT3	IN-OUT	33.1	Single LM	29.4
	3-TABLES	32.3	Separate LMs	31.4

IN-OUT

- Separating only the LMS helps vs. baseline, but less than PT separation
 - It's not enough to separate only the LM

Separating the LMs for batch training

- Single phrase table, but separate *IN-OUT* LMs
 - Slow update (but not the slowest)

Dataset	Configuration	BLEU	
TL	BATCH, single LM	28.3	
1 L	BATCH, separate LMs	31.6	
WIT3	BATCH, single LM	30.7	
VV 11 J	BATCH, separate LMs	32.6	

Vs. 31.8

Vs. 33.1

- Separating LMs helps batch training
- Slower & not better than separation of also the PTs

No adaptation

- Only WIT3, starting with 30K and updating with 10K
- IN-OUT and 3-TABLES not relevant

Configuration	BLEU
Baseline	28.2
BATCH	29.2
OLD-NEW	28.5
OLD-NEW, single LM	28.9

- Slow update gets best results
- Out-of-domain data is still useful (33.1)
 - Then quick updates are really necessary

Other results

- Re-ordering table isn't significant
 - (for the language pairs we tested)
 - Needn't be constantly updated
- Tuning can be deferred to slow update
 - If no significant change of configuration

Practical recommendations

• Phrase tables:

- 1. Not much in-domain data: use IN-OUT
- 2. A lot of in-domain data: use 3-TABLES'
 - *Most* of older in-domain data in one table
 - Reserve some for the new table, to be trained with the new data

• LMs:

- Use IN-OUT LMs, even if using 3-TABLES
- Pretty quick in any case
- Depends on exact conditions
 - Computing power, amount of data
- Keep an eye of suffix arrays & inc. training in Moses
 - A new version is (being) implemented
 - May be combined with quick updates configurations

Thank you!

(and thanks for the very useful reviews)

Tuning

Setting	Configuration	BLEU
	Baseline	27.76
TL, 2K; IN-OUT	Re-tuned	28.45
	Not re-tuned	28.31
	Baseline	28.51
TL, 4K; Old-New	Re-tuned	29.37
	Not re-tuned	29.19