= Xerox @,)

®
i »
L 1 G

Assessing Quick Update Methods
of Statistical Translation Models

Shachar Mirkin & Nicola Cancedda

IWSLT 2013

trans Lectures)))

m

trans Lectures))
* Transcription and translation of educational video lectures

* To be integrated into lecture repositories
—Videolectures.NET, poliMedia

3 transcription languages:
— English (en), Slovenian (sl), Spanish (es)
* 6 translation language pairs:

—en — {fr, de, sl, es}, sl - en, es — en

* ASR and SMT, with human supervision for each

* Improving the models
— By adaptation
—Based on users’ feedback

http://www.translectures.eu/

Users’ feedback

* Main source of feedback: corrected translation (post-edition)

* Pretty standard procedure
* When good quality translation is required

* May be tedious and time-consuming
* We wish to minimize the effort

* Post-edition generates additional training material

* That we can use to update the model

* We want the process to be fast

SMT model updates

SMT model — time per task

Prep.
0.2%

LM H Prep.

1.7%

= Alignment
Reordering .\I > ® Phrase table
2.6%

= B Reordering
mLM
® Tuning

* CPU-time
» Exact configuration —in the paper

Incremental training

* Enables updating the model based on new training data

e Without re-training using all data
* Much faster

* Using Online EM for alignment instead of “Batch”-EM

* Expected to produce better alignment
* Vs. aligning only the new data on its own

* Potentially reflecting feedback immediately (real-time)

Incremental training for Moses

€ 9 C N [wwwstatmt.org/moses/in=Maoses AdvancedFeatures Q|G =
s 3 =
Incremental Training
Introduction
Translation models for Moses are typically batch trained. That is, before training you have all the data you
wish to use, you compute the alignments using GIZ4, and from that produce a phrase table which you can
use in the decoder, If some time later you wish to utilize some new training data, you must repeat the
process from the start, and for large data sets, that can take quite some time,
Incremental training provides a way of avoiding having to retrain the model from scratch every time you
wish to use some new training data, Instead of producing a phrase table with precalculated scores for all
translations, the entire source and target corpora are stored in memory as a suffiz array along with their
alignments, and translation scores are calculated on the fly, Now, when you have new data, you simply
update the word alignments, and append the new sentences to the corpora along with their alignments.
Moses provides a means of doing this via ML RPC, so you don't even need to restart the decoder to use
the new data.
MWote that at the moment the incremental phrase table code is not thread safe.
Initial Training
This section describes how to initially train and use a model which support incremental training.
¢ Setupthe EMS as normal, but use a modified version of GIZA++. F
« Add the line:
training-options = "-final-alignment-model hwm'™
to the TRAINING section of your experiment. configuration file.
¢ Train the system using the initial training data as normal,
« Modify the moses.ini file found in <experiment-dir> /ewvaluation/filtered.<evaluation-set>.<run-
number> to have a ttablefile entry as follows:
500 3 <path-to-source-corpuss <path-to-target-corpuss> <path-to-alignmentss
N
& | s

Suffix Arrays for SMT

* The entire training data is kept in memory
« Instead of generating a phrase table in advance

» Scores are computed on the fly
(Callison-Burch and Bannard, 2005)

e Dynamic suffix arrays (Levenberg et al., 2010):
« Additions and deletions of parallel sentences are also possible
e Enabling incremental training

Inc GIZA w/ suffix arrays in Moses

* Incremental GIZA (Levenberg et al., 2010)
— HMM-based alignments and IBM Model 1
— Stepwise Online EM

* Updating model in mini-batches
* Interpolating counts of old and new data

* Results are comparable to GIZA++ when used without updates

* Updating:
1. Preprocess the new data
2. Update vocabularies, co-occurrences & alignments
3. Align the new data
4. Insert new sentence-pairs into the suffix array via the Moses Server

Inc. GIZA w/ SA in Moses — Limitations

* Pros (reminder)

- No need to re-align the entire data
— Better statistics for aligning the new data
- Potentially: real-time update

* Limitations*
— High memory usage
— Can’t save updated model to disk
— Reverse translation probability features not computed
— LM not updated
— Insertion takes a long time

. The system is unusable in the meanwhile
— Results are inferior
* Just the missing features? Not sure

* Before new suffix array version of summer 2013

Quick SMT model updates

Update cycles

* Slow
 E.g. weekly
* Any kind of task

— Tuning, retraining, binarizing

* Quick
 E.g. daily
* Only short tasks
— Preprocessing, training of small corpora

Quick updates - Goal

Quickly update MT models in between slow retraining

* Expecting to:
* Improve vs. last slow update (“batch”)
* Get close to next slow update
* Via a quick method

Domain adaptation

* We start with little in-domain data
e Expecting to obtain more as we proceed
 Depend also on large out-of-domain data

* Prior work

* Separating in- and out-of-domain data helps
* Both for phrase tables and language models

Assessed configurations — PT setting

OLD-NEW: 2 phrase tables (PTs): old/new data (relative to last slow update)
— Very quick

IN-OUT: 2 PTs: in/out of domain

— Slower; proved to work well for domain adaptation

3-TABLES: 1 table for out; 2 for in-domain: old & new

— Potentially combines benefits of the above two

BATCH: all concatenated

our N,

Effort by configurations - example

S, S, 22 &S,

d,, Config./ Task | Prep. | Alignment | PT LM
OLD-NEW 5K 15K 15K 15K
IN-OUT SK 45K 45K 45K
3-TABLES SK 15K 15K 15K
BATCH 5K 1,045K 1,045K | 1,045K

Experiments

Setting

* 2 spoken language datasets:
* translectures (TL)
e TED talks (WIT3)

* Europarl as out-of-domain

TL (EN-FR) WIT3 (IT-EN)

out-of-domain Training Europarl 1M Europarl 1M

Phrase-based SMT: Moses

— either option for multiple phrase tables
Language models: 5-gram SRILM
Tuning: MIRA
Evaluation: Averaged sentence-level BLEU
Reordering table not updated

Slow updates

* Using the complete in-domain data

Dataset Configuration BLEU

Baseline 23.9
transLectures | BATCH, PT only 27.9
BATCH, complete 28.3

Baseline 294
WIT3 BATCH, PT only 30.9
BATCH, complete 30.7

 Adding in-domain data significantly improves results
* (even only 4K sentence-pairs)

Quick PT updates

Generating only phrase tables with the new data

Dataset Configuration | BLEU
OLD-NEW 29.4

transLectures | IN-OUT 29.7
3-TABLES 3().2
OLD-NEW 31.2

WIT3 IN-OUT 1.7
3-TABLES 31.2

All are better (and faster) than batch retraining

Vs 28.3

vs. 30.9

Quick PT & LM updates

Updating also the LMs
* Matching LM configuration to PTs’

Dataset Configuration | BLEU
OLD-NEW 31.2

transLectures | IN-OUT 31.8
3-TABLES 31.6
OLD-NEW $2.

WIT3 IN-OUT 35.1
3-TABLES 32.3

Separating also the LMs further helps

But not separating them too much

vs. 30.2

vs. 31.7

Quick PT & LM updates

Dataset Configuration | BLEU
OLD-NEW 31.2

transLectures | IN-OUT 31.8
3-TABLES 31.6
OLD-NEW $2.

WIT3 IN-OUT 53.1
3-TABLES 32.3

Only LM is
(quickly)

updated

Configuration | BLEU

Single LM 294
Separate LMs 31.4

Separating only the LMS helps vs. baseline, but less than PT separation

* It’s not enough to separate only the LM

Separating the LMs for batch training

* Single phrase table, but separate IN-OUT LMs
* Slow update (but not the slowest)

Dataset | Configuration BLEU

T BATCH, single LM 28.3
BATCH, separate LMs | 31.6
BATCH, single LM 30.7

WITS BATCH, separate LMs | 32.6

* Separating LMs helps batch training

* Slower & not better than separation of also the PTs

Vs. 31.8

Vs. 33 1

No adaptation

Only WIT3, starting with 30K and updating with 10K
IN-OUT and 3-TABLES not relevant

Configuration BLEU
Baseline 28.2
BATCH .
OLD-NEW 28.5
OLD-NEW, single LM 28.9

Slow update gets best results
Out-of-domain data is still useful (33.1)

* Then - quick updates are really necessary

Other results

* Re-ordering table isn’t significant
* (for the language pairs we tested)
— Needn’t be constantly updated

* Tuning can be deferred to slow update

— If no significant change of configuration

Practical recommendations

e Phrase tables:

1. Not much in-domain data: use IN-OUT
2. A lot of in-domain data: use 3-TABLES’
* Most of older in-domain data in one table
 Reserve some for the new table, to be trained with the new data

e LMs:

« Use IN-OUT LMs, even if using 3-TABLES
« Pretty quick in any case

— Depends on exact conditions
* Computing power, amount of data

 Keep an eye of suffix arrays & inc. training in Moses
« A new version is (being) implemented
« May be combined with quick updates configurations

Thank you!

(and thanks for the very useful reviews)

Tuning

Setting Configuration | BLEU
Baseline 277.76

TL, 2K; IN-OUT Re-tuned 28.45
Not re-tuned 28.31
Baseline 28.51

TL, 4K; OLD-NEW Re-tuned 29.37
Not re-tuned 29.19

